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1. Introduction

F ixed point theory is an important tool in the study of nonlinear analysis as it is considered to be
the key connection between pure and applied mathematics with wide applications in all branches of

Mathematics, Economics, Biology, Chemistry, Physics and almost all engineering fields.
The famous Banach contraction principle is one of the powerful tools in metric fixed point theory and It

has been extended and generalized in different directions by different researchers. The notion of metric space
has been extended, improved and generalized in many different ways. Bakhtin [2] introduced a b - metric
space as a generalization of metric space and investigated some fixed point theorem in such spaces. Hitzler [3]
introduced the notion of dislocated metric spaces. Zeyada et al., [4] generalized the results of Hitzler [3] and
introduced the concept of complete dislocated quasi metric space. Aage et al., [5] proved common fixed point
theorem in dislocated quasi b - metric space. Zoto and Kumari [1] constructed theorems on common fixed
point results on b - dislocated metric spaces and proved the existence and uniqueness.

In this research work, we concentrate in establishing and proving common fixed point results for a pair
of maps satisfying s− α contraction condition in the setting b - dislocated metric spaces.

2. Preliminaries

Throughout this manuscript <+ represents the set of non-negative real numbers and N represents the set
of natural numbers.

Definition 1. [6] Let X be nonempty set and a mapping dl : X× X → <+ is called a dislocated or dl - metric if
the following conditions hold:

(a) dl(x, y) = 0⇒ x = y ;
(b) dl(x, y) = dl(y, x) ;
(c) dl(x, y) ≤ dl(x, z) + dl(z, y), for all x, y ∈ X .

Then the pair (X, dl) is called a dl - metric space.

Definition 2. [7] Let X be nonempty set and s ≥ 1 be a real number, then a mapping bd : X×X → <+ is called
b - dislocated metric if the following conditions hold:
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(a) bd(x, y) = 0⇒ x = y ;
(b) bd(x, y) = bd(y, x) ;
(c) bd(x, y) ≤ s[bd(x, z) + bd(z, y)], for all x, y, z ∈ X .

Then the pair (X, bd) is called a b - dislocated metric space.

Remark 1. The class of b - dislocated metric space is larger than that of dislocated metric space.

Definition 3. Let (X, d) be a metric space and T : X → X be a self-map, then T is said to be a contraction map
if there exists a constant k ∈ [0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.

Definition 4. [1] Let (X, bd) be a complete b - dislocated metric space with parameter s ≥ 1. If T : X → X is
self-mapping that satisfy

s2bd(Tx, Ty) ≤ α max
{

bd(x, y), bd(x, Tx), bd(y, Ty), bd(x, Ty), bd(y, Tx)
}

(1)

for all x, y ∈ X and α ∈ [0,
1
2
), then T is called a s− α quasi-contraction.

Lemma 1. Let (X, bd) be a b - dislocated metric space with parameter s ≥ 1. Suppose that {xn} and {yn} are b -
dislocated convergent to x, y ∈ X respectively. Then we have

1
s2 bd(x, y) ≤ lim

n→∞
in f bd(xn, yn) ≤ lim

n→∞
Sup bd(xn, yn) ≤ s2bd(x, y).

In particular, if bd(xn, yn) = 0, then we have lim
n→∞

bd(xn, yn) = 0 = bd(x, y). Moreover, if each z ∈ X, we

have
1
s

bd(x, z) ≤ lim
n→∞

in f bd(xn, z) ≤ lim
n→∞

Sup bd(xn, z) ≤ sbd(x, z).

In particular, if bd(x, z) = 0 , then we have lim
n→∞

bd(xn, z) = 0 = bd(x, z).

Theorem 1. [1] Let (X, bd) be complete b - dislocated metric space with parameter s ≥ 1. If T : X → X is a self-map
that is a s− α quasi contraction, then T has a unique fixed point in X.

Example 1. [1] Let X = [0, ∞) and bd(x, y) = (x + y)2 for all x, y ∈ X. Then bd is a b - dislocated metric on X
with parameter s = 2 and is complete.

Definition 5. [8] Let (X, bd) be a b - dislocated metric space and {xn} be a sequence of points in X. A point
x ∈ X is said to be the limit of the sequence {xn} if lim

n→∞
d(xn, x) = 0 and we say that the sequence {xn} is b -

dislocated convergent to x and denote it by xn → x as n→ ∞.

Lemma 2. [7] The limit of a convergent sequence in a b - dislocated metric space is unique.

Definition 6. [7] A sequence {xn} in a b - dislocated metric space (X, bd) is called a b - dislocated Cauchy
sequence if and only if given ε > 0, there exists n0 ∈ N such that for all n, m > n0, we have bd(xn, xm) < ε or

lim
n,m→∞

d(xn xm) = 0.

Lemma 3. [7] Every b - dislocated convergent sequence in b - dislocated metric space is a b - dislocated Cauchy.

Definition 7. [7] A b - dislocated metric space (X, bd) is called complete if every b - dislocated Cauchy sequence
in X is a b - dislocated convergent.

Definition 8. [6] Let T : X → X and S : X → X be self-maps in (X, bd). An element x ∈ X is said to be a
coincidence point of T and S if and only if Tx = Sx = u. A point u ∈ X is point of coincidence of T and S.
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Definition 9. [9] Let T and S be two self-maps on a metric space (X, d). Then T and S are said to be weakly
compatible if they commute at their coincident point; that is Tu = Su for some u ∈ X implies STu = TSu.

Definition 10. [10] Two self-maps T : X → X and S : X → X are said to be occasionally weakly compatible
(OWC) if there exists some point u ∈ X such that Tu = Su and STu = TSu.

Remark 2. Clearly weakly compatible maps are occasionally weakly compatible. However the converse is not
true in general.

Definition 11. [11] Let T : X → X and S : X → X be two self-maps on a metric space (X, d). Then T and S
are said to satisfy the common limit in the range of S property, denoted by (CLRs) if there exists a sequence
{xn} ∈ X, such that

lim
n→∞

Txn = lim
n→∞

Sxn = Sx,

for some x ∈ X.

Inspired and motivated by the result of Zoto and Kumari [1], the purpose of this research was to extend
and generalize their main theorem to common fixed point theorem involving pairs of s − α contraction
condition in the setting of b - dislocated metric space.

3. Main results

In this section, we shall state and prove our main results.

Definition 12. Let (X, bd) be a b - dislocated metric space with parameter s ≥ 1. If T, S : X → X are
self-mapping that satisfy

s2bd(Tx, Ty) ≤α max
{

bd(Sx, Sy), bd(Sx, Tx), bd(Sy, Ty), bd(Sx, Ty), bd(Sy, Tx)
}

(2)

for all x, y ∈ X and α ∈ [0,
1
2
), then T and S are called an s− α contraction maps.

Theorem 2. Let (X, bd) be a complete b - dislocated metric space with parameter s > 1. If T, S be self-maps of X such
that: The pair (T, S) satisfy common limit in the range of S property (CLRs) in X and also T and S are s− α contraction
maps, then

1. The pair (T, S) has a coincidence point in X.
2. The pair (T, S) has a unique common fixed point provided that T and S are weakly compatible mapping.

Proof. Since T and S satisfy (CLRs) property, there exists a sequence {xn} ∈ X such that:

lim
n→∞

Txn = lim
n→∞

Sxn = Su

for some u ∈ X. By Equation (2), we have

s2bd(Tx, Ty) ≤ α max{bd(Sx, Sy), bd(Sx, Tx), bd(Sy, Ty), bd(Sx, Ty), bd(Sy, Tx)}. (3)

By replacing x = u and y = xn in the above condition, we obtain

s2bd(Tu, Txn) ≤ α max{bd(Su, Sxn), bd(Su, Tu), bd(Sxn, Txn), bd(Su, Tu), bd(Sxn, Tu)}.

By applying Lemma 1 and taking the upper limit as n→ ∞ on Equation (3), we get

s2bd(Tu, Su) ≤ α max{bd(Su, Su), bd(Su, Tu), bd(Su, Su), bd(Su, Su), bd(Su, Tu)}
= α max{bd(Su, Tu), bd(Su, Su)}.
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We consider the following cases as follows;
Case 1: If max{bd(Su, Tu), bd(Su, Su)} = bd(Su, Tu), then we have bd(Tu, Su) ≤ α

s2 bd(Su, Tu). It follows that
bd(Su, Tu) = 0 since 0 ≤ α < 1

2 . Hence Su = Tu = z (say).
Case 2: If max{bd(Su, Tu), bd(Su, Su)} = bd(Su, Su), then we have

s2bd(Tu, Su) ≤ α bd(Su, Su)

≤ sα[bd(Su, Tu) + bd(Tu, Su)]

= 2sαbd(Su, Tu).

It follows that bd(Tu, Su) ≤ 2α
s bd(Su, Tu), which in turn implies that bd(Su, Tu) = 0 since 0 ≤ α < 1

2 .
Hence Su = Tu = z (say). Therefore, T and S have a coincidence point. Now, by weakly compatibility
property of the pair (T, S), we have

Tz = T(Su) = STu = Sz

which implies that Tz = Sz. Now, we show existence of a common fixed point. First, we show that z is a fixed
point of T. By Equation (2), we have

s2bd(Tz, Txn) ≤ α max{bd(Sz, Sxn), bd(Sz, Tz), bd(Sxn, Txn), bd(Sz, Tz), bd(Sxn, Tz)}.

Taking the upper limit as n→ ∞, we get

s2bd(Tz, z) ≤ α max{ lim
n→∞

sup[bd(Sz, Sxn), bd(Sz, Tz), bd(Sxn, Txn), bd(Sz, Txn), bd(Sxn, Tz)]}

= α max{bd(Sz, Su), bd(Sz, Tz), bd(Su, Su), bd(Sz, Su), bd(Su, Tz)}.

Since Su = Tu = z and Tz = Sz, we have

s2bd(Tz, z) ≤ α max{bd(Tz, z), bd(Sz, Sz), bd(z, z), bd(Tz, z), bd(z, Tz)}
= α max{bd(Tz, z), bd(Tz, Tz), bd(z, z), bd(Tz, z), bd(z, Tz)}.

Now, we consider the following cases as follows;
Case 1: If max{bd(Tz, z), bd(Tz, Tz), bd(z, z)} = bd(Tz, z), then we have bd(Tz, z) ≤ α

s2 bd(Tz, z), which implies
bd(Tz, z) = 0 since 0 ≤ α < 1

2 . Hence it follows that Tz = z.
Case 2: If max{bd(Tz, z), bd(Tz, Tz), bd(z, z)} = bd(Tz, Tz), then we have

s2bd(Tz, z) ≤ α bd(Tz, Tz)

≤ sα[bd(z, Tz) + bd(Tz, z)]

= 2sαbd(Tz, z).

It follows that bd(Tz, z) ≤ 2α
s bd(Tz, z), which implies bd(Tz, z) = 0 Since 0 ≤ α < 1

2 . Hence Tz = z.
Case 3: If max{bd(Tz, z), bd(Tz, Tz), bd(z, z)} = bd(z, z), then we have

s2bd(Tz, z) ≤ α bd(z, z)

≤ sα[bd(z, Tz) + bd(Tz, z)]

= 2sαbd(Tz, z).

It follows that bd(Tz, z) ≤ 2α
s2 bd(Tz, z), which implies bd(Tz, z) = 0 since 0 ≤ α < 1

2 . Hence Tz = z. But
we know that Tz = Sz which gives us Tz = Sz = z. Therefore, z is a common fixed point of T and S.

Uniqueness

Let z and z′ be fixed points of T and S with z 6= z′ . Then by Equation (2), we have

s2bd(Tz, Tz′) ≤ α max{bd(Sz, Sz′), bd(Sz, Tz), bd(Sz′, Tz′), bd(Sz, Tz′), bd(Sz′, Tz)}
= α max{bd(z, z′), bd(z, z), bd(z′, z′), bd(z, z′), bd(z′, z)}.
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We consider the following cases as follows.
Case 1: If max{bd(z′, z), bd(z, z), bd(z′, z′)} = bd(z, z′), then we have bd(z′, z) ≤ α

s2 bd(z, z′) which implies
bd(z, z′) = 0 since 0 ≤ α < 1

2 . Hence it follows that z = z′.
Case 2: If max{bd(z′, z), bd(z, z), bd(z′, z′)} = bd(z, z), then we have

s2bd(z, z′) ≤ α bd(z, z)

≤ sα[bd(z, z′) + bd(z′, z)]

= 2sαbd(z, z′).

It follows that bd(z, z′) ≤ 2α
s bd(z, z′) which implies bd(z′, z) = 0 since 0 ≤ α < 1

2 . Hence z = z′.
Case 3: If max{bd(z, z′), bd(z, z), bd(z′, z′)} = bd(z′, z′), then we have

s2bd(z, z′) ≤ α bd(z′, z′)
≤ sα[bd(z, z′)bd(z′, z)]

= 2sαbd(z′, z).

It follows that bd(z′, z) ≤ 2α
s bd(z′, z′) which implies bd(z′, z) = 0 since 0 ≤ α < 1

2 . Hence z′ = z which
contradicts to our assumption z 6= z′.

Hence z is a unique common fixed point of T and S.

Theorem 3. Let (X, bd) be a complete b - dislocated metric space with parameter s > 1. If T, S be self-maps of X such
that the pair (T, S) satisfy occasionally weakly compatible property (OWC) in X and T and S are an s− α contraction
maps. Then the pair (T, S) has a unique common fixed point.

Proof. Since T and S satisfy (OWC) property, there exists a point u ∈ X such that Tu = Su and TSu = STu.
This implies that TSu = TTu = STu = SSu. It follows that TTu = SSu. We claim that Tu is the unique common
fixed point of T and S. First, we assert that Tu is a fixed point of T. For, if TTu 6= Tu, then by Equation (2), we
get

s2bd(Tu, TTu) ≤ α max
{

bd(Su, STu), bd(Su, Tu), bd(STu, TTu), bd(Su, TTu), bd(STu, Tu)
}

.

Since Su = Tu, then we have

s2bd(Tu, TTu) ≤ α max
{

bd(Tu, TTu), bd(Tu, Tu), bd(TTu, TTu), bd(Tu, TTu), bd(TTu, Tu)
}

= α max
{

bd(Tu, TTu), bd(Tu, Tu), bd(TTu, TTu)
}

.

We consider the following three cases as follows.
Case 1: If max{bd(Tu, TTu), bd(Tu, Tu), bd(TTu, TTu)} = bd(Tu, TTu), then we have bd(Tu, TTu) ≤
α
s2 bd(Tu, TTu), which implies bd(Tu, TTu) = 0 since 0 ≤ α < 1

2 . Hence Tu = TTu.
Case 2: If max{bd(Tu, TTu), bd(Tu, Tu), bd(TTu, TTu)} = bd(Tu, Tu), then we have

s2bd(Tu, TTu) ≤ α bd(Tu, Tu)

≤ sα[bd(TTu, Tu) + bd(Tu, TTu)]

= 2sαbd(TTu, Tu).

It follows that bd(TTu, Tu) ≤ 2α
s bd(TTu, Tu), which implies that bd(TTu, Tu) = 0 since 0 ≤ α < 1

2 . Hence
TTu = Tu.
Case 3: If max{bd(Tu, TTu), bd(Tu, Tu), bd(TTu, TTu)} = bd(TTu, TTu), then we have

s2bd(Tu, TTu) ≤ α bd(TTu, TTu)

≤ sα[bd(TTu, Tu) + bd(Tu, TTu)]

= 2sαbd(TTu, Tu).
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It follows that bd(TTu, Tu) ≤ 2α
s bd(TTu, Tu), which implies that bd(TTu, Tu) = 0 since 0 ≤ α < 1

2 . Hence
Tu = TTu which is a contradiction with Tu 6= TTu. There fore, TTu = Tu and Tu is the fixed point of T. Since
TTu = TSu = STu = Tu = SSu, it implies STu = Tu. Thus Tu is fixed point of S. Therefore, Tu is a common
fixed point of T and S.

Uniqueness

Suppose that u, v ∈ X such that Tu = Su = u and Tv = Sv = v and u 6= v. Then by Equation (2), we get

s2bd(u, v) = s2bd(Tu, Tv)

≤ α max
{

bd(Su, Sv), bd(Su, Tu), bd(Sv, Tv), bd(Su, Tv), bd(Sv, Tu)
}

= α max
{

bd(u, v), bd(u, u), bd(v, v), bd(u, v), bd(v, u)
}

= α max
{

bd(u, v), bd(u, u), bd(v, v)
}

.

We consider the following cases as follows.
Case 1: If max{bd(u, v), bd(u, u), bd(v, v)} = bd(v, u), then we have bd(u, v) ≤ α

s2 bd(v, u), which implies that
bd(v, u) = 0, since 0 ≤ α < 1

2 . Hence it follows that u = v.
Case 2: If max{bd(v, u), bd(u, u), bd(v, v)} = bd(u, u), then we have

s2bd(v, u) ≤ α bd(u, u)

≤ sα[bd(u, v) + bd(u, v)]

= 2sαbd(u, v).

It follows that bd(v, u) ≤ 2α
s bd(v, u), which implies that bd(v, u) = 0 since 0 ≤ α < 1

2 . Hence v = u.
Case 3: If max{bd(u, v), bd(v, v), bd(u, u)} = bd(v, v), then we have

s2bd(u, v) ≤ α bd(v, v)

≤ sα[bd(u, v)bd(v, u)]

= 2sαbd(u, v).

It follows that bd(u, v) ≤ 2α
s bd(v, v), which implies that bd(v, u) = 0, since 0 ≤ α < 1

2 . Hence u = v.
Therefore, it contradicts with our assumption u 6= v.

Hence u is a unique common fixed point of T and S.

Theorem 4. Let (X, bd) be a complete b - dislocated metric space with parameter s > 1. If T, S be self-maps of X such
that

s2bd(Tx, Ty) ≤ α max
{

bd(Sx, Sy), bd(Sx, Tx), bd(Sy, Ty), bd(Sx, Ty), bd(Sy, Tx)
}

for all x, y ∈ X and 0 ≤ α < 1
2 . Then the pair (T, S) has a unique common fixed point.

Proof. Let x0 be arbitrary given point in X. Define the sequence yn ∈ X such that; y2n = Tx2n = Sx2n+1, for
all n ≥ 0. We show that yn ∈ X for all n ∈ N. Since y2n = Tx2n = Sx2n+1, we have from (1) that

s2bd(y2n, y2n+1) = s2bd(Tx2n, Tx2n+1)

≤ α max
{

bd(Sx2n, Sx2n+1), bd(Sx2n, Tx2n), bd(Sx2n+1, Tx2n+1), bd(Sx2n, Tx2n+1),

bd(Sx2n+1, Tx2nx)
}

= α max
{

bd(y2n−1, y2n), bd(y2n−1, y2n), bd(y2n, y2n+1), bd(y2n−1, y2n+1), bd(y2n, y2n)
}

≤ α max
{

bd(y2n−1, y2n), bd(y2n−1, y2n), bd(y2n, y2n+1), s[bd(y2n−1, y2n) + bd(y2n,

y2n+1)], s[bd(y2n, y2n+1 + bd(y2n−1, y2n)]
}
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= α max
{

bd(y2n−1, y2n), bd(y2n−1, y2n), bd(y2n, y2n+1), s[bd(y2n−1, y2n) + bd(y2n,

y2n+1)], 2s[bd(y2n−1, y2n)]
}

.

If bd(y2n−1, y2n) ≤ bd(y2n, y2n+1), for some n ∈ N, then by (1), we have s2bd(y2n, y2n+1) ≤ 2αbd(y2n, y2n+1),
which implies that bd(y2n, y2n+1) ≤ 2α

s2 bd(y2n, y2n+1). This is not true because 2α
s2 < 1. Thus bd(y2n, y2n+1) ≤

bd(y2n−1, y2n) for all n ∈ N. Also, by the above inequality, we get

s2bd(y2n, y2n+1) ≤ 2αsbd(y2n−1, y2n),

bd(y2n−1, y2n) ≤
2α

s
bd(y2n−2, y2n−1),

bd(y2n−2, y2n−1) ≤
2α

s
bd(y2n−3, y2n−4).

Continuing like this, we have

bd(y2n, y2n+1) ≤ cbd(y2n−1, y2n) ≤ c2bd(y2n−2, y2n−1), · · · ≤ cnbd(y0, y1),

where c = 2α
s and 0 ≤ c < 1. Taking the upper limit as n → ∞ in the inequality above, we have

bd(y2n, y2n+1) → 0. Now, we prove that {ym} is a b - dislocated Cauchy sequence where m = 2n. To do
this let m, n ≥ 0 with m > n. Now, using the triangle inequality, we have

bd(yn, ym) ≤ s [bd(yn, yn+1) + bd(yn+1, ym)]

≤ s
[
bd(yn, yn+1) + s [bd(yn+1, yn+2) + bd(yn+2, ym)]

]
≤ sbd(yn, yn+1) + s2bd(yn+1, yn+2) + · · ·+ snbd(ym−1, ym)

= s
[
cnbd(y0, y1) + scn+1bd(y0, y1) + · · ·

]
= scn [bd(y0, y1) + scbd(y0, y1) + · · · ]

= scnbd(y0, y1)
[
1 + sc + (sc)2 + · · ·

]
≤ scn

(1− sc)
bd(y0, y1). (4)

Therefore bd(yn, ym) ≤ scn

(1−sc) bd(y0, y1). Taking the upper limit as m, n → ∞, we have bd(yn, ym) → 0 as
sc < 1. Therefore, { ym} is a b -dislocated Cauchy sequence in b - dislocated metric space (X, bd). So there is
some u ∈ X such that { ym} is a b -dislocated converges to u. Since a subsequence of a Cauchy sequence in b
-dislocated metric space is a Cauchy sequence, then {Tx2n} and {Sx2n+1} are also Cauchy sequences.

If T and S are continuous mappings, we get

T(u) = T( lim
n→∞

xn) = lim
n→∞

Txn = S(u) = lim
n→∞

Sxn+1 = u.

Thus, u is a common fixed point of T and S. If the self-map T is not continuous then, we consider

s2bd(y2n, Tu) = s2bd(Tx2n, Tu)

≤ α max
{

bd(Sx2n, Su), bd(Sx2n, Tx2n), bd(Su, Tu), bd(Sx2n, Tu), bd(Su, Tx2n)
}

= α max
{

bd(y2n−1, Su), bd(y2n−1, y2n), bd(Su, Tu), bd(y2n−1, Tu), bd(Su, y2n)
}

.

On taking upper limit as n → ∞, we get s2bd(u, Tu) ≤ α max
{

bd(Su, Su), bd(Su, Tu), bd(Su, Tu)
}

. We
consider the following cases:
Case 1: If max{bd(u, u), bd(Tu, Tu), bd(u, Tu)} = bd(Tu, u), then we have bd(Tu, u) ≤ α

s2 bd(Tu, u), which
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implies bd(Tu, u) = 0, since 0 ≤ α < 1
2 . Hence Tu = u.

Case 2: If max{bd(u, u), bd(Tu, Tu), bd(Tu, u)} = bd(Tu, Tu), then we have

s2bd(Tu, u) ≤ α bd(Tu, Tu)

≤ sα[bd(u, Tu) + bd(Tu, u)]

= 2sαbd(Tu, u).

It follows that bd(Tu, u) ≤ 2α
s bd(Tu, u), which implies bd(Tu, u) = 0 since 0 ≤ α < 1

2 . Hence Tu = u.
Case 3: If max{bd(u, u), bd(Tu, Tu), bd(Tu, u)} = bd(u, u), then we have

s2bd(Tu, u) ≤ α bd(u, u)

≤ sα[bd(u, Tu)bd(Tu, u)]

= 2sαbd(Tu, u).

It follows that bd(Tu, u) ≤ 2α
s bd(Tu, u), which implies bd(Tu, u) = 0 since 0 ≤ α < 1

2 . Hence Tu = u.
In all cases bd(u, Tu) = 0 which implies that u = Tu. Thus, u is fixed point of T.
In similar cases, we have bd(Su, u) ≤ 2α

s bd(Su, u), which implies bd(Su, u) = 0 since 0 ≤ α < 1
2 . Hence

Su = u. Thus, u is fixed point of S. Since, Su = u = Tu, then u is a common fixed point of T and S.

Uniqueness

Let u and v are fixed points of T and S with u 6= v. Then by using Equation (2), we have

s2bd(u, v) = s2bd(Tu, Tv) ≤ α max
{

bd(Su, Sv), bd(Su, Tu), bd(Sv, Tv), bd(Su, Tv), bd(Sv, Tu)
}

= α max
{

bd(u, v), bd(u, u), bd(v, v), bd(u, v), bd(v, u)
}

= α max
{

bd(u, v), bd(v, v), bd(v, u)
}

.

We consider the following three cases;
Case 1: If max{bd(u, v), bd(u, u), bd(v, v)} = bd(v, u), then we have bd(u, v) ≤ α

s2 bd(v, u), which implies
bd(v, u) = 0 since 0 ≤ α < 1

2 . Hence it follows that u = v.
Case 2: If max{bd(v, u), bd(u, u), bd(v, v)} = bd(u, u), then we have

s2bd(v, u) ≤ α bd(u, u)

≤ sα[bd(u, v) + bd(u, v)]

= 2sαbd(u, v).

It follows that bd(v, u) ≤ 2α
s bd(v, u), which implies bd(v, u) = 0 since 0 ≤ α < 1

2 . Hence it follows that v = u.
Case 3: If max{bd(u, v), bd(v, v), bd(u, u)} = bd(v, v), then we have

s2bd(v, u) ≤ α bd(v, v)

≤ sα[bd(u, v) + bd(v, u)]

= 2sαbd(u, v).

It follows that bd(u, v) ≤ 2α
s bd(v, u), which implies bd(v, u) = 0 since 0 ≤ α < 1

2 . Hence in all cases u = v.
Therefore, it contradicts with our assumption u 6= v. Hence u is a unique common fixed point of T and S.

Remark 3. If we take S = I (I is the identity map on X) in Theorem 4, we get Theorem 1.

Now, we give an example in support of Theorem 4.

Example 2. Let X = [0, 1] and bd(x, y) = (x + y)2 for all x, y ∈ X when s = 2 is a b-dislocated metric on X.
Then (X, bd) is a b-dislocated metric space.
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Solution. We take the s− α contraction map and define the following

Tx =

{
1

25 x, if x ∈ [0, 1)
1

30 , if x = 1
and Sx =

1
5

x.

Consider the sequence {xn} given by Xn = 1
n for all n ∈ N. T and S satisfies the common limit in the

range of S property. By using (CLRs) properties, we have lim
n→∞

Txn = lim
n→∞

Sxn = 0, for 0 ∈ Tx or 0 ∈ Sx.

We have the following cases with α = 4
25 .

Case 1: For x, y ∈ [0, 1), we have

s2bd(Tx, Ty) = 4bd

(
1
25

x,
1
25

y
)
= 4

(
1

25
x +

1
25

y
)2

=
4

25

(
1
5

x +
1
5

y
)2

≤ 4
25

bd(Sx, Sy).

Therefore, s2bd(Tx, Ty) ≤ αbd(Sx, Sy).
Case 2: For y < x and x = 1, we have

s2bd(T1, Ty) = 4bd

(
1
30

,
1

25
y
)
= 4

(
1

30
+

1
25

y
)2

≤ 4
25

(
1
5
+

1
5

y
)2

=
4

25
bd

(
1
5

,
1
5

y
)
≤ 4

25
bd(Sx, Sy).

Therefore, s2bd(T1, Ty) ≤ αbd(S1, Sy) = αbd(Sx, Sy).
Case 3: For x < y and y = 1, we have

s2bd(Tx, T1) = 4bd

(
1
25

x,
1
30

)
= 4

(
1

25
x +

1
30

)2

≤ 4
25

(
1
5

x +
1
5

)2

=
4

25
bd

(
1
5

x,
1
5

)
≤ 4

25
bd(Sx, Sy).

Therefore, s2bd(Tx, T1) ≤ αbd(Sx, S1) = αbd(Sx, Sy).
Case 4: For x = y = 1, we have

s2bd(T1, T1) = 4bd

(
1

30
,

1
30

)
=

4
25

(
1
6
+

1
6

)2

≤ 4
25

(
1
5
+

1
5

)2

=
4

25
bd

(
1
5

,
1
5

)
=

4
25

bd

(
S1, S1

)
≤ 4

25
bd(Sx, Sy).

Therefore, s2bd(T1, T1) ≤ αbd(S1, S1) = αbd(Sx, Sy).
From cases 1 up to 4, we see that all the conditions of Theorem 4 are satisfied and 0 is the unique common

fixed point of T and S.

4. Conclusion

Zoto and Kumari [1] established the existence and uniqueness of fixed point for a mapping satisfying
s − α type contraction condition in a complete dislocated metric space. In this thesis, we have explored the
properties of s− α type contraction mapping in b - dislocated metric spaces. We established the theorem on
common fixed points of two mapping satisfying s − α contraction condition in the setting of b - dislocated
metric spaces and proved the existence and uniqueness of common fixed point for a pair of maps T and S in
the setting of b - dislocated metric space. Also we provided an example in support of our main results. Our
work extended fixed point result in single map to common fixed point result in a pair of maps. The presented
theorem extends and generalizes several well-known comparable results in literature.
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