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1. Introduction

T his paper deals with the initial boundary value problem of the dispersive wave equation with memory
and source terms

utt − ∆u + α∆2u−
∫ t

0
g(t− τ)∆2u(τ)dτ + ut = |u|p−1u, x ∈ Ω, t > 0, (1)

where Ω is a bounded domain in Rd (d ≥ 1) with a smooth boundary ∂Ω, α is a positive constant and g(t) is a
positive function that represents the kernel of the memory term, which will be specified in Section 2. Here, we
understand ∆2u to be the dispersive term. In the absence of the viscoelastic term and the dispersive term (that
is, if g = α = 0), the model (1) reduces to the weakly damped wave equation

utt − ∆u + ut = |u|p−1u, x ∈ Ω, t > 0. (2)

The interaction between the weak damping term and the source term are considered by many authors.
We refer the reader to, Haraux and Zuazua [1], Ikehata [2] and Levine [3,4]. If α = 0 and g is not trivial on R,
but replacing the fourth order memory term in (1) by a weaker memory of the form

∫ t
0 g(t− τ)∆u(τ)dτ, then

(1) can be rewritten as follows

utt − ∆u +
∫ t

0
g(t− τ)∆u(τ)dτ + ut = |u|p−1u, x ∈ Ω, t > 0, (3)

The Equation (3) has been considered by Wang et al [5]. Under some appropriate assumptions on g, by
introducing potential wells they obtained the existence of global solution and the explicit exponential energy
decay estimates. Our main goal in the present paper is to discuss the global solutions and general decay to
the following weakly damped wave equation with dispersive term, the fourth order memory term and the
nonlinear source term

utt − ∆u + ∆2u−
∫ t

0
g(t− τ)∆2u(τ)dτ + ut = |u|p−1u in Ω×R+, (4)

with simply supported boundary condition

u = 0,
∂u
∂ν

= 0 on ∂Ω×R+, (5)
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and initial conditions
u(·, 0) = u0 and ut(·, 0) = u1 in Ω, (6)

where Ω is a bounded domain of Rd with a smooth boundary ∂Ω and p > 1. Here, ν is the unit outward
normal to ∂Ω, and g(t) is a positive function that represents the kernel of the memory term, which will be
specified in Section 2. We prove that Problem (4)-(6) has a global weak solution assuming small initial data.
In addition, we show the general decay of solutions. The global solutions are constructed by means of the
Galerkin approximations and the general decay is obtained by employing the technique used in [6].

2. Preliminaries

Before proceeding to our analysis, we use the following abbreviations ‖ · ‖q = ‖ · ‖Lq(Ω) (1 ≤ q ≤ +∞)

denotes usual Lq norm, (·, ·) denotes the L2-inner product, and consider the Sobolev spaces H1
0(Ω) and H2

0(Ω)

with their usual scalar products and norms. We also use the embedding H1
0(Ω) ↪→ Lq(Ω) for 2 < q < 2d

d−2 if
d ≥ 3 or 2 < q < ∞ if d = 1, 2. In this case, the embedding constant is denoted by C∗, that is ‖u‖q ≤ C∗‖∇u‖2.

We define the polynomial Q by Q(z) = 1
2 z2 − Cp+1

∗
p+1 zp+1, which is increasing in [0, z0], where z0 = C

p+1
1−p
∗ is its

unique local maximum. Next, we give the assumptions for Problem (4)-(6).
(G1) The relaxation function g : R+ → R+ is a bounded C1 function such that g(0) > 0, 0 < η = 1 −∫ ∞

0 g(τ)dτ ≤ 1−
∫ t

0 g(τ)dτ = η(t).
(G2) There exist positive constants ξ1 and ξ2 such that −ξ1g(t) ≤ g′(t) ≤ −ξ2g(t) ∀t ≥ 0.
(G3) We also assume that 1 < p ≤ d+2

d−2 if d ≥ 3 and p > 1 if d = 1, 2. where λ1 is the first eigenvalue of the
following problem

∆2u = λ1u in Ω, u =
∂u
∂ν

= 0 in ∂Ω. (7)

Remark 1. [7] Assuming λ1 is the first eigenvalue of the problem (7), we have

‖∆u‖2
2 ≥ λ1‖∇u‖2

2. (8)

Now, we define the following energy function associated with a solution u of the Problem (4)-(6)

E(t) =
1
2
‖ut‖2

2 +
1
2

(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖2

2 +
1
2
‖∇u‖2

2 +
1
2
(g ◦ ∆u)(t)− 1

p + 1
‖u‖p+1

p+1 (9)

for u ∈ H2
0(Ω), and

E(0) =
1
2
‖u1‖2

2 +
1
2
‖∆u0‖2

2 +
1
2
‖∇u0‖2

2 −
1

p + 1
‖u0‖

p+1
p+1 (10)

is the initial total energy. To facilitate further on our analysis, we use the following notation

(g ◦ ∆u)(t) =
∫ t

0
g(t− τ)‖∆u(τ)− ∆u(t)‖2

2dτ.

Now, we are in a position to state our main results.

3. Main results

Theorem 1. Assume that (G1) − (G3) hold, u0 ∈ H2
0(Ω), u1 ∈ L2(Ω). Further assume that ‖∇u0‖2 < z0 and

E(0) < Q(z0), then the Problem (4)-(6) possesses a global weak solution satisfying; u ∈ L∞(0, ∞; H2
0(Ω)), ut ∈

L∞(0, ∞; L2(Ω)) for 0 ≤ t < ∞, and the energy identity

E(t) +
∫ t

0
‖ut(τ)‖2

2dτ − 1
2

∫ t

0
(g′ ◦ ∆u)(τ)dτ +

1
2

∫ t

0
g(τ)‖∆u(τ)‖2

2dτ = E(0), (11)

holds for 0 ≤ t < ∞. Moreover, for ζ : R+ → R+ a increasing C2 function satisfying

ζ(0) = 0, ζt(0) > 0, lim
t→+∞

ζ(t) = +∞, ζtt(t) < 0 ∀t ≥ 0, (12)
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and, if ‖g‖L1(0,∞) is sufficiently small, we have for κ > 0; E(t) ≤ E(0)e−κζ(t), ∀t ≥ 0.

Remark 2. From (11) and (G2), we can easily obtain

d
dt

E(t) = −‖ut(t)‖2
2 +

1
2
(g′ ◦ ∆u)(t)− 1

2
g(t)‖∆u(t)‖2

2 ≤ −‖ut(t)‖2
2 −

1
2

ξ2(g ◦ ∆u)(t)− 1
2

g(t)‖∆u(t)‖2
2 ≤ 0.

(13)

Remark 3. For ζ(t) = t + t
t+1 , we can get the exponential decay rate E(t) ≤ E(0)e−κt, ∀t ≥ 0. For ζ(t) =

ln(1 + t), we can get polynomial decay rate E(t) ≤ E(0)(1 + t)−κ , ∀t ≥ 0.

4. Proof of main results

In this section, we shall divide the proof into two steps. In Step 1, we prove the global existence of weak
solutions by using Galerkin’s approximations. In Step 2, we establish the general decay of energy employing
the method used in [6].

Step 1 Global existence of weak solutions

Let
{

ωj
}∞

j=1 be an orthogonal basis of H2
0(Ω) with ωj being the eigenfunction of the problem −∆ωj =

λjωj, x ∈ Ω, ωj = 0, x ∈ ∂Ω. Let Vn = Span {ω1, ω2, · · ·, ωn}. By the standard method of ODE, we
know that un(t) = ∑n

j=1 bn
j (t)ωj(x) of the Cauchy problem as follows

∫
Ω

un
ttωdx +

∫
Ω
∇un · ∇ωdx +

∫
Ω

∆un · ∆ωdx−
∫ t

0
g(t− τ)

∫
Ω

∆un(τ) · ∆ωdxdτ

+
∫

Ω
un

t ωdx−
∫

Ω
|un|p−1unωdx = 0, (14)

un(0) = un
0 → u0, in H2

0(Ω), un
t (0) = un

1 → u1 in L2(Ω). (15)

By the standard theory of ODE system, we prove the existence of solutions of Problem (14)-(15) on some
interval [0, tn), 0 < tn < T for arbitrary T > 0, then, this solution can be extended to the whole interval [0, T]
using the first estimate given below. Taking ω = un

t (t) in (14), we obtain

1
2

d
dt
‖un

t ‖2
2 +

1
2

d
dt
‖∇un‖2

2 +
1
2

d
dt
‖∆un‖2

2 −
1

p + 1
d
dt
‖un‖p+1

p+1 + ‖u
n
t ‖2

2

−
∫ t

0
g(t− τ)

∫
Ω

∆un(τ) · ∆un
t (t)dxdτ = 0. (16)

For the last term on the left hand side of (16) we have

−
∫ t

0
g(t− τ)

∫
Ω

∆un(τ) · ∆un
t (t)dxdτ =

1
2

d
dt
(g ◦ ∆un)(t)− 1

2
d
dt

(∫ t

0
g(τ)dτ

)
‖∆un(t)‖2

2

−1
2
(g′ ◦ ∆un)(t) +

1
2

g(t)‖∆un(t)‖2
2. (17)

Inserting (17) into (16) and integrating over [0, t] ⊂ [0, T], we obtain

1
2
‖un

t ‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +
1
2
‖∇un‖2

2 −
1

p + 1
‖un‖p+1

p+1 +
∫ t

0
‖un

t (τ)‖2
2dτ +

1
2
(g ◦ ∆un)(t)

−1
2

∫ t

0
(g′ ◦ ∆un)(τ)dτ +

1
2

∫ t

0
g(τ)‖∆un(τ)‖2

2dτ = En(0). (18)

Now from assumption (G3) and the Sobolev embedding, we have that

‖un‖p+1
p+1 ≤ Cp+1

∗ ‖∇un‖p+1
2 , (19)
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and then we have

1
2
‖un

t ‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +Q(‖∇un‖2
2) +

∫ t

0
‖un

t (τ)‖2
2dτ +

1
2
(g ◦ ∆un)(t)

−1
2

∫ t

0
(g′ ◦ ∆un)(τ)dτ +

1
2

∫ t

0
g(τ)‖∆un(τ)‖2

2dτ ≤ En(0). (20)

By using the fact that −
∫ t

0 (g′ ◦ ∆un)(τ)dτ +
∫ t

0 g(τ)‖∆un(τ)‖2
2dτ ≥ 0, estimate (20) yields

1
2
‖un

t ‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +
1
2
(g ◦ ∆un)(t) +Q(‖∇un‖2

2) +
∫ t

0
‖un

t (τ)‖2
2dτ ≤ En(0). (21)

From E(0) < Q(z0) and (15), it follows that

En(0) < Q(z0), (22)

for sufficiently large n. We claim that there exists an integer N such that

‖∇un(t)‖2
2 < z0 ∀t ∈ [0, tn) n > N. (23)

Suppose the claim is proved. Then Q(‖∇un‖2
2) ≥ 0 and from (21) and (22),

1
2
‖un

t ‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +
1
2
(g ◦ ∆un)(t) +

∫ t

0
‖un

t (τ)‖2
2dτ ≤ En(0) < Q(z0) (24)

for sufficiently large n and 0 ≤ t < ∞.

Proof of the claim. Suppose that (23) false. Then for each n > N, there exists t ∈ [0, tn) such that ‖∇un(t)‖2 ≥
z0. We note that from ‖∇u0‖2 < z0 and (15) there exists N0 such that ‖∇un(0)‖2 < z0 ∀n > N0. Then by
continuity there exits a first t∗n ∈ [0, tn) such that

‖∇un(t∗n)‖2 = z0, (25)

from where Q(‖∇un(t)‖2) ≥ 0 ∀t ∈ [0, t∗n]. Now from E(0) < Q(z0) and (24), there exists N > N0 and γ ∈
(0, z0) such that 0 ≤ 1

2‖un
t (t)‖2

2 +
η(t)

2 ‖∆un(t)‖2
2 +

1
2 (g ◦ ∆un)(t) +Q(‖∇un(t)‖2

2) ≤ Q(γ) ∀t ∈ [0, t∗n] ∀n >

N. Then the monotonicity of Q in [0, z0] implies that 0 ≤ ‖∇un(t)‖2
2 ≤ γ < z0 ∀t ∈ [0, t∗n], and in particular,

‖∇un(t)‖2
2 < z0, which is a contradiction to (24). From (24), we have

‖∆un‖2
2 <

2Q(z0)

η
, 0 ≤ t < ∞, (26)

‖un
t ‖2

2 < 2Q(z0), 0 ≤ t < ∞, (27)∫ t

0
‖un

t (τ)‖2
2dτ < Q(z0), 0 ≤ t < ∞. (28)

Using Sobolev inequality, (8) and (26), it follows that

‖un‖2
p+1 ≤ C2

∗‖∇un‖2
2 ≤ C2

∗λ
−1
1 ‖∆un‖2

2 <
2C2
∗λ
−1
1 Q(z0)

η
, 0 ≤ t < ∞. (29)

Furthermore, by (29), we get

|(|un|p−1un, un)| ≤ ‖un‖p+1
p+1 < Cp+1

∗

(
2C2
∗λ
−1
1 Q(z0)

η

) p+1
2

, 0 ≤ t < ∞. (30)

The estimates (26)-(30) permit us to obtain a subsequences of {un} which from now on will be also
denoted by {un} and functions u, χ such that
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un → u weak star in L∞(0, ∞; H2
0(Ω)), n→ +∞, (31)

un
t → ut weak star in L∞(0, ∞; L2(Ω)), n→ +∞, (32)

|un|p−1un → χ weak star in L∞(0, ∞; L
p+1

p (Ω)), n→ +∞. (33)

Besides, from Lions-Aubin Lemma we also have

un → u strongly in L2(0, ∞; L2(Ω)), n→ +∞, (34)

and consequently, making use of the Lemma 1.3 in [8], we deduce

|un|p−1un → χ = |u|p−1u weak star in L∞(0, ∞; L
p+1

p (Ω)), n→ +∞. (35)

Thus, we obtain that u is a global weak of problem (4)-(6). Next, we shall prove that u satisfies (11). From
the discussion above, we obtain for each fixed t > 0 that

lim
n→+∞

(g ◦ ∆un)(t) = (g ◦ ∆u)(t), lim
n→+∞

‖un‖p+1
p+1 = ‖u‖p+1

p+1. (36)

We obtain for each fixed t > 0 that

|(g ◦ ∆u)(t)− (g ◦ ∆un)(t)| =

∣∣∣∣∫ t

0
g(t− τ)‖∆u(τ)− ∆u(t)‖2

2dτ −
∫ t

0
g(t− τ)‖∆un(τ)− ∆un(t)‖2

2dτ

∣∣∣∣
≤

∫ t

0
g(t− τ)‖∆u(τ)− ∆un(τ)‖2‖∆u(τ) + ∆un(τ)‖2dτ

+
∫ t

0
g(t− τ)‖∆u(τ)− ∆un(τ)‖2dτ‖∆u(t) + ∆un(t)‖2

+
∫ t

0
g(t− τ)‖∆u(τ) + ∆un(τ)‖2dτ‖∆u(t)− ∆un(t)‖2

+
∫ t

0
g(τ)dτ‖∆u(t) + ∆un(t)‖2‖∆u(t)− ∆un(t)‖2

≤ C
∫ t

0
g(t− τ)‖∆u(τ)− ∆un(τ)‖2dτ + C

∫ t

0
g(τ)dτ‖∆u(t)− ∆un(t)‖2 → 0,

(37)

as n→ +∞, and

‖un‖p+1
p+1 − ‖u‖

p+1
p+1 ≤ (p + 1)

∣∣∣∣∫Ω
|u + θnun|p−1(u + θnun)(un − u)dx

∣∣∣∣
≤ (p + 1)‖u + θnun‖p

p+1‖u
n − u‖p+1 ≤ C‖un − u‖p+1 → 0, (38)

as n→ +∞, where 0 < θn < 1. Hence, we have

lim
n→+∞

(g ◦ ∆un)(t) = (g ◦ ∆u)(t), lim
n→+∞

‖un‖p+1
p+1 = ‖u‖p+1

p+1. (39)

From (15), it follows that En(0) → E(0) as n → +∞. Finally, taking n → +∞ in (18), we deduce that the
energy identity (11) holds for 0 ≤ t < ∞.

Step 2 General decay of the energy

Firstly, we state several Lemmas to prove the decay rate estimate of the energy.

Lemma 1. Let u ∈ L∞(0, ∞; H2
0(Ω)) be the solution of (4)-(6) and E(0) < Q(z0), ‖∇u0‖2 < z0, then we have

0 ≤ E(t) ≤ 1
2
‖ut‖2

2 + C1‖∆u‖2
2 +

1
2
(g ◦ ∆u)(t), (40)
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where C1 = 1
2 + (2λ1)

−1.

Proof. From E(0) < Q(z0) and ‖∇u0‖2 < z0, we can obtain Q(‖∇u(t)‖2) ≥ 0 for 0 ≤ t < ∞. Thus we have

E(t) =
1
2
‖ut‖2

2 +
1
2

(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖2

2 +
1
2
(g ◦ ∆u)(t) +

1
2
‖∇u‖2

2 −
1

p + 1
‖u‖p+1

p+1

≥ 1
2
‖ut‖2

2 +
η

2
‖∆u‖2

2 +
1
2
(g ◦ ∆u)(t) +Q(‖∇u(t)‖2) ≥ 0, (41)

and

E(t) ≤ 1
2
‖ut‖2

2 +
1
2
‖∆u‖2

2 +
1
2
(g ◦ ∆u)(t) +

1
2
‖∇u‖2

2 ≤
1
2
‖ut‖2

2 + C1‖∆u‖2
2 +

1
2
(g ◦ ∆u)(t). (42)

Lemma 2. The energy E(t) satisfies

dE(t)
dt

≤ −‖ut(t)‖2
2 −

1
2

ξ2(g ◦ ∆u)(t)− 1
2

[
g(0)− ξ1‖g‖L1(0,∞)

]
‖∆u(t)‖2

2 ∀t ≥ 0. (43)

Proof. From (13), we have

dE(t)
dt

≤ −‖ut(t)‖2
2 −

ξ2

2
(g ◦ ∆u)(t)− 1

2
g(t)‖∆u(t)‖2

2. (44)

From assumptions (G2) and since
∫ t

0 g′(τ)dτ = g(t)− g(0), we obtain

− 1
2

g(t)‖∆u(t)‖2
2 = −1

2
g(0)‖∆u(t)‖2

2 −
1
2

(∫ t

0
g′(τ)dτ

)
‖∆u(t)‖2

2

≤ −1
2

g(0)‖∆u(t)‖2
2 +

ξ1

2
‖g‖L1(0,∞)‖∆u(t)‖2

2

= −1
2

[
g(0)− ξ1‖g‖L1(0,∞)

]
‖∆u(t)‖2

2. (45)

Then, Combining (45) and (44) our conclusion holds. Multiplying (43) by eκζ(t) (κ > 0) and using (40), we
have

d
dt

(
eκζ(t)E(t)

)
≤ −‖ut(t)‖2

2eκζ(t)E(t)− 1
2

ξ2(g ◦ ∆u)(t)eκζ(t)E(t)

−1
2

[
g(0)− ξ1‖g‖L1(0,∞)

]
‖∆u(t)‖2

2eκζ(t)E(t) + κζt(t)eκζ(t)E(t)

≤ −1
2
[2− κζt(t)] ‖ut(t)‖2

2eκζ(t)E(t)− 1
2
[ξ2 − κζt(t)] (g ◦ ∆u)(t)eκζ(t)E(t)

−1
2
[g(0)− ξ1‖g‖L1 − 2C1κζt(t)] ‖∆u(t)‖2

2eκζ(t)E(t). (46)

Using the fact that ζt is decreasing by (12), we arrive at

d
dt

(
eκζ(t)E(t)

)
≤ −1

2
[2− κζt(0)] ‖ut(t)‖2

2eκζ(t)E(t)− 1
2
[ξ2 − κζt(0)] (g ◦ ∆u)(t)eκζ(t)E(t)

−1
2

[
g(0)− ξ1‖g‖L1(0,∞) − 2C1κζt(0)

]
‖∆u(t)‖2

2eκζ(t)E(t). (47)

Choosing ‖g‖L1(0,∞) sufficiently small so that g(0) − ξ1‖g‖L1(0,∞) = B > 0 and defining κ0 =

min
{

2
ζt(0)

, ξ2
ζt(0)

, B
2C1ζt(0)

}
, we conclude by taking κ ∈ (0, κ0] in (47) that d

dt

(
eκζ(t)E(t)

)
≤ 0, t > 0.

Integrating the above inequality over (0, t), it follows that E(t) ≤ E(0)e−κζ(t), t > 0.
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