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Abstract: Consider a class of two-point Boundary Value Problems (BVP) for a stochastic nonlinear fractional

order differential equation Dαu(t) = λ
√

Iβ[σ2(t, u(t))]ẇ(t), 0 < t < 1 with boundary conditions u(0) =

0, u′(0) = u′(1) = 0, where λ > 0 is a level of the noise term, σ : [0, 1] × R → R is continuous, ẇ(t) is
a generalized derivative of Wiener process (Gaussian white noise), Dα is the Riemann–Liouville fractional
differential operator of order α ∈ (3, 4) and Iβ, β > 0 is a fractional integral operator. We formulate the
solution of the equation via a stochastic Volterra–type equation and investigate its existence and uniqueness
under some precise linearity conditions using contraction fixed point theorem. A case of the above BVP for
a stochastic nonlinear second order differential equation for α = 2 and β = 0 with u(0) = u(1) = 0 is also
studied.

Keywords: Boundary value problems, existence and uniqueness result, fractional integral,
Riemann–Liouville fractional derivative, stochastic volterra–type equation.

MSC: 26A33, 34A08, 60H15, 82B44.

1. Introduction

F ractional derivatives and fractional order differential equations have received an increasingly high
interest and attention due to its physical and modeling applications in science, engineering and

mathematics[1–4]. On the other hand, researches have shown that two-point boundary value problems have
found their applications in theoretical physics, applied mathematics, optimization and control theory and
engineering [5]. The use of second-order Boundary Value Problem (BVP) arises in several areas of engineering
and applied sciences such as celestial mechanics, circuit theory, astrophysics, chemical kinetics, and biology
[6].

They are particularly encountered in the study of following natural phenomena: in the study of
surface-tension–induced flows of a liquid metal or semiconductor [7,8], used in modeling biological materials
(elastic and hyperelastic materials) [9]. In [10], authors studied the existence and uniqueness of a nontrivial
solution of a two-point boundary value problems. Stochastic nonlinear fractional order differential equation
and its associated BVPs, on the other hand, will undoubtedly give more realistic models for the above natural
occurrences.

Motivated by the above applications and the results of the papers [2–4], we study the white noise
pertubation of a nonlinear BVP and consider the following BVP for a stochastic nonlinear fractional differential
equation {

Dαu(t) = λ
√

Iβ[σ2(t, u(t))]ẇ(t), 0 < t < 1
u(0) = 0, u′(0) = u′(1) = 0,

(1)

where λ > 0 is a noise level parameter, σ : [0, 1] × R → R is continuous, ẇ(t) is a Gaussian white noise,
Dα = Dα

0+ is the Riemann–Liouville (R–L) fractional derivative of order α ∈ (3, 4) and Iβ is the fractional
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integral of order β > 0. Existence and uniqueness results are very crucial in the study of BVP since they are
not well behaved like the initial value problems, therefore, we aim to establish the existence and uniqueness
of solution to Equation (1). To the best of our knowledge, the above model has not been studied before and we
therefore, try to make sense of the solution to the above equation as follows:

Definition 1. We say that {u(t)}0≤t≤1 is a mild solution to Equation (1) if a.s, the following is satisfied

u(t) = λ
∫ 1

0
G(t, s)

√
Iβ[σ2(s, u(s))]ẇ(s)ds = λ

∫ 1

0
G(t, s)

√
Iβ[σ2(s, u(s))]dw(s),

where G(t, s) is as defined in (3).
If {u(t)}0<t<1 satisfies the additional condition sup0≤t≤1 E|u(t)|2 < ∞, then we say that {u(t)}0≤t≤1 is a

random field solution to Equation (1).

Definition 2. The R–L fractional integral of order β > 0 of a given continuous function f : (0, ∞) → R is
defined by

Iβ f (t) =
1

Γ(β)

∫ t

0
(t− s)β−1 f (s)ds,

provided the right integral exists. Denote I0 f (t) = f (t).

Definition 3. The R–L fractional derivative of order α > 0 of a given continuous function f : (0, ∞) → R is
defined by

Dα f (t) =
1

Γ(n− α)

(
d
dt

)n ∫ t

0

f (s)
(t− s)α−n+1 ds,

where n = [α] + 1, provided the right integral converges.

Many authors studied different boundary value problems of nonlinear fractional order differential
equations, see [1,11–14] and their references. Xu in [3] considered the following boundary value problem
of a nonlinear fractional differential equation:

Lemma 1 ([3]). Given h ∈ C[0, 1] and 3 < α ≤ 4, the unique solution of{
Dαu(t) = h(t), 0 < t < 1

u(0) = u(1) = u′(0) = u′(1) = 0,

is u(t) =
∫ 1

0
G(t, s)h(s)ds where

G(t, s) =


(t−s)α−1+(1−s)α−2tα−2[(s−t)+(α−2)(1−t)s]

Γ(α) , 0 ≤ s ≤ t ≤ 1
tα−2(1−s)α−2[(s−t)+(α−2)(1−t)s]

Γ(α) , 0 ≤ t ≤ s ≤ 1.
(2)

Lemma 2 ([4]). The Green function G(t, s) in (2) has the following properties

(1) G(t, s) = G(1− s, 1− t) for t, s ∈ [0, 1];
(2) tα−2(1− t)2q(s) ≤ G(t, s) ≤ (α− 1)q(s) and G(t, s) ≤ (α−1)(α−2)

Γ(α) tα−2(1− t)2 for t, s ∈ [0, 1] where q(s) =
(α−2)
Γ(α) s2(1− s)α−2.

Xu in [3] gave more properties of the function G(t, s) in (2) as follows:

Lemma 3 ([3]). The Green function G(t, s) defined by (2) satisfies the following conditions:

(1) G(t, s) = G(1− s, 1− t) for t, s ∈ (0, 1);
(2) (α− 2)tα−2(1− t)2s2 ≤ Γ(α)G(t, s) ≤ M0s2(1− s)α−2, for t, s ∈ (0, 1);
(3) G(t, s) > 0, for t, s ∈ (0, 1);



Open J. Math. Anal. 2020, 4(2), 152-159 154

(4) (α− 2)s2(1− s)α−2tα−2(1− t)2 ≤ Γ(α)G(t, s) ≤ M0tα−2(1− t)2, for t, s ∈ (0, 1), where M0 = max{α−
1, (α− 2)2}.

Stanek in [2] studied the following fractional boundary value problems:

Lemma 4 ([2]). Suppose that ρ ∈ L1[0, 1]. Then u(t) =
∫ 1

0 G(t, s)ρ(s)ds for t ∈ [0, 1] is the unique solution of the
following equation in C1[0, 1]: {

Dαu(t) + ρ(t) = 0, α ∈ (2, 3)

u(0) = 0, u′(0) = u′(1) = 0,

where

G(t, s) =


tα−1(1−s)α−2−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1
tα−1(1−s)α−2

Γ(α) , 0 ≤ t ≤ s ≤ 1.
(3)

Lemma 5 ([2]). The function G(t, s) given in (3) has the following properties:

(1) G ∈ C([0, 1]× [0, 1]) and Gα > 0 on (0, 1)× (0, 1);
(2) G(t, s) ≤ 1

Γ(α) for (t, s) ∈ [0, 1]× [0, 1];

(3)
∫ 1

0
G(t, s)ds ≥ tα−1

(α− 1)Γ(α + 1)
for t ∈ [0, 1];

(4) ∂
∂t G(t, s) ∈ C([0, 1]× [0, 1]) and ∂

∂t G(t, s) > 0 on (0, 1)× (0, 1);
(5) ∂

∂t G(t, s) ≤ 1
Γ(α−1) for (t, s) ∈ [0, 1]× [0, 1];

(6)
∫ 1

0

∂

∂t
G(t, s)ds ≥ t(1− t)

Γ(α)
for t ∈ [0, 1].

The paper is outlined as follows. A short preliminary on second order boundary problems is given in
Section 2. In Section 3, we gave the main results and their proofs while Section 4 contains a concise summary
of the paper.

2. Preliminaries

Let (a, b) ∈ R be an interval and p, q, f : (a, b) → R be continuous functions. Now, consider the linear
second order equation given by y′′ + p(x)y′ + q(x) = f (x) subject to the following boundary conditions:

(a.) Dirichlet or first kind: y(a) = η1, y(b) = η2,
(b.) Neuman or second kind: y′(a) = η1, y′(b) = η2,
(c.) Robin or third or mixed kind: α1y(a) + α2y′(a) = η1, α1y(b) + α2y′(b) = η2,
(d.) Periodic: y(a) = y(b), y′(a) = y′(b).

Remark 1. 1. Unlike the initial value problems, the BVPs do not behave nicely because there are BVPs for
which their solutions fail to exist and even when a solution does exist, there might be many of them. This
of course makes existence and uniqueness for BVPs to fail generally.

2. For example, y′′ + y = 0 has a unique solution y(x) = sin x + cos x with the boundary conditions y(0) =
y(π

2 ) = 1. It has no solution with the boundary conditions y(0) = y(π) = 1 and has infinitely many
solutions with the boundary conditions y(0) = y(2π) = 1.

Thus, for the linear boundary value problem with the Dirichlet boundary conditions:{
L[u(x)] = f (x, u),

u(a) = u(b) = 0,
(4)

where L is a second-order differential operator given by L = d
dx

[
p(x) d

dx

]
+ q(x). The Equation (4) has the

following integro-differential equation as its solution:
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u(x) =
∫ b

a
G(x, ξ) f (ξ, u(ξ))dξ,

with G(x, ξ) the Green’s function.

Lemma 6 ([10]). Let y(t) ∈ X, then the Boundary Value Problem{
u′′(t)− y(t) = 0, 0 < t < 1
u(0) = u(1) = 0,

has a unique solution
∫ 1

0
G(t, s)y(s)ds, where

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1,

(5)

is the Green’s function of BVP {
u′′(t) = 0, 0 < t < 1
u(0) = u(1) = 0.

Remark 2. The Green function has the following bound: sup
0≤t,s≤1

G(t, s) ≤ 1
2

.

3. Main results

Now, consider the following global Lipschitz continuity condition on σ:

Condition 1. Let there exist a nonnegative function p ∈ L2[0, 1], such that |σ(t, x)− σ(t, y)| ≤ p(t)|x − y|, ∀ t ∈
[0, 1], x, y ∈ R, with σ(t, 0) = 0 for convenience, and there exists t0 ∈ [0, 1] such that p(t0) 6= 0.

In particular, for p(t) = Lipσ and for all t ∈ [0, 1], we have the following:

Condition 2. There exist a finite positive constant Lipσ, such that for all x, y ∈ R, we have |σ(t, x) − σ(t, y)| ≤
Lipσ|x− y|, with σ(t, 0) = 0 for convenience.

Now, define L2(P) norm of the solution u by

‖u‖2 :=
{

sup
0≤t≤1

E|u(t)|2
}1/2

.

3.1. Proof of results for Equation (1)

Using Condition 2, we obtain the following results for Equation (1):

Theorem 1. Suppose λ <

√
β(β+1)Γ(β)Γ2(α)

Lipσ
, where α ∈ (3, 4) and β > 0. For a positive constant Lipσ together with

Condition 2, there exists a solution u for Equation (1) that is unique up to modification.

To proof the Theorem 2, let u(t) = Au(t), where the operator A is given by

Au(t) = λ
∫ 1

0
G(t, s)

√
Iβ[σ2(s, u(s))]dw(s),

and we will use the fixed point of A. The proof follows using the Lemma(s) below:
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Lemma 7. Given a random solution u such that ‖u‖2 < ∞ and Condition 2 holds. Then

‖Au‖2
2 ≤ cα,βλ2Lip2

σ‖u‖2
2,

where cα,β = 1
β(β+1)Γ(β)Γ2(α)

.

Proof. Take second moment of both sides and use Itó isometry together with Lemma 5(2) to obtain

E|Au(t)|2 = λ2
∫ 1

0
G2(t, s)E|

√
Iβ[σ2(s, u(s))]|2ds

≤ λ2
∫ 1

0
G2(t, s)

[
1

Γ(β)

∫ s

0
(s− r)β−1E|σ2(r, u(r))|dr

]
ds

≤ λ2Lip2
σ

∫ 1

0
G2(t, s)

[
1

Γ(β)

∫ s

0
(s− r)β−1E|u(r)|2dr

]
ds

≤ λ2Lip2
σ sup

0≤s≤1
G2(t, s)‖u‖2

2

∫ 1

0

[
1

Γ(β)

∫ s

0
(s− r)β−1dr

]
ds

≤ λ2Lip2
σ

[
sup

0≤s≤1
G(t, s)

]2

‖u‖2
2

∫ 1

0

[
1

Γ(β)

∫ s

0
(s− r)β−1dr

]
ds

≤ λ2Lip2
σ

Γ2(α)Γ(β)
‖u‖2

2

∫ 1

0

[ ∫ s

0
(s− r)β−1dr

]
ds =

λ2Lip2
σ

β(β + 1)Γ(β)Γ2(α)
‖u‖2

2.

Now, by taking supremum over t ∈ [0, 1], the result follows.

Remark 3. The operator A is a contraction for λ2Lip2
σ

β(β+1)Γ(β)Γ2(α)
< 1.

Lemma 8. Suppose u and v are random solutions such that ‖u‖2 + ‖v‖2 < ∞ and Condition 2 holds. Then

‖Au−Av‖2
2 ≤ cα,βλ2Lip2

σ‖u− v‖2
2.

Proof. The proof follows similarly to the proof of Lemma 7.

Now, we present the proof of Theorem 1.

Proof of Theorem 1. From Lemma 7, we have

‖u‖2
2 = ‖Au‖2

2 ≤ cα,βλ2Lip2
σ‖u‖2

2,

which follows that

‖u‖2
2

[
1− cα,βλ2Lip2

σ

]
≤ 0,

and this shows that ‖u‖2 < ∞ whenever cα,βλ2Lip2
σ < 1 or λ < 1√cα,β Lipσ

.
Similarly from Lemma 8, we have

‖u− v‖2
2 = ‖Au−Av‖2

2 ≤ cα,βλ2Lip2
σ‖u− v‖2

2,

and therefore

‖u− v‖2
2

[
1− cα,βλ2Lip2

σ

]
≤ 0.

This implies that ‖u− v‖2 < 0 if and only if cα,βλ2Lip2
σ < 1 and thus ‖u− v‖2 = 0⇒ u = v. This shows

the existence and uniqueness result by Banach’s contraction principle.
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3.2. Existence and uniqueness for stochastic second order BVP

Here, we consider the following stochastic second order boundary value problem:{
d2

dt2 u(t) = λσ(t, u(t))ẇ(t), 0 < t < 1
u(0) = u(1) = 0,

(6)

where λ > 0 is a noise level parameter, σ : [0, 1]×R→ R is continuous and ẇ(t) is a Gaussian white noise.

Definition 4. We say that {u(t)}0≤t≤1 is a mild solution of Equation (6) if a.s,

u(t) = λ
∫ 1

0
G(t, s)σ(s, u(s))ẇ(s)ds = λ

∫ 1

0
G(t, s)σ(s, u(s))dw(s),

is satisfied, where G(t, s) is as given in Equation (5).
If {u(t)}0<t<1 satisfies the additional condition sup

0≤t≤1
E|u(t)|2 < ∞, then we say that {u(t)}0≤t≤1 is a

random field solution to Equation (6).

Theorem 2. Suppose Condition 1 holds and there exists a positive constant λ∗ such that for any 0 < λ ≤ λ∗, then
Equation (6) has a unique solution.

To proof the Theorem 2, we define the operator

Bu(x, t) = λ
∫ 1

0
G(t, s)σ(s, u(s))dw(s),

and use the fixed point of the operator B. The proof follows using the Lemma(s) below:

Lemma 9. Given a random solution u such that ‖u‖2 < ∞ and Condition 1 holds. Then there exists a positive constant
λ∗ such that for 0 < λ ≤ λ∗,

‖Bu‖2 ≤
1
2
‖u‖2.

Proof. By Itó Isometry, we obtain

E|Bu(t)|2 ≤ λ2
∫ 1

0
G2(t, s)E|σ(s, u(s))|2ds

≤ λ2 sup
0≤t,s≤1

G2(t, s)
∫ 1

0
p2(s)E|u(s)|2ds

≤ λ2
[

sup
0≤t,s≤1

G(t, s)
]2 ∫ 1

0
p2(s)E|u(s)|2ds

≤ λ2

4
‖u‖2

2

∫ 1

0
p2(s)ds.

Taking suprimum of both sides over t ∈ [0, 1] and letting λ∗ :=
( ∫ 1

0
p2(s)ds

)−2

such that 0 < λ ≤ λ∗,

we have ‖Bu‖2
2 ≤

1
4‖u‖2

2.

Following similar steps of Lemma 9, we obtain the following result.

Lemma 10. Suppose u and v are random solutions such that ‖u‖2 + ‖v‖2 < ∞ and Condition 1 holds. Then there
exists a positive constant λ∗ such that for 0 < λ ≤ λ∗,

‖Bu−Bv‖2 ≤
1
2
‖u− v‖2.
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Proof of Theorem 2. Following Lemma 9 and Lemma 12, it is clear that B is a contraction. Thus by Banach
fixed point theorem, the existence of a unique solution for Equation (6) follows: Let u = B and

‖u‖2
2 = ‖Bu‖2

2 ≤
1
4
‖u‖2

2 ⇒ ‖u‖2
2

[
1− 1

4

]
≤ 0⇒ ‖u‖2 = 0⇒ u = 0.

Assume a nontrivial solution u of Equation (6) and we show that it is unique. Suppose for contradiction
that there exists another solution v of Equation (6) such that

‖u− v‖2
2 = ‖Bu−Bv‖2

2 ≤
1
4
‖u− v‖2

2,

then ‖u− v‖2
2[1−

1
4 ] ≤ 0, which follows that ‖u− v‖ = 0. Thus u = v, a unique solution.

Next, we seek to establish the existence and uniqueness of solution for Equation (6) using Condition 2 as
follows:

Theorem 3. Suppose λ < 2
Lipσ

, for positive constant Lipσ together with Condition 2. Then there exists solution u that
is unique up to modification.

Lemma 11. Given a random solution u such that ‖u‖2 < ∞ and Condition 2 holds. Then ‖Bu‖2 ≤ λLipσ
2 ‖u‖2.

Lemma 12. Suppose u and v are random solutions such that ‖u‖2 + ‖v‖2 < ∞ and Condition 2 holds. Then ‖Bu−
Bv‖2 ≤ λLipσ

2 ‖u− v‖2.

Proof of Theorem 3. By fixed point theorem we have u(t) = Au(t) and ‖u‖2
2 = ‖Bu‖2

2 ≤
λ2Lip2

σ
4 ‖u‖2

2, which

follows that ‖u‖2
2

[
1− λ2Lip2

σ
4

]
≤ 0⇒ ‖u‖2 < ∞⇔ λ < 2

Lipσ
.

Similarly, ‖u− v‖2
2 = ‖Bu− Bv‖2

2 ≤
λ2Lip2

σ
4 ‖u− v‖2

2, thus ‖u− v‖2
2

[
1− λ2Lip2

σ
4

]
≤ 0 and therefore ‖u−

v‖2 < 0 if and only if λ < 2
Lipσ

. Hence, the existence and uniqueness result follows by Banach’s contraction
principle.

4. Conclusion

We studied the boundary value problems for both stochastic nonlinear fractional order differential
equation and stochastic nonlinear second order equation. The existence and uniqueness result for both
boundary value problems were given under different linearity conditions on σ using contraction fixed point
theorem.
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