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Abstract: Using the Krasnoselskii’s fixed point theorem and the contraction mapping principle we give
sufficient conditions for the existence and uniqueness of solutions for initial value problems for delay
fractional differential equations with the mixed Riemann-Liouville and Caputo fractional derivatives. At
the end, an example is given to illustrate our main results.
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1. Introduction

T he fractional differential equations is a hot topic of research due to its various applications in many
scientific disciplines such as physics, chemistry, biology, engineering, viscoelasticity, signal processing,

electrotechnical, electrochemistry and controllability, see [1–6] and the references therein. The neutral
fractional differential equations have been studied extensively in the last decades and different technics have
been used to solve it, for example, fixed point theorems, upper and lower solution method, spectral theory, etc.
For some recent contributions in fractional boundary value problems, we refer [7–9] and the references therein.
To the best of our knowledge, the use of mixed fractional derivative in neutral fractional differential equations
which is an important type of fractional differential equations is still not sufficiently generalized. Our main
aim is to solve mixed fractional differential equations.

Benchohra et al. [7], investigated the existence of solutions for the following Riemann-Liouville fractional
order functional differential equation with infinite delay

RLDα[u(t)− g(t, ut)] = f (t, ut), t ∈ [0, T], 0 < α < 1,

u (t) = φ (t) , t ∈ (−∞, 0] .

Agarwal et al. [8], studied the initial value problem of fractional neutral Caputo fractional derivative{
CDα[u(t)− g(t, ut)] = f (t, ut), t ∈ (t0, ∞) , t0 ≥ 0, 0 < α < 1,

ut0 = φ,

and established the existence results of solutions of this problem by using Krasnoselskii’s fixed point theorem.
In [9], Ahmad et al. studied the existence and uniqueness of solutions to the following boundary value problem
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Dα
(

Dβu(t)− g (t, ut)
)
= f (t, ut), t ∈ [1, b],

u(t) = φ(t), t ∈ [1− τ, 1],

Dβu(1) = η ∈ R,

where Dα and Dβ are the Caputo-Hadamard fractional derivatives, 0 < α, β < 1.
Motivated and inspired by above mentioned works, in this paper we investigate the existence and

uniqueness of solutions for the following initial value problem of the mixed Riemann-Liouville and Caputo
fractional functional differential equation with delay

RLDα[CDβu(t)− g(t, u (t− τ))] = f (t, u (t− τ)), t ∈ I = [0, T],

u (t) = φ (t) , t ∈ [−τ, 0] ,

lim
t→0

t1−α CDβu(t) = 0, u′(0) = 0,

(1)

where RLDα and CDβ are the Riemann Liouville and the Caputo fractional derivatives respectively, 0 < α < 1,
1 < β < 2, f , g ∈ I × R → R are given continuous functions and φ ∈ C([−τ, 0],R). To show the existence
of solutions, we transform (1) into an integral equation and then use Krasnoselskii’s fixed point theorem. The
obtained integral equation splits in the sum of two mappings, one is a contraction and the other is compact.
Also, by utilizing the contraction mapping principle, we give uniqueness results.

The organization of this paper is as follows: In Section 2 we recall some useful preliminaries and present
the equivalent fixed point problem corresponding to (1). In Section 3, we discuss the existence and uniqueness
of solutions for (1) via fixed point theory. An example is constructed for illustrating the obtained results.

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts that we need in the sequel. By
C(I,R) we mean the Banach space of all continuous functions from I into R with the norm

‖u‖∞ := sup{|u(t)| : t ∈ I}.

Also Cτ = C([−τ, 0],R) is endowed with norm

‖φ‖C := sup{|φ(t)| : t ∈ [−τ, 0]}.

Definition 1 ([2,4,6]). The Riemann-Liouville fractional integral of the function u of order α > 0 is defined by

Iαu (t) =
1

Γ (α)

∫ t

0

u (s)

(t− s)1−α
ds,

where Γ is the Euler gamma function defined by Γ (α) =
∫ ∞

0 e−ttα−1dt.

Definition 2 ([2,4,6]). The Riemann-Liouville fractional derivative of the function u of order α ∈ (n− 1, n] is
defined by

RLDαu (t) =
1

Γ (n− α)

dn

dtn

∫ t

0

u (s)

(t− s)α−n+1 ds.

Definition 3 ([2,4,6]). The Caputo fractional derivative of the function u of order α ∈ (n− 1, n] is defined by

CDαu (t) =
1

Γ (n− α)

∫ t

0

u(n) (s)

(t− s)α−n+1 ds.

Let α > 0 be a real number, we have following results:



Open J. Math. Anal. 2020, 4(2), 26-31 28

Lemma 1 ([4]). The unique solution of the linear fractional differential equation

RLDαu(t) = 0,

is given by
u(t) = c1tα−1 + c2tα−2 + c3tα−3 + ... + cntα−n, ci ∈ R, i = 1, 2, ..., n.

where n = [α] + 1, [α] denotes the integer part of α.

Lemma 2 ([4]). The unique solution of the linear fractional differential equation

CDαu(t) = 0,

is given by
u(t) = c1 + c2t + ... + cntn−1, ci ∈ R, i = 1, 2, ..., n,

where n = [α] + 1.

Lemma 3. (1) is equivalent to the following integral equation

u(t) =
1

Γ(α + β)

∫ t

0
(t− s)α+β−1 f (s, u (s− τ))ds

+
1

Γ(β)

∫ t

0
(t− s)β−1 g(s, u (s− τ))ds + φ (0) . (2)

Proof. Using Lemma 1, equation one of (1) can be written as

CDβu(t) = Iα f (t, u (t− τ)) + g(t, u (t− τ)) + c0tα−1.

Using the condition lim
t→0

t1−α CDβu(t) = 0, we get c0 = 0. On the other hand, from Lemma 2, one gets

u(t) = Iα+β f (t, u (t− τ)) + Iβg(t, u (t− τ)) + c1 + c2t.

Clearly u (0) = φ (0), so we obtain c1 = φ (0) and because u′(0) = 0, we find c2 = 0, then we get the
integral equation

u(t) =
1

Γ(α + β)

∫ t

0
(t− s)α+β−1 f (s, u (s− τ))ds

+
1

Γ(β)

∫ t

0
(t− s)β−1 g(s, u (s− τ))ds + φ (0) .

Our main results are based on the following Krasnoselskii fixed point theorem and the contraction
mapping principle.

Theorem 1 (Krasnoselskii fixed point theorem [10,11]). IfM is a nonempty bounded, closed and convex subset of a
Banach space E and A and B two operators defined onM with values in E such that

i) Ax + By ∈ M, for all x, y ∈ M,
ii) A is continuous and compact,
iii) B is a contraction.
Then there exists z ∈ M such that z = Az + Bz.

Theorem 2 (Contraction mapping principle [10,11]). Let E be a Banach space. If H : E → E is a contraction, then
H has a unique fixed point in E.
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3. Main results

We express (2) as
u (t) = (Au) (t) + (Bu) (t) = (Hu) (t) , (3)

where the operators A,B : C([−τ, T],R)→ C([−τ, T],R) are defined by

(Au) (t) =

0, if t ∈ [−τ, 0],

1
Γ(α+β)

∫ t
0 (t− s)α+β−1 f (s, u (s− τ))ds if t ∈ I,

(4)

(Bu) (t) =

φ(t), if t ∈ [−τ, 0],

1
Γ(β)

∫ t
0 (t− s)β−1 g(s, u (s− τ))ds + φ (0) if t ∈ I.

(5)

Consider the following hypothesis:
(H1) f , g : I ×R→ R are continuous functions.
(H2) There exists η ∈ C (I,R∗+) such that

|g(t, u)− g(t, v)| ≤ η (t) ‖u− v‖[−τ,T], g(t, 0) = 0.

(H3) There exists ζ ∈ C (I,R∗+) such that

| f (t, u)| ≤ ζ (t) .

Theorem 3. Assume that (H1)− (H3) hold. Then (1) has at least one solution on [−τ, T], provided

Tβ‖η‖∞

Γ(β + 1)
< 1. (6)

Proof. We show that the operators A and B defined by (4) and (5) satisfied all hypothesis of Theorem 1.

Choosing R ≥
‖φ‖C+

Tα+β

Γ(α+β+1) ‖ζ‖∞

1− Tβ‖η‖∞
Γ(β+1)

and define BR = {u ∈ C([−τ, T],R) : ‖u‖[−τ,T] ≤ R}, then for any u, v ∈ BR,

we have

| (Au) (t) + (Bv) (t)| ≤ 1
Γ(α + β)

∫ t

0
(t− s)α+β−1 f (s, u (s− τ))ds + |φ(0)|+ 1

Γ(β)

∫ t

0
(t− s)β−1g(s, u (s− τ))ds

≤ ‖φ‖C +
Tα+β

Γ(α + β + 1)
‖ζ‖∞ +

TβR
Γ(β + 1)

‖η‖∞ ≤ R. (7)

This means that Au + Bv ∈ BR for any u, v ∈ BR. On the other hand, operator A is continuous from the
continuity of f .

It remains to prove the compactness of the operator A. Clearly, (7) show that A is uniformly bounded on
BR and

‖Av‖ ≤ Tα+β

Γ(α + β + 1)
‖ζ‖∞.

Also, for t1, t2 ∈ [0, T], t1 < t2 we have

| (Au) (t2)− (Au) (t1)| ≤
1

Γ(α + β)

∫ t1

0

[
(t2 − s)α+β−1 − (t1 − s)α+β−1

]
| f (s, u (s− τ))| ds

+
1

Γ(α + β)

∫ t2

t1

(t2 − s)α+β−1 | f (s, u (s− τ))| ds

=
‖ζ‖∞

Γ(α + β + 1)

(
tα+β
2 − tα+β

1

)
,

which is independent of u and tends to zero as t2 → t1. Thus, the set {Au, u ∈ BR} is equicontinuous and
hence it is relatively compact. So, by Ascoli-Arzela theorem, A is compact on BR.
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It remains to show that B is a contraction. Let u, v ∈ C([−τ, T],R), then for all t ∈ [−τ, T], we have

|(Bu) (t)− (Bv) (t)| ≤ 1
Γ(β)

∫ t

0
(t− s)β−1 |g(s, u (s− τ))− g(s, v (s− τ))| ds

≤ Tβ‖η‖∞

Γ(β + 1)
‖u− v‖[−τ,T],

from (6) A is a contraction operator.
Thus all the assumptions of Theorem 1 are satisfied. So the conclusion of Theorem 3 implies that (1) has

at least one continuous solution on [−τ, T].

Now, we use the contraction principle mapping to investigate uniqueness results for (1).

Theorem 4. Assume that (H1)− (H3) hold. Then (1) has a unique solution on [−τ, T], provided

Tα+β‖ζ‖∞

Γ(α + β + 1)
+

Tβ‖η‖∞

Γ(β + 1)
< 1. (8)

Proof. We claim thatH is contraction mapping, this show thatH has a unique fixed point which is the unique
solution of (1). To this end, let u, v ∈ C([−τ, T],R), then for all t ∈ [−τ, T], we have

|(Hu) (t)− (Hv) (t)| ≤ 1
Γ(α + β)

∫ t

0
(t− s)α+β−1 | f (s, u (s− τ))− f (s, v (s− τ))| ds

+
1

Γ(β)

∫ t

0
(t− s)β−1 |g(s, u (s− τ))− g(s, v (s− τ))| ds

≤
[

Tα+β‖ζ‖∞

Γ(α + β + 1)
+

Tβ‖η‖∞

Γ(β + 1)

]
‖u− v‖[−τ,T].

Therefore H is a contraction. Thus, the conclusion of Theorem 7 follows by the contraction mapping
principle.

Now, we give an example to illustrate the usefulness of our main results.

Example 1. Consider (1) with α = 0.5, β = 1.5, T = 1, f (t, x) = sin(t2 arctan x3)
1+t2 , g(t, x) =

cos t
(

t2e−e−x − t2

e + sin tx
e

)
. Clearly f and g are continuous functions and

| f (t, x)| ≤ π

2
t2

1 + t2 = ζ (t) ,

and

g (t, 0) = 0, |g(t, x)− g(t, y)| ≤ t2

e
cos t‖x− y‖[−τ,T] = η (t) ‖x− y‖[−τ,T],

(since z + e−z ≥ 1 for all real z then one gets
∣∣∣e−e−x − e−e−y

∣∣∣ ≤ |x−y|
e ). Also, Tβ‖η‖∞

Γ(β+1) ' 0.27674 < 1. Thus, by
Theorem 3, (1) with above data has at least one solution on [−τ, 1].
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