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Abstract: In this paper, we consider an initial value problem related to a class of hyperbolic equation
in a bounded domain is studied. We prove local existence and uniqueness of the solution by using the
Faedo–Galerkin method and that the local solution is global in time. We also prove that the solutions with
some conditions exponentially decay. The key tool in the proof is an idea of Haraux and Zuazua with is based
on the construction of a suitable Lyapunov function.
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1. Introduction

C onsider the following problem:

utt − div

(
| ∇u |2m−2 ∇u√

1+ | ∇u |2m

)
−ω∆ut + µut = u | u |p−2, x ∈ Ω, t ≥ 0, (1)

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , (2)

u (x, t) = 0, x ∈ ∂Ω, t ≥ 0, (3)

where Ω is a bounded regular domain in Rn, n ≥ 1 with a smooth boundary ∂Ω. ω, µ and m, p are real
numbers.

The nonlinear wave equations

utt − ∆u−ω∆ut + µut = u | u |p−2, x ∈ Ω, t ≥ 0, (4)

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , t ≥ 0, (5)

u (x, t) = 0, x ∈ ∂Ω, t ≥ 0, (6)

has been investigated by many authors [1–10]. In the absence of the nonlinear source term, it is well know
that the presence of one damping term ensures global existence and decay of solutions for arbitrary initial
condition [5,6]. For ω = µ = 0 the nolinear term u | u |p−2 causes finite time blow up of solutions with
negative energy [2]. The interaction between the damping and the source terms was first considered by Levine
[11]. He showed that solutions with negative initial energy blows up in finite time. When ω = 0 and the
linear term ut is replaced by | ut |r−2 ut, Georgiev and Todorowa [12] extended Levin’s result to the case where
r > 2. In their work, the authors introduced a method different from the one know as the concavity method.
The termined suitable relations between r and p, for whith there is global existence or alternatively fnite time
blow-up.

For the initial boundary value problem of a quasilinear equation

utt − div
(
| ∇u |m−2 ∇u

)
+ aut | ut |p−2 −∆ut = bu | u |r−2,
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x ∈ Ω, t ≥ 0, (7)

u (x, 0) = u0 (x) ∈W1,m
0 (Ω) , ut (x, 0) = u1 (x) ∈ L2 (Ω) , t ≥ 0, (8)

u (x, t) = 0, x ∈ ∂Ω, t ≥ 0. (9)

Yang and Chen [13,14] studied the problem (7)-(9) and obtained global existence results under the growth
assumptions on the nonlinear terms and the initial value. This global existence results have been improved
by Liu and Zhao [15] by using a new method. In [13], the author considered a similar problem to (7)-(9) and
proved a blow-up result under the condition p > max(r, m) and the energy is sufficiently negative. Messaoudi
and Said-Houari [16] improved the results in [15] and showed that blow-up takes place for negative initial
data only regardless of the size of Ω Messaoudi in [17] showed that for m = 2, the decay is exponential. In
absence of strong damping −∆ut equation (7) becames

utt − div
(
| ∇u |m−2 ∇u

)
+ aut | ut |p−2= bu | u |r−2, x ∈ Ω, t ≥ 0. (10)

For b = 0, it is well known that the damping term assures global existence and decay of the solution
energy for arbitrary initial value [18]. For a = 0, the source term causes finite time blow-up of solutions with
negative initial energy if r > m (see [2]). When the quasilinear operator −div

(
| ∇u |m−2 ∇u

)
is replaced by

∆2u , Wu and Tsai [19] showed that the solution is global in time under some conditions without the relation
between p and r. They also proved that the local solution blows up infinite time if r > p and the initial energy
is nonnegative, and gave the decay estimates of the energy function and the lifespan of solutions. In this paper,
we show that the local solutions of the problem (1)- (3) can be extented in infinite time to global solutions with
the some conditions on initial data in the stable set for which the solutions decay expontially with Lp norm.
The key tool in the proof is an idea of Haraux and Zuazua [6] and [9] with is based on the construction of a
suitable Lyapunov function.

2. Assumptions and preliminaries

In this section, we present some material needed in the proof in our result.

Lemma 1. (Young′s inequality) Let a, b ≥ 0 and 1
p + 1

q =1 for 1 < p, q < +∞, then one has the inequality
ab ≤ δap + C (δ) bq, where δ > 0 is an arbitrary constant, and C (δ) is a positive constant depending on δ.

Lemma 2. Let s be a number with 2 ≤ s < +∞ if n ≤ r and 2 ≤ s ≤ nr
n−r if n > r. Then there is a constant C

depending on Ω and s such that ‖u‖s ≤ C ‖∇u‖r, u ∈W1,r
0 (Ω) .

We denote the total energy related to the problem (1)-(3) by

E (t) =
1
2
‖ut‖2

2 +
1
m

∫
Ω

√
1 + |∇u|2mdx− 1

p
‖u‖p

p . (11)

We also introduce the following functionals:

I (t) =
∫
Ω

√
1 + |∇u|2mdx− ‖u‖p

p , (12)

J (t) =
1
m

∫
Ω

√
1 + |∇u|2mdx− 1

p
‖u‖p

p . (13)

As in [20], we can now define the so called " Nehari manifold" as follows:

N=
{

u ∈W1,m
0 (Ω) \ {0} ; I (t) = 0

}
.
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N separates the two unbounded sets:

N+=
{

u ∈W1,m
0 (Ω) ; I (t) > 0

}
∪ {0}

and
N−=

{
u ∈W1,m

0 (Ω) ; I (t) < 0
}

.

Assumptions:
(A1) : Assume that I (0) > 0, and 0 < E (0) such that

B = cp
(

mp
p−m

E (0)
) p−m

m
< 1. (14)

where c is the Poincaré constant.
(A2) : p satisfies

2 < m < p ≤ nm
n−m

, n ≥ m; 2 < m < p ≤ +∞, n < m.

For simplicity, we define the weak solutions of (1)-(3) over the interval [0, T), but it is to be understood
throughout that T is either infinity or the limit of the existence interval.

Definition 1. We say that u (x, t) is a weak solution of the problem (1)-(3) on the interval Ω × [0, T) , if
u ∈ L∞

(
[0, T) ; W1,m

0 (Ω)
)

, ut ∈ L∞ ([0, T) ; L2 (Ω)
)
∩ L2 ([0, T) ; H1

0 (Ω)
)

satisfy the following conditions:
(i)

(
u′′ (t) , φ

)
+

(
| ∇u |2m−2 ∇u√

1+ | ∇u |2m
,∇φ

)
+ ω

(
∇u′,∇φ

)
+ µ

(
u′, φ

)
=
(

u|u|p−2, φ
)

, (15)

for any function φ ∈W1,m
0 (Ω) and a.e. t ∈ [0, T) .

(ii)
u (x, 0) = u0 (x) ∈ L2 (Ω) , ut (x, 0) = u1 (x) ∈ L1 (Ω) . (16)

Theorem 1. (Local existence) Suppose that u0 ∈ L2 (Ω) , u1 ∈ L1 (Ω) and E (0) > 0, then there exists T > 0 such
that problem (1)- (3) has a unique solution u satisfying u ∈ L∞

(
[0, T]; W1,m

0 (Ω)
)

, ut ∈ L∞ ([0, T) ; L2 (Ω)
)
∩

L2 ([0, T) ; H1
0 (Ω)

)
.

3. Global existence and exponential decay of solutions

In this section we are going to obtain the existence of local solutions to the problem (1)-(3) and exponential
decay of solution. We will use the Faedo- Galerkin’s method approximation.

Let {wl}∞
l=1 be a basis of W1,m

0 (Ω) wich constructs a complete orthonormal system in L2 (Ω) . Denote
by Vk = span{w1, w2, ..., wk} the subspace generated by the first k vectors of the basis {wl}∞

l=1. By the
normalization, we have ‖wl‖ = 1. for any given integer k, we consider the approximation solution

uk (t) =
k

∑
l=1

ulk (t) vl ,

where uk is the solutions to the following Cauchy problem

(
u′′k (t) , vl

)
+

(
| ∇uk |2m−2 ∇uk√

1+ | ∇uk |2m
,∇vl

)
+ ω

(
∇u′k,∇vl

)
+ µ

(
u′k, vl

)
=
(

uk|uk|p−2, vl

)
, (17)

where l = 1, ..., k, with initial conditions uk (0) = u0k and u′k (0) = u1k, uk (0) and u′k (0) are chosen in Vk such
that

k

∑
l=1

(u0, vl) vl = u0k −→ u0 in L2 (Ω) ;
k

∑
l=1

(u1, vl) vl = u1k −→ u1 in L1 (Ω) . (18)
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Well known results on the solvability of nonlinear ODE provide the existence of a solution to problem
(17)-(18) on interval [0, τ) for some τ > 0 and we can extend this solution to the whole interval [0, T] for any
given T > 0 by making use of the a priori estimates below. Multiplying equation (17) by u′lk (t) and sum for
l = 1, ..., k, we obtain

d
dt

1
2

∥∥u′k
∥∥2

2 +
1
m

∫
Ω

√
1 + |∇uk|2mdx− 1

p
‖uk‖p

p

 = −

ω
∫
Ω

|∇uk|22dx + µ
∫
Ω

|u′k|
2
2dx

 . (19)

Integrating (19) over (0, t), we obtain the estimate

1
2

∥∥u′k
∥∥2

2 +
1
m

∫
Ω

√
1 + |∇uk|2mdx− 1

p
‖uk‖p

p + ω
∫ t

0

∫
Ω

|∇uk|22dx + µ
∫ t

0

∫
Ω

|u′k|
2
2dx ≤ E (0) . (20)

Since I (0) > 0, then there exists τ < T by continuity such that I (t) ≥ 0,. We get from (12) and (13) that

J (uk (t)) =
p−m

mp

∫
Ω

√
1 + |∇uk|2mdx +

1
p

I (uk (t)) (21)

J (uk (t)) ≥
p−m

mp

∫
Ω

√
1 + |∇uk|2mdx, ∀t ∈ [0, τ] . (22)

Hence we have ∫
Ω

√
1 + |∇uk|2mdx ≤ mp

p−m
J (uk (t)) . (23)

From (11) and (13), we obvioulsy have ∀t ∈ [0, τ] , J (uk (t)) ≤ E (uk (t)) . Thus we obtain∫
Ω

√
1 + |∇uk|2mdx ≤ mp

p−m
E (uk (t)) . (24)

Since E is a decreasing function of t, we have∫
Ω

√
1 + |∇uk|2mdx ≤ mp

p−m
E (0) , ∀t ∈ [0, τ] (25)

By using Lemma 2, we easily have

‖uk‖p
p ≤ cp ‖∇uk‖p

m = cp

∫
Ω

|∇uk|m dx


p
m

≤ cp

∫
Ω

√
1 + |∇uk|2mdx


p
m

≤ cp

∫
Ω

√
1 + |∇uk|2mdx


p−m

m ∫
Ω

√
1 + |∇uk|2mdx

Using the inequality (25), we deduce

‖uk‖p
p ≤ cp

(
mp

p−m
E (0)

) p−m
m ∫

Ω

√
1 + |∇uk|2mdx.

Now exploiting the inequality (14), we obtain

‖uk‖p
p ≤

∫
Ω

√
1 + |∇uk|2mdx. (26)



Open J. Math. Anal. 2020, 4(2), 123-131 127

Hence
∫
Ω

√
1 + |∇uk|2mdx− ‖uk‖p

p > 0, ∀t ∈ [0, τ] , this shows that I (uk (t)) > 0, by repeating this

procedure, τ is extended to T.

Since
∫
Ω

√
1 + |∇uk|2mdx > ‖∇uk‖m

m, it follows from (20) and (26) that

1
2

∥∥u′k
∥∥2

2 +
p−m

pm
‖∇uk‖m

m ++ω
∫ t

0

∫
Ω

|∇uk|22dx + µ
∫ t

0

∫
Ω

|u′k|
2
2dx ≤ E (0) . (27)

From (27), we have 
{uk} is uniformly bounded in L∞

(
[0, T] ; W1,m

0 (Ω)
)

,

{uk}⇀ u is uniformly bounded in L2 ([0, T] ; H1
0 (Ω)

)
,{

u′k
}

is uniformly bounded in L∞ ([0, T] ; L2 (Ω)
)

,{
u′k
}

is uniformly bounded in L2 ([0, T] ; L2 (Ω)
)

.

(28)

Furthermore, we have from Lemma 2 and (28) that

{|uk|puk} is uniformly bounded in L∞
(
[0, T] ; L2 (Ω)

)
. (29)

By (28) and (29), we infer that there exists a subsequence of uk (denote still by the same symbol) and a
function u such that 

uk ⇀ u weakly star in L∞
(
[0, T] ; W1,m

0 (Ω)
)

,

uk ⇀ u weakly star in L2 ([0, T] ; H1
0 (Ω)

)
,

u′k ⇀ u′ weakly star in L∞ ([0, T] ; L2 (Ω)
)

,
u′k ⇀ u′ weakly star in L2 ([0, T] ; L2 (Ω)

)
,

|uk|p−2uk ⇀ X weakly star in L∞ ([0, T] ; L2 (Ω)
)

.

(30)

By the Aubin-Lions compactness Lemma [7], we conclude from (30) that{
uk ⇀ u strongly in C

(
[0, T] ; L2 (Ω)

)
,

u′k ⇀ u′ strongly in C
(
[0, T] ; L2 (Ω)

)
,

and
uk ⇀ u almost everywhere in [0, T]×Ω. (31)

It follows from Lemma 1.3 in [21] and (31)

|uk|p−2uk ⇀ |u|p−2u weakly star in L∞
(
[0, T] ; L2 (Ω)

)
. (32)

By the last formula (32) and (30), we obtain X = |u|p−2u On the other hand, taking φ = 1,(17) become(
u′′k (t) , 1

)
+ µ

(
u′k, 1

)
=
(

uk|uk|p−2, 1
)

. (33)

We have
|
(
u′′k (t) , 1

)
+ µ

(
u′k, 1

)
| ≥ ‖u′′k ‖ − µ‖u′k‖.

Since, the measure of Ω is finite, by the embedding theorem, (30) and (33), we obtain

‖u′′k ‖ ≤ C,

then {
u′′k
}

is uniformly bounded in L∞
(
[0, T] ; L1 (Ω)

)
.
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Similarly, we have
u′′k ⇀ u′′ weakly star in L∞

(
[0, T] ; L1 (Ω)

)
, (34)

Setting up k −→ ∞ and passing to the limit in (17), we obtain

(
u′′ (t) , vl

)
+

(
| ∇u |2m−2 ∇u√

1+ | ∇uk |2m
,∇vl

)
+ ω

(
∇u′,∇vl

)
+ µ

(
u′, vl

)
=
(

u|u|p−2, vl

)
,

l = 1, ..., k. Since {vl}∞
l=1 is a base of W1,m

0 (Ω), we deduce that u satisfies (1).
From (30), (34) and Lemma 3.1.7 in [22], with B = L2 (Ω) and B = L1 (Ω) , respectively, we infer that{

uk (0) ⇀ u (0) weakly in L2 (Ω) ,
u
′
k (0) ⇀ u

′
(0) weakly star in L1 (Ω) .

(35)

We get from (18) and (35) that u (0) = u0, u′ (0) = u1. Thus, the proof is complete.

Lemma 3. Assume that p > m and u0 ∈ N+, u1 ∈ L2 (Ω) . If 0 < E (0) and satisfy (14) then the local solution of the
problem (1)-(3) is global in time.

Proof. Since the map t 7−→ E (t) is a decreasing of the time t, we have

E (0) ≥ E (t) =
1
2
‖ut‖2

2 +
p−m

mp

∫
Ω

√
1 + |∇u|2mdx +

1
p

I (t) (36)

which give

E (0) ≥ E (t) ≥ 1
2
‖ut‖2

2 +
p−m

mp

∫
Ω

√
1 + |∇u|2mdx (37)

thus, ∀t ∈ [0, T) , ‖ut‖2
2 +

∫
Ω

√
1 + |∇u|2mdx is uniformly bounded by a constant depending only on E (0) , p

and m then the solution is global, so Tmax = ∞.

Theorem 2. Assume that p > m. Let u0 ∈ N+ and u1 ∈ L2 (Ω) . Moreover, assume that 0 < E (0) and satisfy (14).
Then there exists two positive constants α and β independent of t such that: 0 < E (t) ≤ βe−αt, ∀t > 0.

Proof. Since we have proved that t ≥ 0, u (t) ∈ N+, we already have

0 < E (t) , ∀t ≥ 0.

We define a Lyaponov function, for ε > 0.

L (t) = E (t) + ε
∫
Ω

utudx +
εω

2
‖∇u‖2

2 . (38)

We prove that L (t) and E (t) are equivalent in the sens that there exist two constants B1 and B2 depending
on ε such that for t ≥ 0

B1E (t) ≤ L (t) ≤ B2E (t) . (39)

By the Lemma 1, we have

L (t) = E (t) + ε
∫
Ω

utudx +
εω

2
‖∇u‖2

2 ≤ E (t) + ε

(
1
4δ
‖ut‖2

2 + δ ‖u‖2
2

)
+

εω

2
‖∇u‖2

2 .
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Thanks of the Poincaré inequality and since δ is an arbitrary constant, we choose δ small suffisant for that,

δ ‖u‖2
2 ≤ δC ‖∇u‖2

2 ≤
∫
Ω

√
1 + |∇u|2mdx (40)

Then, we get

L (t) ≤ E (t) + ε
1
4δ
‖ut‖2

2 + ε
(

δC +
ω

2

)
‖∇u‖2

2 ≤ E (t) + ε
1
4δ
‖ut‖2

2 + ε
(

1 +
ω

2

) ∫
Ω

√
1 + |∇u|2mdx.

By (37), we get

L (t) ≤ E (t) + ε
1
2δ

E (t) + ε
(

1 +
ω

2

) mp
p−m

E (t) ≤ B2E (t) , (41)

where B2 =
(

1 + ε 1
2δ + ε

(
1 + ω

2
) mp

p−m

)
.

On the other hand, we have

L (t) ≥ E (t)− ε

(
1
4δ
‖ut‖2

2 + δ ‖u‖2
2

)
+

εω

2
‖∇u‖2

2

≥ E (t)− ε
1
4δ
‖ut‖2

2 − εδ ‖u‖2
2

≥ E (t)− ε
1
2δ

E (t)− εδ ‖u‖2
2

≥
(

1− ε
1
2δ

)
E (t)− εδ ‖u‖2

2 .

From (37) and (40), we obtain

L (t) ≥
(

1− ε
1
2δ
− ε

mp
p−m

)
E (t) = B1E (t) , (42)

where B1 =
(

1− ε 1
2δ − ε

mp
p−m

)
.

Now, we have

d
dt

L (t) = −ω ‖∇ut‖2
2 − µ ‖ut‖2

2 + ε ‖ut‖2
2 + ε

∫
Ω

div

 |∇u|2m−2∇u√
1 + |∇u|2m

 udx + ε ‖u‖p
p − εµ

∫
Ω

utudx

= −ω ‖∇ut‖2
2 − µ ‖ut‖2

2 + ε ‖ut‖2
2 − ε

∫
Ω

|∇u|2m√
1 + |∇u|2m

dx + ε ‖u‖p
p − εµ

∫
Ω

utudx.

So that

d
dt

L (t) ≤ −ω ‖∇ut‖2
2 +
(

ε
( µ

4δ
+ 1
)
− µ

)
‖ut‖2

2 + εµδ ‖u‖2
2− ε

∫
Ω

|∇u|2m√
1 + |∇u|2m

dx+ ε
∫
Ω

√
1 + |∇u|2mdx. (43)

So
d
dt

L (t) ≤
(

ε
( µ

4δ
+ 1
)
− µ

)
‖ut‖2

2 + ε (1 + µ)
∫
Ω

√
1 + |∇u|2mdx. (44)

Using the inequality (37) and (44), we deduce

d
dt

L (t) ≤ 2
(

ε
( µ

4δ
+ 1
)
− µ

)
E (t) + ε (1 + µ)

mp
p−m

E (t)

≤ −
(

2µ− ε

(( µ

2δ
+ 2
)
+ (1 + µ)

mp
p−m

))
E (t) .
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We choosing ε small enough such that

−
(

2µ− ε

(( µ

2δ
+ 2
)
+ (1 + µ)

mp
p−m

))
= ζ < 0. (45)

So
d
dt

L (t) ≤ ζE (t) . (46)

From (39), we have
d
dt

L (t) ≤ ζ

B2
L (t) . (47)

Integrating the provious differential inequality (47) between 0 and t gives the following estimate for the
function L :

L (t) ≤ ce
ζ

B2
t, ∀t ≥ 0. (48)

Consequently, by using (39) once again, we conclude

E (t) ≤ ke
ζ

B2
t, ∀t ≥ 0. (49)

By using (26) and (37) we easily have

‖u‖p
p ≤ k1e

ζ
B2

t, ∀t ≥ 0. (50)

The proof is complete.

4. Conclusion

In this paper, we have studied a class of hyperbolic equation supplemented with Dirichlet boundary
conditions as a model of wave equation with damping and source nonlinear terms. We showed that the
solution with positive initial energy exponentially decay, this is mainly due to the presence of one of term of
weak or strong damping.
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