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1. Introduction

T he differential and integral equations with deviating arguments usually involve the deviation of the
argument only the time itself, however, another case, in which the deviating arguments depend on

both the state variable x and the time t is important in theory and practice. This kind of equations is
called self-reference or state dependent equations. Differential equations with state-dependent delays attract
interests of specialists since they widely arise from application models, such as two-body problem of classical
electrodynamics also have may applications in the class of problems that have past memories, for example
in hereditary phenomena see [1–4]. For papers studying such kind of equations, see for example [5–16] and
references therein.

One of the first papers studying this class of equations was introduced by Buicá [7], the author proved the
existence and the uniqueness of the solution of the initial value problem

dx(t)
dt

= f (t, x(x(t))), t ∈ [a, b],

x(0) = x0,

where f ∈ C([a, b]× [a, b]) and satisfied Lipshitz condition.
EL-Sayed and Ebead [13] relaxed the assumptions of Buicá and generalized their results, they studied the

functional integral equation of the more general form

x(t) = f
(

t,
∫ t

0
g
(
s, x(x(s))

)
ds
)

, t ∈ [0, T],

where g satisfies Carathéodory condition.
El-Sayed and Ahmed [9] studied the existence of solutions and its continuous dependence of the initial

value problem

d
dt

x(t) = f (t, x(
∫ φ(t)

0
g(s, x(s))ds)), a.e. t ∈ (0, T],

x(0) = x0,
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where g : [0, T]× R+ → R+ is continuous and g(t, x(t)) ≤ 1 and φ(t) ≤ t.
El-Sayed and Ebead [11,12] studied the existence of solution and its continuous dependence of the initial

value problem of the delay-refereed differential equation

d
dt

x(t) = f (t, x(g(t, x(t)))), a.e. t ∈ (0, T],

x(0) = x0,

with the two cases of state-delay functions

(i) g : [0, T]× R+ → [0, T] is continuous and g(t, x(t)) ≤ t,
(ii) g : [0, T]× [0, T]→ [0, T] is continuous and g(t, x(φ(t))) ≤ x(φ(t)).

Here we shall study the initial value problem of state-dependent neutral functional differential equation
with two state-delay functions

d
dt
[
x(t)− f1

(
t, x(g1(t, (x(φ(t)))))

)]
= f2

(
t, x(g2(t, x(φ(t))))

)
, a.e. t ∈ [0, T], (1)

with the initial data
x(0) = f1(0, x(g1(0, x(0)))), (2)

where gi, i = 1, 2 are continuous and g1(t, x) ≤ φ(t) and g1(t, x) ≤ x(t).
Our aim in this work is to study the existence of at least one and exactly one positive solution of the

Problem (1)-(2). The continuous dependence of the unique solution on the two functions g1 and g2 will be
proved. To illustrate our results some examples will be given.

In order to achieve our goal, we study the existence of positive solutions x ∈ C[0; T] for the
state-dependent functional integral equation

x(t) = f1
(
t, x(g1(t, (x(φ(t)))))

)
+
∫ t

0
f2
(
s, x(g2(s, x(φ(s))))

)
ds t ∈ [0, T], (3)

and we will show later that this integral equation is equivalent to the initial value Problem (1)-(2).

2. Existence of solutions

Here we study the existence of solutions x ∈ C[0, T] for the integral Equation (3) under the following
assumptions

(1) f1 : [0, T]× [0, T]→ R+ is continuous and there exist two positive constants k1 and k2 such that

| f1(t2, x)− f1(t1, y)| ≤ k1|t2 − t1|+ k2|x− y|.

(2) g1 : [0, T]× [0, T]→ [0, T] is continuous and there exist the two positive constants k3, k4 such that

|g1(t2, x)− g1(t1, y)| ≤ k3|t2 − t1|+ k4|x− y|

and g1(t, x) ≤ φ(t).
(3) f2 : [0, T]× [0, T] → R+ satisfies Carathéodory condition i.e. f (t, x) is measurable in t for all x ∈ C[0, T]

and continuous in x for almost all t ∈ [0, T].
(4) There exists a bounded measurable function m : [0, T]→ R+, m(t) ≤ A, and a constant k5 ≥ 0 such that

f2(t, x) ≤ m(t) + k5 x.

(5) g2 : [0, T]× [0, T]→ [0, T] is continuous and g2(t, x) ≤ x
(6) φ : [0, T]→ [0, T], φ(0) = 0 and

|φ(t)− φ(s)| ≤ |t− s|,

which implies that φ(t) ≤ t.
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(7) There exists a real positive solution L ∈ (0, 1) of the equation

k2 k4L2 + (k2 k3 − 1)L + M + k1 = 0,

where M = A + k5T.
(8) LT + x(0) ≤ T.

Now we are in a position to prove the following existence theorem.

Theorem 1. Let the assumptions (1)− (8) be satisfied, then the state-dependent integral Equation (3) has at least one
positive solution x ∈ C[0, T].

Proof. Let X = C[0, T] be the class of real valued continuous functions defined on [0, T]. Define the subset SL
of X by

SL =
{

x ∈ X : |x(t2)− x(t1)| ≤ L|t2 − t1|
}

.

It is clear that SL is nonempty, closed, bounded and convex subset of C[0, T].
Now define the operator F associated with Equation (3) by

Fx(t) = f1
(
t, x(g1(t, x(φ(t))))

)
+
∫ t

0
f2
(
s, x(g2(s, x(φ(s))))

)
ds, t ∈ [0, T].

It is clear that F makes sense and well-defined.
Now, first we prove that the class of functions {Fx} is uniformly bounded on the set SL. Let x ∈ X, then

for t ∈ [0, T], we obtain

|Fx(t)| = | f1
(
t, x(g1(t, x(φ(t))))

)
+
∫ t

0
f2
(
s, x(g2(s, x(φ(s))))

)
ds|

≤ | f1
(
t, x(g1(t, x(φ(t))))

)
|+

∫ t

0
| f2
(
s, x(g2(s, x(φ(s))))

)
|ds.

Using assumptions (1),(2) and (6) we can get

| f1
(
t, x(g1(t, x(φ(t))))

)
| = | f1

(
t, x(g1(t, x(φ(t))))

)
− f1

(
0, x(g1(0, x(0)))

)
|+ | f1

(
0, x(g1(0, x(0)))

)
|

≤ k1 T + k2 |x(g1(t, x(φ(t))))− x(g1(0, x(0)))|+ | f1
(
0, x(g1(0, x(0)))

)
|

≤ k1 T + k2 L|g1(t, x(φ(t)))− g1(0, x(0))|+ x(0)

≤ k1 T + k2 L (k3 T + k4|x(φ(t))− x(0)|) + x(0)

≤ k1 T + k2 L (k3 T + k4 L φ(t)) + x(0)

≤ (k1 + k2 k3 L + k2k4 L2) T + x(0). (4)

Using assumptions (3) and (4) we can get

| f2
(
t, x(g2(s, x(φ(t))))

)
| ≤ k5 x(g2(s, x(φ(t)))) + m(t)

≤ k5 {|x(g2(s, x(φ(t))))− x(0)|+ x(0)}+ m(t)

≤ k5(L g2(s, x(φ(t))) + x(0)) + A

≤ k5(L x(φ(t)) + x(0)) + A. (5)

Now from (4) and (5) and by assumption (8), we get

|Fx(t)| ≤ (k1 + k2 k3 L + k2k4 L2) T + x(0) +
∫ t

0
(k5(L x(φ(s)) + x(0)) + A)ds

≤ (k1 + k2 k3 L + k2k4 L2) T + x(0) +
∫ t

0
(k5(L T + x(0)) + A)ds

≤ (k1 + k2 k3 L + k2k4 L2) T + x(0) + (k5 T + A)
∫ t

0
ds
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≤ (k1 + k2 k3 L + k2k4 L2 + M) T + x(0)

= L T + x(0) ≤ T.

This proves that the class of functions { Fx } is uniformly bounded on the set SL.
Next, we prove that F : SL → SL and the class of functions {Fx} is equi-continuous on the set SL. Let

x ∈ SL and t1, t2 ∈ [0, T] with t1 < t2 such that |t2,−t1| < δ, then

|Fx(t2)− Fx(t1)| =

∣∣∣∣ f1
(
t2, x(g1(t2, x(φ(t2))))

)
+
∫ t2

0
f2
(
s, x(g2(s, x(φ(s))))

)
ds

− f1
(
t1, x(g1(t1, x(φ(t1))))

)
−
∫ t1

0
f2
(
s, x(g2(s, x(φ(s))))

)
ds
∣∣∣∣

≤ | f1
(
t2, x(g1(t2, x(φ(t2))))

)
− f1

(
t1, x(g1(t1, x(φ(t1))))

)
|+

∫ t2

t1

| f2
(
s, x(g2(s, x(φ(s))))

)
|ds

≤ k1|t2 − t1|+ k2|x(g1(t2, x(φ(t2))))− x(g1(t1, x(φ(t1))))|+
∫ t2

t1

(k5 T + A)ds

≤ k1|t2 − t1|+ k2|x(g1(t2, x(φ(t2))))− x(g1(t1, x(φ(t1))))|+ M|t2 − t1|.

Using assumptions (2) and x ∈ SL, we can get

|x(g1
(
t2, x(φ(t2)))

)
− x(g1

(
t1, x(φ(t1))))| ≤ L|g1

(
t2, x(φ(t2)))

)
− g1

(
t1, x(φ(t1))))|

≤ L k3|t2 − t1|+ L k4|x(φ(t2)))− x(φ(t1)))|
≤ L k3|t2 − t1|+ L2k4|φ(t2)− φ(t1)|
≤ L k3|t2 − t1|+ L2k4 |t2 − t1|.

Then, we have

|Fx(t2)− Fx(t1)| ≤ k1|t2 − t1|+ k2(L k3|t2 − t1|+ L2k4 |t2 − t1|) + M|t2 − t1|
=

(
k2 k4 L2 + k2 k3 L + k1 + M

)
|t2 − t1|

= L|t2 − t1|.

Hence, we proved that F : SL → SL and the class of functions {Fx} is equi-continuous on the
set SL. Applying Arzela-Ascoli Theorem [17], we deduce that F is compact operator. Now we show that
F is continuous. Let {xn} ⊂ SL, xn → x on [0, T], i.e. |xn(φ(t)) − x(φ(t))| ≤ ε1 this implies that
|xn(gi(t, x(φ(t))))− x(gi(t, x(φ(t))))| ≤ ε2 for arbitrary ε1, ε2 ≥ 0, i = 1, 2, then

|xn(gi(t, xn(φ(t))))− x(gi(t, x(φ(t))))|
≤ |xn(gi(t, xn(φ(t))))− xn(gi(t, x(φ(t))))|+ |xn(gi(t, x(φ(t))))− x(gi(t, x(φ(t))))|
≤ L|gi(t, xn(φ(t)))− gi(t, x(φ(t)))|+ |xn(gi(t, x(φ(t))))− x(gi(t, x(φ(t))))|
≤ ε, i = 1, 2.

Then

xn(gi(t, xn(φ(t))))→ x(gi(t, x(φ(t)))) in SL, i = 1, 2

and by using the continuity of the functions f1, we obtain

f1
(
t, xn(g1(t, xn(φ(t))))

)
→ f1

(
t, x(g1(t, x(φ(t))))

)
.

Now by using the continuity of the functions f2, assumption (5) and Lebesgues dominated convergence
theorem [17], we obtain∫ t

0
f2
(
t, xn(g2(t, xn(φ(t))))

)
ds →

∫ t

0
f2
(
t, x(g2(t, x(φ(t))))

)
ds,
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and

lim
n→∞

(
Fxn

)
(t) = lim

n→∞
f1
(
t, xn(g1(t, xn(φ(t))))

)
+ lim

n→∞

∫ t

0
f2
(
t, xn(g2(t, xn(φ(t))))

)
ds

= f1
(
t, x(g1(t, x(φ(t))))

)
+
∫ t

0
f2
(
t, x(g2(t, x(φ(t))))

)
ds

=
(

Fx
)
(t).

This proves that the operator F is continuous.
Now all conditions of Schauder fixed point theorem [17] are satisfied, then the operator F has at least one

fixed point x ∈ SL. Consequently there exists at leat one solution x ∈ C[0, T] of Equation (3). This completes
the proof.

Now, we introduce the following equivalence theorem.

Theorem 2. Let the assumptions (1)-(8) be satisfied, then the initial value Problem (1)-(2) has at least one positive
solution x ∈ C[0, T].

Proof. Let x be a solution of the Problem (1)-(2). Integrate (1) and substitute by (2), we obtain the integral
Equation (3). Let x be a solution of (3) differentiate (3) we obtain (1) and the initial value (2). This proves the
equivalence between the Problem (1)-(2) and the integral Equation (3). Then the Problem (1)-(2) has at least
one positive solution x ∈ C[0, T].

3. Applications

As application of our results, we introduce the following corollaries;

Corollary 1. Let the assumptions (1)− (8) of Theorem 2 be satisfied, if

(i) g1(t, x(φ(t))) =
∫ φ(t)

0 g3(s, x(s))ds, g3 : [0, 1]× [0, 1]→ R+ is continuous and g3(t, x(t)) ≤ 1,
(ii) g2(t, x(t)) = x(t).

Then the initial value problem

d
dt
[
x(t)− f1

(
t, x
( ∫ φ(t)

0
g3(s, x(s))ds)

)]
= f2

(
t, x(x(φ(t)))

)
, a.e. t ∈ (0, 1],

x(0) = f1(0, x(0))

has at least one positive solution x ∈ C[0, T].

Corollary 2. Let the assumptions of Theorem 1 be satisfied with g1(t, x(φ(t))) = φ(t) and g2(t, x(φ(t))) = x(φ(t)).
Then the integral equation

x(t) = f1(t, x(φ(t))) +
∫ t

0
f2(s, x(x(φ(s))))ds, t ∈ [0, T]

has at least one solution x ∈ C[0, T]. Consequently the initial value problem

d
dt
[
x(t)− f1(t, x(φ(t)))

]
= f2(t, x(x(φ(t)))), a.e. t ∈ [0, T]

with the initial data x(0) = f1(0, x(0)) has at least one positive solution x ∈ C[0, T].

Corollary 3. Let the assumptions of Corollary 2 be satisfied with f1(t, x) = t, then the initial value problem

dx(t)
dt

= f (t, (x(x(φ(t))))) a.e, t ∈ (0, T],

x(0) = 0
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has at least one positive solution x ∈ C[0, T] where f (t, x) = f2(t, x) + 1.

4. Uniqueness of the solution

In this section, we prove the uniqueness of the solution for the Problem (1)-(2). Therefore, we have to
assume the following assumptions

(1′) | f2(t, x)− f2(t, y)| ≤ k5 |x− y|,
(2′) supt | f2(t, 0)| ≤ A, t ∈ [0, T],
(3′) |g2(t, x)− g2(t, y)| ≤ k6|x− y|.

Theorem 3. Let the assumptions (1)–(3), (5)–(8) and (1′)–(3′) be satisfied, if k2 (L k4 + 1) + k5 T (L k6 + 1) < 1, then
the initial value Problem (1)-(2) has a unique positive solution x ∈ C[0, T].

Proof. Assumption (4) of Theorem 1 can be deduced from assumptions (1′) and (2′) as follows

| f2(t, x)| ≤ k5 |x|+ | f2(t, 0)|
≤ k5 x + A,

then we deduce that all assumptions of Theorem 1 are satisfied and the solution of Equation (3) exists. Now
let x, y be two solutions of (3), then

|x(t)− y(t)| =
∣∣ f1
(
t, x(g1(t, x(φ(t))))

)
+
∫ t

0
f2
(
s, x(g2(s, x(φ(s))))

)
ds

− f1
(
t, y(g1(t, y(φ(t))))

)
−
∫ t

0
f2
(
s, y(g2(s, y(φ(s))))

)
ds
∣∣

≤ | f1
(
t, x(g1(t, x(φ(t))))

)
− f1

(
t, y(g1(t, y(φ(t))))

)
|

+
∫ t

0
| f2
(
s, x(g2(s, x(φ(s))))

)
− f2

(
s, y(g2(s, y(φ(s))))

)
|ds

≤ k2 |x(g1(t, x(φ(t))))− y(g1(t, y(φ(t))))|

+k5

∫ t

0
|x(g2(s, x(φ(s))))− y(g2(s, y(φ(s))))|ds.

But

|x(g1(t, x(φ(t))))− y(g1(t, y(φ(t))))|
= |x(g1(t, x(φ(t))))− x(g1(t, y(φ(t)))) + x(g1(t, y(φ(t))))− y(gi(t, y(φ(t))))|
≤ |x(g1(t, x(φ(t))))− x(g1(t, y(φ(t))))|+ |x(g1(t, y(φ(t))))− y(g1(t, y(φ(t))))|
≤ L|g1(t, x(φ(t)))− g1(t, y(φ(t)))|+ |x(g1(t, y(φ(t))))− y(g1(t, y(φ(t))))|
≤ L k4 ‖x− y‖+ ‖x− y‖
= (L k4 + 1)‖x− y‖.

Similarly, we can obtain

|x(g2(t, x(φ(t))))− y(g2(t, y(φ(t))))| ≤ (L k6 + 1)‖x− y‖.

Now

|x(t)− y(t)| ≤ k2 (L k4 + 1)‖x− y‖+ k5

∫ t

0
(L k6 + 1)‖x− y‖ds,

and

‖x− y‖ ≤
(
k2 (L k4 + 1) + k5 T (L k6 + 1)

)
‖x− y‖.
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Then we deduce that (
1−

(
k2 (L k4 + 1) + k5 T (L k6 + 1)

))
||x− y|| ≤ 0,

and from the assumptions
(
k2 (L k4 + 1) + k5 T (L k6 + 1)

)
< 1 we can obtain x = y and the solution of (3) is

unique. Consequently, the initial value Problem (1)-(2) has a unique positive solution x ∈ C[0, T].

5. Continuous dependence

5.1. Continuous dependence on the function g1

Here we prove that the solution of the Problem (1)-(2) depends continuously on the function g1.

Definition 1. The solution of the Problem (1)-(2) depends continuously on the function g1, if ∀ ε > 0, ∃ δ(ε) >

0 such that

||g1 − g∗1 || ≤ δ⇒ ‖x− x∗‖ ≤ ε,

where x∗ is the unique solution of the equation

d
dt
[
x∗(t)− f1

(
t, x∗(g∗1(t, (x∗(φ(t)))))

)]
= f2

(
t, x∗(g2(t, x∗(φ(t))))

)
, a.e. t ∈ [0, T], (6)

with the initial data
x∗(0) = f1

(
0, x∗(g∗1(0, (x∗(0))))

)
. (7)

Theorem 4. Let the assumptions of Theorem 3 be satisfied, then the solution of initial value Problem (1)-(2) depends
continuously on the function g1.

Proof. Let x and x∗ be the solution of the initial value Problems (1)-(2) and (6)-(7) respectively, then we have

|x(t)− x∗(t)| =
∣∣ f1
(
t, x(g1(t, x(φ(t))))

)
+
∫ t

0
f2
(
s, x(g2(s, x(φ(s))))

)
ds

− f1
(
t, x∗(g∗1(t, x∗(φ(t))))

)
+
∫ t

0
f2
(
s, x∗(g2(s, x∗(φ(s))))

)
ds
∣∣

≤ | f1
(
t, x(g1(t, x(φ(t))))

)
− f1

(
t, x∗(g∗1(t, x∗(φ(t))))

)
|

+
∫ t

0
| f2
(
s, x(g2(s, x(φ(s))))

)
− f2

(
s, x∗(g2(s, x∗(φ(s))))

)
|ds

≤ k2 |x(g1(t, x(φ(t))))
)
− x∗(g∗1(t, x∗(φ(t)))

)
|

+k5

∫ t

0
|x(g2(s, x(φ(s))))

)
− x∗(g2(s, x∗(φ(s)))

)
|ds

≤ k2 |x(g1(t, x(φ(t))))
)
− x∗(g1(t, x∗(φ(t)))

)
|

+k2 |x∗(g1(t, x∗(φ(t))))
)
− x∗(g∗1(t, x∗(φ(t)))

)
|+ k5 T(L k6 + 1)‖x− x∗‖

≤ k2(L k4 + 1)‖x− x∗‖+ k2 L |g1(t, x∗(φ(t))))− g∗1(t, x∗(φ(t)))|
+k5 T(L k6 + 1)‖x− x∗‖

≤
(
k2 (L k4 + 1) + k5 T(L k6 + 1)

)
‖x− x∗‖+ k2 L δ.

Then
‖x− x∗‖ ≤ k2 L δ(

1−
(
k2 (L k4 + 1) + k5 T(L k6 + 1)

) = ε,

and by the assumption
(
k2 (L k4 + 1) + k5 T(L k6 + 1)

)
< 1, then the solution of (3) depends continuously on

the functions g1. Consequently the solution of the Problem (1)-(2) depends continuously on the functions g1

which complete the proof.
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5.2. Continuous dependence on the function g2

Here we prove that the solution of the Problem (1)-(2) depends continuously on the function g2.

Definition 2. The solution of the Problem (1)-(2) depends continuously on the function g2, if ∀ ε > 0, ∃ δ(ε) >

0 such that,

||g2 − g∗2 || ≤ δ⇒ ‖x− x∗‖ ≤ ε,

where x∗ is the unique solution of the equation

d
dt
[
x∗(t)− f1

(
t, x∗(g1(t, (x∗(φ(t)))))

)]
= f2

(
t, x∗(g∗2(t, x∗(φ(t))))

)
, a.e., t ∈ [0, T], (8)

with the initial data
x∗(0) = f1

(
0, x∗(g1(0, (x∗(0))))

)
. (9)

Theorem 5. Let the assumptions of Theorem 3 be satisfied, then the solution of initial value Problem (1)-(2) depends
continuously on the function g2.

Proof. The proof follow similarly as the proof of Theorem 4.

6. Examples

Example 1. Consider the following problem

d
dt

[
x(t)− 1

18
(1 + t2)− 1

8
x
(

β t
1 + x2(β t)

)]
=

1
7− t

+
e−t

16
x
(

x(β t) e−x2(β t)

1 + sin2 x(β t)

)
(10)

with the initial data
x(0) =

4
63

. (11)

where t ∈ (0, 1] and β ∈ (0, 1]. Here we have
φ(t) = β t,
g1
(
t, x(φ(t))

)
= β t

1+x2(β t) ,

g1
(
t, x) ≤ β t,

f1
(
t, x(g1

(
t, x(φ(t)))

))
= 1

18 (1 + t2) + 1
8 x
(

β t
1+x2(β t)

)
,

f1
(
t, x) = 1

18 (1 + t2) + 1
8 x,

g2
(
t, x(φ(t))

)
= x(β t) e−x2(β t)

1+sin2 x(β t)
,

g2
(
t, x) ≤ x,

f2
(
t, x(g2

(
t, x(φ(t)))

))
= 1

7−t +
e−t

16 x
(

x(β t) e−x2(β t)

1+sin2 x(β t)

)
,

f2
(
t, x) = 1

7−t +
e−t

16 x, . Thus we have k1 = 1
9 , k2 = 1

8 , k3 = 2, k4 = 2, k5 = 1
16 , A = 1

6 , M = 11
48 , L ' 0.557 <

1 and L T + x(0) ≈ 0.62 < T = 1.
Now all the assumptions of Theorem 1 are satisfied, then the Problem (10)-(11) has at least one solution

x ∈ C[0, T].

Example 2. Consider the following problem

d
dt

[
x(t)− 1

48
(1 + t)− 1

4
t2 x

( 1
4 t2

1 + 32 x(t2)

)]
=

1
5 + 2t

sin2(3(t + 1)) +
1

12
x
(

x(t2) sin2(x(t2))

1 + x2(t2)

)
, (12)

with the initial data
x(0) =

1
48

, (13)
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where t ∈ (0, 1
2 ]. Here we have

φ(t) = t2,

g1
(
t, x(φ(t))

)
=

1
4 t2

1+32 x(t2)
,

g1
(
t, x) ≤ t2,

f1
(
t, x(g1

(
t, x(φ(t)))

))
= 1

48 (1 + t) + 1
4 t2 x

(
1
4 t2

1+32 x(t2)

)
,

f1
(
t, x) = 1

48 (1 + t) + 1
4 t2 x,

g2
(
t, x(φ(t))

)
= x(t2) sin2(x(t2))

1+x2(t2)
,

g2
(
t, x) ≤ x,

f2
(
t, x(g2

(
t, x(φ(t)))

))
= 1

5+2t sin2(3(t + 1)) + 1
12 x

(
x(t2) sin2(x(t2))

1+x2(t2)

)
,

f2
(
t, x) = 1

5+2t sin2(3(t + 1)) + 1
12 x. Thus, we have k1 = 7

48 , k2 = 1
16 , k3 = 17

4 , k4 = 2, k5 = 1
12 , A = 1

5 , M =
29

120 , L ' 0.586 < 1 and L T + x(0) ≈ 0.3139 < T = 1
2 .

Now all the assumptions of Theorem 1 are satisfied, then the Problem (12)-(13) has at least one solution
x ∈ C[0, T].

7. Conclusion

Here we relaxed the assumptions and generalized the results in [8,11,14,18] and [1]. We proved the
existence of at lease one solution of the Problem (1)-(2). The sufficient condition for the uniqueness of the
solution have been given and the continuous dependence of the unique solution have been proved. Also some
examples and applications have been given.
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