Some applications of second-order differential subordination for a class of analytic function defined by the lambda operator

B. Venkateswarlu¹∗, P. Thirupathi Reddy², S. Sridevi¹ and Sujatha¹

¹ Department of Mathematics, GSS, GITAM University, Doddaballapur- 562 163, Bengaluru Rural, Karnataka, India.
² Department of Mathematics, Kakatiya University, Warangal- 506 009, Telangana, India.
* Correspondence: bvlmaths@gmail.com

Received: 12 October 2020; Accepted: 17 December 2020; Published: 27 December 2020.

Abstract: In this paper, we introduce a new class of analytic functions by using the lambda operator and obtain some subordination results.

Keywords: Analytic, convex, subordination, symmetric.

MSC: 30C45.

1. Introduction

Let \(\mathbb{C} \) be complex plane and let \(\mathbb{U} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \} = \mathbb{U} \setminus \{ 0 \} \) be an open unit disc in \(\mathbb{C} \). Also let \(H(\mathbb{U}) \) be a class of analytic functions in \(\mathbb{U} \). For \(n \in \mathbb{N} = \{ 1, 2, 3, \cdots \} \) and \(a \in \mathbb{C} \), let \(H[a, n] \) be a subclass of \(H(\mathbb{U}) \) formed by the functions of the form

\[
f(z) = z + a_n z^n + a_{n+1} z^{n+1} + \cdots
\]

with \(H_0 \equiv H[0,1] \) and \(H \equiv H[1,1] \). Suppose that \(A_n \) is a class of all analytic functions of the form

\[
f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k
\]

(1)

in the open unit disk \(\mathbb{U} \) with \(A_1 = A \). A function \(f \in H(\mathbb{U}) \) is univalent if it is a one-to-one function in \(\mathbb{U} \). By \(S \), we denote a subclass of \(A \) formed by functions univalent in \(\mathbb{U} \). If a function \(f \in A \) maps \(\mathbb{U} \) onto a convex domain and \(f \) is univalent, then \(f \) is called a convex function. By

\[
K = \left\{ f \in A : \Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0, \ z \in \mathbb{U} \right\},
\]

we denote a class of all convex functions defined in \(\mathbb{U} \) and normalized by \(f(0) = 0 \) and \(f'(0) = 1 \).

Let \(f \) and \(F \) be elements of \(H(\mathbb{U}) \). A function \(f \) is said to be subordinate to \(F \), if there exists a Schwartz function \(w \) analytic in \(\mathbb{U} \) with \(w(0) = 0 \) and \(|w(z)| < 1, \ z \in \mathbb{U} \), such that \(f(z) = F(w(z)) \). In this case, we write \(f(z) \prec F(z) \) or \(f \prec F \). Furthermore, if the function \(F \) is univalent in \(\mathbb{U} \), then we get the following equivalence [1,2]:

\[
f(z) \prec F(z) \iff f(0) = F(0) \quad \text{and} \quad f(\mathbb{U}) \prec F(\mathbb{U}).
\]

The method of differential subordinations (also known as the method of admissible functions) was first introduced by Miller and Mocanu in 1978 [3], and the development of the theory was originated in 1981 [4]. All details can be found in the book by Miller and Mocanu [2]. In recent years, numerous authors studied the properties of differential subordinations (see [5–8], etc.).

Let \(\Psi : \mathbb{C}^3 \setminus \mathbb{U} \rightarrow \mathbb{C} \) and let \(h \) be univalent in \(\mathbb{U} \). If \(p \) is analytic in \(\mathbb{U} \) and satisfies the second-order differential subordination:

\[
\Psi (p(z),zp'(z),zp''(z)) \prec h(z),
\]

(2)
then \(p \) is called the solution of differential subordination. The univalent function \(q \) is called a dominant of the solution of the differential subordination or, simply, a dominant if \(p \prec q \) for all \(p \) satisfying (2). The dominant \(q_1 \) satisfying \(q_1 \prec q \) for all dominants \(q \) of (2) is called the best dominant of (2).

Let us recall lambda function [9] defined by:

\[
\lambda(z, s) = \sum_{k=2}^{\infty} \frac{z^k}{(2k+1)^k}
\]

where \(z \in \mathbb{U}, s \in \mathbb{C} \), when \(|z| < 1, \Re(s) > 1\), when \(|z| = 1\) and let \(\lambda^{-1}(z, s) \) be defined such that

\[
\lambda(z, s) * \lambda^{-1}(z, s) = \frac{1}{(1-z)^{\mu + 1}}, \quad \mu > -1.
\]

We now define \((z\lambda^{-1}(z, s)) \) as:

\[
(z\lambda(z, s)) * (z\lambda^{-1}(z, s)) = \frac{z}{(1-z)^{\mu + 1}} = z + \sum_{k=2}^{\infty} \frac{\mu + 1}{(k-1)!} z^{k-1}, \quad \mu > -1
\]

and obtain the linear operator \(T^s_p f(z) = (z\lambda^{-1}(z, s)) * f(z) \), where \(f \in \mathcal{A}, z \in \mathbb{U} \) and \((z\lambda^{-1}(z, s)) = z + \sum_{k=2}^{\infty} \frac{(\mu + 1)k!}{(k-1)!} z^{k-1} \). A simple computation gives us

\[
T^s_p f(z) = z + \sum_{k=2}^{\infty} L(k, \mu, s) a_k z^k,
\]

where

\[
L(k, \mu, s) = \frac{(\mu + 1)k!}{(k-1)!} (2k-1)^s
\]

where \((\mu)_k\) is the Pochhammer symbol defined in terms of the Gamma function by:

\[
(\mu)_k = \frac{\Gamma(\mu + k)}{\Gamma(\mu)} = \begin{cases} 1, & \text{if } k = 0; \\ \mu(\mu + 1) \cdots (\mu + k - 1), & \text{if } k \in \mathbb{N}. \end{cases}
\]

Definition 1. Let \(\mathcal{L}_{p,s}(\sigma) \) be a class of function \(f \in \mathcal{A} \) satisfying the inequality

\[
\Re\left(T^s_p f(z) \right) \geq \sigma,
\]

where \(z \in \mathbb{U}, 0 \leq \sigma < 1 \) and \(T^s_p f(z) \) is the Lambda operator.

Lemma 1. Let \(h \) be a convex function with \(h(0) = a \) and let \(\gamma \in \mathbb{C}^* := \mathbb{C} \setminus \{0\} \) be a complex number with \(\Re\{\} \geq 0 \). If \(p \in \mathcal{H}[a, n] \) and

\[
p(z) + \frac{1}{\gamma} z p'(z) < h(z),
\]

then \(p(z) \prec q(z) < h(z) \), where \(q(z) = \frac{\gamma}{n \pi} \int_0^{\pi/n} h(t) dt, \; z \in \mathbb{U} \). The function \(q \) is convex and is the best dominant for subordination (5).

Lemma 2. [10] Let \(\Re\{\} > 0, n \in \mathbb{N} \) and \(w = \frac{n^2 + n - 1}{4n} \). Also, let \(h \) be an analytic function in \(\mathbb{U} \) with \(h(0) = 1 \). Suppose that \(\Re\left\{1 + \frac{zh'(z)}{h(z)}\right\} > -w \). If \(p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots \) is analytic in \(\mathbb{U} \) and

\[
p(z) + \frac{1}{\mu} z p'(z) < h(z),
\]

then \(p(z) \prec q(z) < h(z) \),
then \(p(z) \prec q(z) \), where \(q \) is a solution of the differential equation \(q(z) + \frac{n}{n+1}zq'(z) = h(z) \), \(q(0) = 1 \), given by
\[
q(z) = \frac{1}{n+1} \int_0^z t^n h(t) dt, \quad z \in U.
\]
Moreover, \(q \) is the best dominant for the differential subordination (6).

Lemma 3. [11] Let \(r \) be a convex function in \(U \) and let \(h(z) = r(z) + nqz'(z) \), \(z \in U \), where \(q > 0 \) and \(n \in \mathbb{N} \). If \(p(z) = r(0) + pnz^n + pn+1z^{n+1} + \cdots \), \(z \in U \), is holomorphic in \(U \) and \(p(z) + qzp'(z) \prec h(z) \), \(z \in U \), then \(p(z) \prec r(z) \) and this result is sharp.

In the present paper, we use the subordination results from [10] to prove our main results.

2. Main results

Theorem 1. The set \(\mathcal{L}_{\mu,s}(q) \) is convex.

Proof. Let \(f_j(z) = z + \sum_{k=2}^{\infty} a_{kj} z^k \), \(z \in U \), \(j = 1, \cdots, m \) be in the class \(\mathcal{L}_{\mu,s}(q) \). Then, by Definition 1, we get
\[
\Re \left\{ (I_{\mu}^s f)(z) \right\} = \Re \left\{ 1 + \sum_{k=2}^{\infty} L(k, \mu, s) a_{k} z^{k-1} \right\} > q. \quad (7)
\]

For any positive numbers \(\xi_1, \xi_2, \xi_3, \cdots, \xi_m \) such that \(\sum_{j=1}^{m} \xi_j = 1 \), it is necessary to show that the function
\[
h(z) = \sum_{j=1}^{m} \xi_j f_j(z)
\]
is an element of \(\mathcal{L}_{\mu,s}(q) \), i.e.,
\[
\Re \left\{ (I_{\mu}^s h)(z) \right\} > q. \quad (8)
\]

Thus, we have
\[
I_{\mu}^s h(z) = z + \sum_{k=2}^{\infty} L(k, \mu, s) \left\{ \sum_{j=1}^{m} \xi_j a_{kj} \right\} z^k. \quad (9)
\]

If we differentiate (9) with respect to \(z \), then we obtain
\[
(I_{\mu}^s h(z))' = 1 + \sum_{k=2}^{\infty} k L(k, \mu, s) \left\{ \sum_{j=1}^{m} \xi_j a_{kj} \right\} z^{k-1}. \quad (10)
\]

Thus by using (8), we have
\[
\Re \left\{ (I_{\mu}^s h(z))' \right\} = 1 + \sum_{j=1}^{m} \xi_j \Re \left\{ \sum_{k=2}^{\infty} k L(k, \mu, s) a_{kj} z^{k-1} \right\} > 1 + \sum_{j=1}^{m} \xi_j (q-1) = q.
\]

Hence, inequality (7) is true and we arrive at the desired result. \(\Box \)

Theorem 2. Let \(q \) be a convex function in \(U \) with \(q(0) = 1 \) and \(h(z) = q(z) + \frac{1}{\gamma+1}zq'(z) \), \(z \in U \), where \(\gamma \) is a complex number with \(\Re \{ \gamma \} > -1 \). If \(f \in \mathcal{L}_{\mu,s}(q) \) and \(\mathcal{R} = Y_{\gamma} f \), where
\[
\mathcal{R}(z) = Y_{\gamma} f(z) = \frac{\gamma + 1}{z^\gamma} \int_0^z t^{\gamma-1} f(t) dt,
\]
then
\[
(I_{\mu}^s \mathcal{R}(z))' \prec h(z)
\]
implies that \((I_{\mu}^s \mathcal{R}(z))' \prec q(z) \) and this result is sharp.
Proof. In view of equality (10), we can write
\[
z^{\gamma}N(z) = (\gamma + 1) \int_0^z t^{\gamma-1} f(t) \, dt. \tag{12}
\]

Differentiating (12) with respect to \(z \), we obtain \((\gamma)N(z) + zN'(z) = (\gamma + 1)f(z)\). Further, by applying the operator \(\mathcal{I}_\mu^s \) to the last equation, we get
\[
(\gamma)\mathcal{I}_\mu^s N(z) + z\mathcal{I}_\mu^s N(z)' = (\gamma + 1)\mathcal{I}_\mu^s f(z). \tag{13}
\]

If we differentiate (13) with respect to \(z \), then we find
\[
(\mathcal{I}_\mu^s N(z))' + \frac{1}{\gamma + 1}z(\mathcal{I}_\mu^s f(z))'' = (\mathcal{I}_\mu^s f(z))'. \tag{14}
\]

By using the differential subordination given by (11) in equality (14), we obtain
\[
(\mathcal{I}_\mu^s N(z))' + \frac{1}{\gamma + 1}z(\mathcal{I}_\mu^s f(z))'' < h(z). \tag{15}
\]

We define
\[
p(z) = (\mathcal{I}_\mu^s N(z))'. \tag{16}
\]

Hence, as a result of simple computations, we get
\[
p(z) = \left\{ z + \sum_{k=1}^\infty L(k, \mu, s) \frac{z^{\gamma+k}}{\gamma+k} q^k \right\}' = 1 + p_1 z + p_2 z^2 + \cdots, \quad p \in H[1, 1].
\]

By using (16) in subordination (15), we obtain
\[
p(z) + \frac{1}{\gamma + 1} z p'(z) < h(z) = q(z) + \frac{1}{\gamma + 1} z q'(z), \quad z \in U.
\]

If we use Lemma 2, then we write \(p(z) < q(z) \). Thus, we obtained the desired result and \(q \) is the best dominant. \(\square \)

Example 1. If we choose \(\gamma = i + 1 \) and \(q(z) = \frac{1+i+2}{1+i+2} \), in Theorem 2, then we get \(h(z) = \frac{(i+2)-(i+2)(z+2)z}{(i+2)(1-z)^2} \). If \(f \in \mathcal{L}_{\mu;\beta}(q) \) and \(N \) is given as \(N(z) = \gamma f(z) = \frac{i+2}{1+i+2} \int_0^z f(t) \, dt \), then, by virtue of Theorem 2, we find \((\mathcal{I}_\mu^s f(z))' < h(z) = \frac{(i+2)-(i+2)(z+2)z}{(i+2)(1-z)^2} \), implies \((\mathcal{I}_\mu^s f(z))' < \frac{1+i+2}{1+i+2} \).

Theorem 3. Let \(\Re\{\gamma\} > -1 \) and \(w = \frac{1+|\gamma+1|^2-|\gamma|^2+2\gamma}{4\Re\{\gamma+1\}} \). Suppose that \(h \) is an analytic function in \(U \) with \(h(0) = 1 \) and that \(\Re\left\{ 1 + \frac{\Re\{z\}}{\Re\{z\}} \right\} > -w \). If \(f \in \mathcal{L}_{\mu;\beta}(q) \) and \(N = \gamma f, \) where \(\gamma \) is defined by (10), then
\[
(\mathcal{I}_\mu^s f(z))' < h(z) \tag{17}
\]

implies that \((\mathcal{I}_\mu^s N(z))' < q(z) \), where \(q \) is the solution of the differential equation \(h(z) = q(z) + \frac{1}{\gamma+1} z q'(z), \quad q(0) = 1, \)
given by \(q(z) = \frac{\gamma+1}{\gamma+1} \int_0^z f(t) \, dt \). Moreover, \(q \) is the best dominant for subordination (17).

Proof. If we choose \(n = 1 \) and \(\mu = \gamma + 1 \) in Lemma 1, then the proof is obtained by means of the proof of Theorem 3. \(\square \)

Theorem 4. Let
\[
h(z) = \frac{1+(2\varphi-1)z}{1+z}, \quad 0 \leq \varphi < 1 \tag{18}
\]
be convex in \(U \) with \(h(0) = 1 \). If \(f \in A \) and verifies the differential subordination \((T^\mu_\gamma f(z))' \prec h(z)\), then \((T^\mu_\gamma h(z))' \prec q(z) = (2\eta - 1) + {2(1-\eta)(\gamma + 1)\tau(\gamma)}{z^{\gamma+1}}\), where \(\tau \) is given by the formula

\[
\tau(\gamma) = \int_0^\gamma \frac{t^\gamma}{1 + t} dt
\]

and \(\mathcal{N} \) is given by equation (10). The function \(q \) is convex and is the best dominant.

Proof. If \(h(z) = \frac{1 + (2\eta - 1)z}{1 + z}, \ 0 \leq \eta < 1 \), then \(h \) is convex and, in view of Theorem 3, we can write \((T^\mu_\gamma h(z))' \prec q(z)\). Now, by using Lemma 1, we get

\[
q(z) = \frac{\gamma + 1}{z^{\gamma+1}} \int_0^\gamma t^\gamma h(t) dt = \frac{\gamma + 1}{z^{\gamma+1}} \int_0^\gamma \left\{ \frac{1 + (2\eta - 1)t}{1 + t} \right\} dt = (2\eta - 1) + \frac{2(1-\eta)(\gamma + 1)\tau(\gamma)}{z^{\gamma+1}},
\]

where \(\tau \) is given by (19). Hence, we obtain

\[
(T^\mu_\gamma h(z))' \prec q(z) = (2\eta - 1) + \frac{2(1-\eta)(\gamma + 1)\tau(\gamma)}{z^{\gamma+1}}.
\]

The function \(q \) is convex. Moreover, it is the best dominant. Hence the theorem is proved. \(\square \)

Theorem 5. If \(0 \leq \eta < 1, 0 \leq \mu < 1, \sigma \geq 0, \Re\{\gamma\} > -1 \), and \(\mathcal{N} = Y_\gamma f \) is defined by (10), then \(Y_\gamma (\mathcal{L}_{\mu,\sigma}(\eta)) \subset \mathcal{L}_{\mu,\sigma}(\rho) \), where

\[
\rho = \min_{|z|=1} \Re\{q(z)\} = \rho(\gamma, \eta) = (2\eta - 1) + 2(1-\eta)(\gamma + 1)\tau(\gamma)
\]

and \(\tau \) is given by (19).

Proof. Assume that \(h \) is given by equation (18), \(f \in \mathcal{L}_{\mu,\sigma}(\eta) \), and \(\mathcal{N} = Y_\gamma f \) is defined by (10). Then \(h \) is convex and, by Theorem 3, we deduce

\[
(T^\mu_\gamma h(z))' \prec q(z) = (2\eta - 1) + \frac{2(1-\eta)(\gamma + 1)\tau(\gamma)}{z^{\gamma+1}},
\]

where \(\tau \) is given by (19). Since \(q \) is convex, \(q(\mathcal{U}) \) is symmetric about the real axis, and \(\Re\{\gamma\} > -1 \), we find

\[
\Re\{ (T^\mu_\gamma h(z))' \} \geq \min_{|z|=1} \Re\{q(z)\} = \Re\{q(1)\} = \rho(\gamma, \eta) = (2\eta - 1) + 2(1-\eta)(\gamma + 1)(1-\eta)\tau(\gamma).
\]

It follows from inequality (21) that \(Y_\gamma (\mathcal{L}_{\mu,\sigma}(\eta)) \subset \mathcal{L}_{\mu,\sigma}(\rho) \), where \(\rho \) is given by (20). Hence the theorem is proved. \(\square \)

Theorem 6. Let \(q \) be a convex function with \(q(0) = 1 \) and \(h \) be a function such that \(h(z) = q(z) + \zeta q'(z) \), \(z \in \mathbb{U} \). If \(f \in A \), then the subordination

\[
(T^\mu_\gamma f(z))' \prec h(z)
\]

implies that \(\frac{T^\mu_\gamma f(z)}{z} \prec q(z) \), and the result is sharp.

Proof. Let

\[
p(z) = \frac{T^\mu_\gamma f(z)}{z}.
\]

Differentiating (23), we find \((T^\mu_\gamma f(z))' = p(z) + zp'(z)\). We now compute \(p(z) \). This gives

\[
p(z) = \frac{T^\mu_\gamma f(z)}{z} = \frac{z + \sum_{k=2}^{\infty} L(k, \mu, s) \zeta^k}{z} = 1 + p_1 z + p_2 z^2 + \cdots, \ p \in H[1,1].
\]
By using (24) in subordination (22), we find \(p(z) + zp'(z) \prec h(z) = q(z) + zq'(z) \). Hence, by applying Lemma 3, we conclude that \(p(z) \prec q(z) \) i.e., \(\frac{T^q_f(z)}{z} \prec q(z) \). This result is sharp and \(q \) is the best dominant. Hence the theorem is proved. \(\Box \)

Example 2. If we take \(\mu = 0 \) and \(s = 1 \) in equality (4) and \(q(z) = \frac{1}{1-z} \) in Theorem 5, then \(h(z) = \frac{1}{1-z} \) and

\[
I_0^h f(z) = z + \sum_{k=2}^{\infty} \frac{(2k-1)}{(k-1)!} a_k z^k.
\]

(25)

Differentiating (25) with respect to \(z \), we get

\[
(I_0^h f(z))' = 1 + \sum_{k=2}^{\infty} \frac{(2k-1)}{(k-1)!} a_k z^{k-1} = 1 + p_1 z + p_2 z^2 + \cdots, \quad p \in H[1,1].
\]

By using Theorem 5, we find \((I_0^h f(z))' \prec h(z) = \frac{1}{1-z} \). This yields \(\frac{I_0^h f(z)}{z} \prec q(z) = \frac{1}{1-z} \).

Theorem 7. Let \(h(z) = \frac{1+(2\epsilon-1)z}{1+z} \), \(z \in \mathbb{U} \) be convex in \(\mathbb{U} \) with \(h(0) = 1 \) and \(0 \leq \epsilon < 1 \). If \(f \in A \) satisfies the differential subordination

\[
(T^q_f(z))' \prec h(z),
\]

then \(\frac{T^q_f(z)}{z} \prec q(z) = (2\epsilon - 1) + \frac{2(1-\epsilon)\ln(1+z)}{z} \). The function \(q \) is convex and, in addition, it is the best dominant.

Proof. Let

\[
p(z) = \frac{T^q_f(z)}{z} = 1 + p_1 z + p_2 z^2 + \cdots, \quad p \in H[1,1].
\]

(27)

Differentiating (27), we find

\[
(T^q_f(z))' = p(z) + zp'(z).
\]

(28)

In view of (28), the differential subordination (26) becomes \((T^q_f(z))' \prec h(z) = \frac{1+(2\epsilon-1)z}{1+z} \), and by using Lemma 1, we deduce \(p(z) \prec q(z) = \frac{1}{z} \int h(t)dt = (2\epsilon - 1) + \frac{2(1-\epsilon)\ln(1+z)}{z} \). Now, by virtue of relation (27) we obtained the desired result. \(\Box \)

Corollary 1. If \(f \in \mathcal{L}_{\mu,s}(q) \), then \(\Re \left(\frac{T^q_f(z)}{z} \right) > (2\epsilon - 1) + 2(1-\epsilon)\ln(2) \).

Proof. If \(f \in \mathcal{L}_{\mu,s}(q) \), then it follows from Definition 1 that \(\Re \left\{ (T^q_f(z))' \right\} > q, \quad z \in \mathbb{U} \), which is equivalent to \((T^q_f(z))' \prec h(z) = \frac{1+(2\epsilon-1)z}{1+z} \). Now, by using Theorem 7, we obtain

\[
\frac{T^q_f(z)}{z} \prec q(z) = (2\epsilon - 1) + \frac{2(1-\epsilon)\ln(1+z)}{z}.
\]

Since \(q \) is convex and \(q(\mathbb{U}) \) is symmetric about the real axis, we conclude that

\[
\Re \left(\frac{T^q_f(z)}{z} \right) > \Re(q(1)) = (2\epsilon - 1) + 2(1-\epsilon)\ln(2).
\]

(29)

Theorem 8. Let \(q \) be a convex function such that \(q(0) = 1 \) and \(h \) be the function given by the formula \(h(z) = q(z) + zq'(z) \), \(z \in \mathbb{U} \). If \(f \in A \) and verifies the differential subordination

\[
\left\{ \frac{zT^q_f(z)}{T^q_h(z)} \right\}' \prec h(z), \quad z \in \mathbb{U},
\]

(29)
then \(\frac{T_\mu^s f(z)}{T_\mu^s N(z)} < q(z), \ z \in \mathbb{U}, \) and this result is sharp.

Proof. For function \(f \in A \), given by Equation (1), we get

\[
T_\mu^s N(z) = z + \sum_{k=2}^{\infty} L(k, \mu, s) \frac{\gamma + 1}{k + \gamma} a_k b_k z^k, \ z \in \mathbb{U}.
\]

We now consider the function

\[
p(z) = \frac{T_\mu^s f(z)}{T_\mu^s N(z)} = \frac{z + \sum_{k=2}^{\infty} L(k, \mu, s) a_k b_k z^k}{z + \sum_{k=2}^{\infty} L(k, \mu, s) \frac{\gamma + 1}{k + \gamma} a_k b_k z^k} = \frac{1 + \sum_{k=2}^{\infty} L(k, \mu, s) a_k b_k z^k}{1 + \sum_{k=2}^{\infty} L(k, \mu, s) \frac{\gamma + 1}{k + \gamma} a_k b_k z^{k-1}}.
\]

In this case, we get

\[
(p(z))' = \frac{(T_\mu^s f(z))'}{T_\mu^s N(z)} - p(z) \frac{(T_\mu^s N(z))'}{T_\mu^s N(z)}.
\]

Then

\[
p(z) + zp'(z) = \left\{ z \frac{T_\mu^s f(z)}{T_\mu^s N(z)} \right\}', \ z \in \mathbb{U}.
\]

By using relation (30) in inequality (29), we obtain \(p(z) + zp'(z) < h(z) = q(z) + zq'(z) \) and, by virtue of Lemma 3, \(p(z) < q(z) \), i.e., \(\frac{T_\mu^s f(z)}{T_\mu^s N(z)} < q(z) \). Hence the theorem is proved. \(\square \)

Acknowledgments: The authors warmly thank the referees for the careful reading of the paper and their comments.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

