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Abstract: In this work, we consider a plate equation with nonlinear source and partially hinged boundary
conditions. Our goal is to show analytically that the solution blows up in finite time. The background of
the problem comes from the modeling of the downward displacement of suspension bridge using a thin
rectangular plate. The result in the article shows that in the present of fractional damping and a nonlinear
source such as the earthquake shocks, the suspension bridge is bound to collapse in finite time.
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1. Introduction

I n this paper, we consider the following problem{
utt + µ∂1+α

t u + ∆2u + a(x, y, t)u = |u|p−1u, in Ω× (0, T),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω
(1)

with partially hinged boundary condition
u(0, y, t) = uxx(0, y, t) = 0, for (y, t) ∈ (−`, `)× (0, T),

u(L, y, t) = uxx(L, y, t) = 0, for (y, t) ∈ (−`, `)× (0, T),

uyy(x,±`, t) + νuxx(x,±`, t) = 0, for (x, t) ∈ (0, L)× (0, T),

uyyy(x,±`, t) + (2− ν)uxxy(x,±`, t) = 0, for (x, t) ∈ (0, L)× (0, T),

(2)

where Ω = (0, L)× (−`, `) ⊂ R2 represent a thin rectangular plate as a model of a suspension bridge and u =

u(x, y, t) is the downward displacement of the rectangular plate, see [1,2] for detail description of suspension
bridge models. The function a = a(x, y, t) is bounded, continuous and sign changing. For instance, if h :
[0, ∞)→ (−∞, ∞) be any function and g : Ω→ (−∞, ∞) be a bounded function, then a(x, t) = (signh)(t)g(x)
is example of a sign changing function. Furthermore, µ > 0, 0 < ν < 1

2 , 1 < p < ∞ and −1 < α < 1. The
notation ∂1+α

t stand for the Capito’s fractional derivative (see [3,4]) of order 1 + α with respect to t defined by

∂1+α
t u(t) =


I−α du(t)

dt , if −1 < α < 0,

I1−α d2u(t)
dt2 , if 0 < α < 1,

(3)

where Iβ(β > 0) is the fractional derivative defined by

Iβ du(t)
dt

=
1

Γ(β)

∫ t

0
(t− τ)β−1u(τ)dτ. (4)
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For −1 < α < 0, the term ∂1+α
t u is called the fractional damping while for α = −1 and α = 0, it

represent respectively the weak and strong damping. We should mention here that the fractional damping
plays a dissipative role that is sandwich between the weak and the strong damping (see [5]). Concerning blow
up results for plate equations, we mention among others the result of Messaoudi [6], where he studied the
Petrovsky equation

utt + ∆2u + a|ut|m−2ut = b|u|p−2u, (5)

where a, b > 0 and Ω ⊂ RN , N ≥ 1 is a bounded domain with a smooth boundary ∂Ω. He established local
existence and uniqueness of a weak local solution and that for negative initial energy (E(0) < 0) the local
solution blows up in finite time when p > m. In addition, established the existence of global solution when
m ≥ p. The result in [6] was later improved by Chen and Zhou in [7]. Li et al. [8] considered

utt + ∆2u− ∆u + |ut|m−1ut = |u|p−1u (6)

and established global existence and blow up of solutions. Piskin and Polat [9] considered (6) and investigated
the decay of solutions. Alaimia and Tatar [10] studied

utt − ∆u + ∂1+α
t u = |u|p−1u, x ∈ Ω, t > 0

u = 0, ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(7)

and proved blow up of the solutions for negative initial energy. For related results with fractional damping,
we refer the reader to [11–18] and references therein. The article is organized as follows: In Section 2, we recall
some fundamental materials and useful assumptions on the relaxation function g. In Section 3, we state and
prove some technical lemmas. Finally, in section 4, we establish a blow-up result for problem 1.

2. Preliminaries

Throughout the paper, Ci, i = 1, 2, 3, .. or c are generic positive constants that may change within lines
and (, )2 and ‖.‖2 denote respectively the inner product and norm in L2(Ω). We recall some useful materials.
We consider the Hilbert space ( see [1])

H2
∗(Ω) =

{
w ∈ H2(Ω) : w = 0 on {0, L} × (−`, `)

}
,

together with the inner product

(u, v)H2∗
=
∫

Ω
[(∆u∆v + (1− ν)(2uxyvxy − uxxvyy − uyyvxx)]dxdy,

and denote byH(Ω) the dual of H2
∗(Ω).

Lemma 1. (Embedding, see [19]) Suppose 1 < p < +∞. Then for any u ∈ H2
∗(Ω), there exists an embedding constant

Sp = Sp(Ω, p) > 0 such that
‖u‖Lq(Ω) ≤ Sp‖u‖H2∗(Ω), (8)

where Sp =
(

L
2` +

√
2

2

)
(2L`)

p+2
2p
(

1
1−ν

) 1
2 .

The eigenvalue problem
∆2u = λu, (x, y) ∈ Ω,

u(0, y) = uxx(0, y) = u(L, y) = uxx(L, y) = 0, f or y ∈ (−`, `),

uyy(x,±`) + νuxx(x,±`) = 0, f or x ∈ (0, L),

uyyy(x,±`) + (2− ν)uxxy(x,±`) = 0, f or x ∈ (0, L)

(9)
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which has been studied in[1], has a unique eigenvalue ∧1 ∈ (1− ν, 1), 0 < ν < 1
2 and λ = ∧2

1 is the least
eigenvalue. As a consequent, we have the following lemma

Lemma 2. Suppose −∧1 < a1 ≤ a ≤ a2. Then, the following inequality holds

A1‖u‖2
H2∗(Ω)

≤ ‖u‖2
H2∗(Ω)

+ (au, u)2 ≤ A2‖u‖2
H2∗(Ω)

, (10)

where A1 =

{
1 + a1∧

1
, a1 < 0,

1, a1 ≥ 0
and A2 =

{
1, a2 < 0,

1 + a2
∧1

, a2 ≥ 0
which has been proved in [19].

For completeness, we state without proof a local existence result for problem (1)-(2) (see [19,20] for more
on existence).

Theorem 1. Let (u0, u1) ∈ H2
∗(Ω)× L2(Ω) be given and assume −∧1 < a1 ≤ a ≤ a2. Then, there exists a weak

unique local solution to problem (1)− (2) in the class

u ∈ L∞
(
[0, T), H2

∗(Ω)
)

, ut ∈ L∞
(
[0, T), L2(Ω)

)
, utt ∈ L∞([0, T),H(Ω)), (11)

for some T > 0.

Definition 1. A function u satisfying (11) is called a weak solution of (1) if

d
dt
(ut(t), w)2 +

µ

Γ(−α)

∫
Ω

w
∫ t

0
(t− s)−(α+1)us(s)dsdxdy + (u(t), w)H2∗(Ω) + (au(t), w)2 =

∫
Ω
|u|p−1w dxdy

(12)
a.e t ∈ (0, T) and ∀w ∈ H2

∗(Ω).

We consider the energy functional E(t) defined by

E(t) =
1
2
‖ut(t)‖2

2 +
1
2
‖u(t)‖2

H2∗(Ω)
+

1
2
(au(t), u(t))2 −

1
p + 1

∫
Ω
|u|p+1dxdy. (13)

Multiplying (1) by ut and integrating over Ω, using integration by part, definition of fractional derivative
(4) and recalling that a1 ≤ a ≤ a2, we obtain

E′(t) = − µ

Γ(−α)

∫
Ω

ut

∫ t

0
(t− s)−(α+1)us(s)dsdxdy (14)

for almost all t ∈ [0, T). The result in (14) is for any regular solutions. However, this result remains valid for
weak solutions by simple density argument. We define a modify energy functional:

Eε(t) = E(t)− ε(u, ut)2, (15)

for some ε to be specified later. Differentiating (15) and making use of (1)1 and (14), we arrive at

E′ε(t) = −
εµ

Γ(−α)

∫
Ω

ut

∫ t

0
(t− s)−(α+1)us(s)dsdxdy− ε‖ut(t)‖2

2 + ε‖u(t)‖2
H2∗(Ω)

+
εµ

Γ(−α)

∫
Ω

u
∫ t

0
(t− s)−(α+1)us(s)dsdxdy + ε(au, u)2 − ε

∫
Ω
|u|p+1dxdy .

(16)

Also, we define the functional

H(t) = −
(
e−γεtEε(t) + θF(t) + λ

)
, (17)

where

F(t) =
∫

Ω

∫ t

0
M(t− s)e−γεsu2

s (x, y, s)dsdxdy (18)
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with
M(t) = eβt

∫ +∞

t
e−βss−(α+1)ds, (19)

where γ = p+1
2 and θ, λ, β are positive constants to be specified later. The differentiation of (18) gives the

relation

F′(t) = βαΓ(−α)e−γεt‖ut(t)‖2
2 + βF(t)−

∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy. (20)

In the next section, we state and prove some useful Lemmas.

3. Technical lemma

Lemma 3. Suppose Eε(0) < 0 and p is sufficiently large, then H(t) and H′(t) are strictly positive.

Proof. Differentiating (17) with respect to t and using (15) yields

H′(t) = γεe−γεtEε(t)− e−γεtE′ε(t)− θF′(t)

= γεe−γεtE(t)− γε2e−γεt(u, ut)2 − e−γεtE′ε(t)− θF′(t).
(21)

Substituting (13),(16) and (20) into (21), we arrive at

H′(t) =
[γε

2
+ ε− βαθΓ(−α)

]
e−γεt‖ut(t)‖2

2 +
[γε

2
− ε
]

e−γεt‖u(t)‖2
H2∗(Ω)

+
[γε

2
− ε
]

e−γεt(au, u)2 +

[
ε− γε

p + 1

]
e−γεt

∫
Ω
|u|p+1dxdy

− γε2e−γεt(u, ut)2 +
µe−γεt

Γ(−α)

∫
Ω

ut

∫ t

0
(t− s)−(α+1)us(s)dsdxdy

− εµe−γεt

Γ(−α)

∫
Ω

u
∫ t

0
(t− s)−(α+1)us(s)dsdxdy

+ θ
∫

Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy− βθF(t).

(22)

Using Young’s inequality and Lemma 1, we obtain

(u, ut)2 ≤ δ1S2
2‖u(t)‖2

H2∗(Ω)
+

1
4δ1
‖ut(t)‖2

2, δ1 > 0. (23)

Again, Young’s and Cauchy-Schwarz inequalities, we get

e−γεt
∫

Ω
ut

∫ t

0
(t− s)−(α+1)us(s)dsdxdy

≤ δ2e−γεt‖ut(t)‖2
2 +

e−γεt

4δ2

∫
Ω

(∫ t

0
(t− s)−

(α+1)
2 − (α+1)

2 us(s)ds
)2

dxdy

≤ δ2e−γεt‖ut(t)‖2
2 +

(γε)αΓ(−α)

4δ2

∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy, δ2 > 0.

(24)

In a similar way, with the help of lemma 1, we find

e−γεt
∫

Ω
u
∫ t

0
(t− s)−(α+1)us(s)dsdxdy

≤ δ3S2
2e−γεt‖u(t)‖2

H2∗(Ω)
+

(γε)αΓ(−α)

4δ3

∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy, δ3 > 0.
(25)

Substitution of (23)-(25) into (22) and using lemma 2, we obtain
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H′(t) ≥
[

γε

2
+ ε− βαθΓ(−α)− γε2

4δ1
− δ2

Γ(−α)

]
e−γεt‖ut(t)‖2

2

+

[
A1γε

2
− A1ε− δ1S2

2γε2 −
δ3S2

2εµ

Γ(−α)

]
e−γεt‖u(t)‖2

H2∗(Ω)

+

[
ε− γε

p + 1

]
e−γεt

∫
Ω
|u|p+1dxdy− βθF(t)

+

[
θ − µ(γε)α

4δ2
− µε(γε)α

4δ3

] ∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy.

(26)

Adding C1H(t)− C1H(t) to the right hand of (26), for some C1 to be precise, we arrive

H′(t) ≥ C1H(t) +
[

C1

2
+

γε

2
+ ε− βαθΓ(−α)− γε2

4δ1
− δ2

Γ(−α)

]
e−γεt‖ut(t)‖2

2

+

[
A1C1

2
+

A1γε

2
− A1ε− δ1S2

2γε2 −
δ3S2

2εµ

Γ(−α)

]
e−γεt‖u(t)‖2

H2∗(Ω)

− C1εe−γεt(u, ut)2 +

[
ε− γε

p + 1
− C1

p + 1

]
e−γεt

∫
Ω
|u|p+1dxdy

+

[
θ − µ(γε)α

4δ2
− µε(γε)α

4δ3

] ∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy

+ (C1 − β)θF(t) + C1λ.

(27)

Applying (23) to (27), we arrive at

H′(t) ≥
[

C1

2
+

γε

2
+

ε

2
− βαθΓ(−α)− γε2

4δ1
− δ2

Γ(−α)
− C1ε

4δ1

]
e−γεt‖ut(t)‖2

2

+

[
A1C1

2
+

A1γε

2
− A1ε− δ1S2

2γε2 − C1δ1S2
2ε−

δ3S2
2εµ

Γ(−α)

]
e−γεt‖u(t)‖2

H2∗(Ω)

+

[
ε− γε

p + 1
− C1

p + 1

]
e−γεt

∫
Ω
|u|p+1dxdy + C1H(t) + (C1 − β)θF(t) + C1λ

+

[
θ − µ(γε)α

4δ2
− µε(γε)α

4δ3

] ∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy.

(28)

Recalling that γ = p+1
2 and choosing δ1 = 1

2 , δ2 = δ3 = Γ(−α)ε
2 and C1 = (p+1)ε

2 , we get

H′(t) ≥ (p + 1)ε
2

H(t) +
[

p + 1
2

ε(1− ε)− βαθΓ(−α)

]
e−γεt‖ut(t)‖2

2

+
ε

2

[
A1(p− 1)− εS2

2((p + 1) + µ)
]

e−γεt‖u(t)‖2
H2∗(Ω)

+ (
(p + 1)ε

2
− β)θF(t) +

(p + 1)ε
2

λ

+

[
θ − µ(p + 1)αεα−1

2α+1Γ(−α)
(1 + ε)

] ∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy.

(29)

Now, choosing

ε < ε1 := min

{
1,

A1(p− 1)
2S2

2((p + 1) + µ)

}
, (30)

we get that
ε

2

[
A1(p− 1)− εS2

2((p + 1) + µ)
]
>

A1(p− 1)ε
4

.
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Next, we select β = 1, we see that for sufficiently large values of p

(p + 1)ε
2

− β > 0.

Finally, we choose θ such that the coefficient of the second term is non-negative and the coefficient of the
last term is greater than µ(p+1)α

2α+1ε1−αΓ(−α)
. Thus, we arrive at

H′(t) ≥ (p + 1)ε
2

H(t) +
A1(p− 1)ε

4
e−γεt‖u(t)‖2

H2∗(Ω)

+
µ(p + 1)α

2α+1ε1−αΓ(−α)

∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy.
(31)

If we choose λ < −Eε(0), then H(0) > 0. Consequently, it follows from (31) that H(t) > 0 and H′(t) > 0.
This completes the proof.

4. Main results

In this section, we show that the solutions of 1-2 blows up in finite time for negative initial energy.

Theorem 2. Assume that −∧1 < a1 ≤ a ≤ a2, −1 < α < 0, E(0) < 0 and (u0, u1)2 ≥ 0. Then the solutions of 1-2
blows up in finite time for sufficiently large values of p.

Proof. We begin by defining the functional G by

G(t) = H1−σ(t) + ηe−γεt(u, ut)2, (32)

where σ = p−1
2(p+1) and η > 0 to be specified later. Then differentiating G(t) and using (1) yields

G′(t) = (1− σ)H−σ(t)H′(t)− ηγεe−γεt(u, ut)2 + ηe−γεt‖ut(t)‖2
2 + ηe−γεt(u, utt)2

= (1− σ)H−σ(t)H′(t)− ηγεe−γεt(u, ut)2 + ηe−γεt‖ut(t)‖2
2 + ηe−γεt

∫
Ω
|u|p+1dxdy

− ηe−γεt(au, u)2 − ηe−γεt‖u(t)‖2
H2∗(Ω)

− µηe−γεt

Γ(−α)

∫
Ω

u
∫ t

0
(t− s)−(α+1)us(s)dxdy.

(33)

Similarly as in the inequalities (23)and (25), we have that

(u, ut)2 ≤ δ4S2
2‖u(t)‖2

H2∗(Ω)
+

1
4δ4
‖ut(t)‖2

2, δ4 > 0. (34)

and

e−γεt
∫

Ω
u
∫ t

0
(t− s)−(α+1)us(s)dsdxdy

≤ δ5e−γεt‖u(t)‖2
2 +

(γε)αΓ(−α)

4δ5

∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dsdxdy, δ5 > 0.
(35)

From Lemma 2, we get

A1e−γεt‖u(t)‖2
H2∗(Ω)

≤ e−γεt
(
‖u(t)‖2

H2∗(Ω)
+ (au, u)2

)
. (36)

Substituting (34)-(36) into (33), we obtain

G′(t) ≥ (1− σ)H−σ(t)H′(t) + η

(
1− γε

4δ4

)
e−γεt‖ut(t)‖2

2 − η
(

A1 + δ4γεS2
2

)
e−γεt‖u(t)‖2

H2∗(Ω)

+ηe−γεt
∫

Ω
|u|p+1dxdy− ηµδ5

Γ(−α)
e−γεt‖u(t)‖2

2 −
µη(γε)α

4δ5

∫
Ω

∫ t

0
(t− s)−(α+1)e−γεsu2

s (s)dxdy.(37)

Using (31), we obtain
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G′(t) ≥ (1− σ)H−σ(t)H′(t) + η

(
1− γε

4δ4

)
e−γεt‖ut(t)‖2

2

− η
(

A1 + δ4γεS2
2

)
e−γεt‖u(t)‖2

H2∗(Ω)
+ ηe−γεt

∫
Ω
|u|p+1dxdy− ηµδ5

Γ(−α)
e−γεt‖u(t)‖2

2

+
2α−1γαηεΓ(−α)

δ5(p + 1)α

(
−H′(t) +

p + 1
2

εH(t) +
A1(p− 1)ε

4
e−γεt‖u(t)‖2

H2∗(Ω)

)
.

(38)

From the last inequality, we get

G′(t) ≥
[
(1− σ)H−σ(t)− η2α−1γαεΓ(−α)

δ5(p + 1)α

]
H′(t) +

η2α−2γαε2Γ(−α)

δ5(p + 1)α−1 H(t)

− η

[
A1 + δ4γεS2

2 −
2α−3γα A1(p− 1)ε2Γ(−α)

δ5(p + 1)α

]
e−γεt‖u(t)‖2

H2∗(Ω)

+ η

(
1− γε

4δ4

)
e−γεt‖ut(t)‖2

2 + ηe−γεt
∫

Ω
|u|p+1dxdy− ηµδ5

Γ(−α)
e−γεt‖u(t)‖2

2.

(39)

Now, we choose δ5 = BHσ(t) for some B positive to be precise later. Then, (39) becomes

G′(t) ≥
[
(1− σ)− η2α−1γαεΓ(−α)

B(p + 1)α

]
H−σ(t)H′(t) +

η2α−2γαε2Γ(−α)

B(p + 1)α−1 H1−σ(t)

− η

[
A1 + δ4γεS2

2 −
2α−3γα A1(p− 1)ε2Γ(−α)H−σ(t)

B(p + 1)α

]
e−γεt‖u(t)‖2

H2∗(Ω)

+ η

(
1− γε

4δ4

)
e−γεt‖ut(t)‖2

2 + ηe−γεt
∫

Ω
|u|p+1dxdy− ηµB

Γ(−α)
e−γεtHσ(t)‖u(t)‖2

2.

(40)

Adding and subtracting H(t) on the right hand side of (40) and making use of lemma 2 leads to

G′(t) ≥
[
(1− σ)− η2α−1γαεΓ(−α)

B(p + 1)α

]
H−σ(t)H′(t) +

[
1 +

η2α−2γαε2Γ(−α)

B(p + 1)α−1 H−σ(t)
]

H(t)

+

[
A1

2
+

η2α−3γα A1(p− 1)ε2Γ(−α)

B(p + 1)α
H−σ(t)− η(A1 + δ4γεS2

2)

]
e−γεt‖u(t)‖2

H2∗(Ω)

+

[
1
2
+ η

(
1− γε

4δ4

)]
e−γεt‖ut(t)‖2

2 +

[
η − 1

p + 1

]
e−γεt

∫
Ω
|u|p+1dxdy

− εe−γεt(u, ut)2 + θF(t) + λ− ηµB
Γ(−α)

e−γεtHσ(t)‖u(t)‖2
2.

(41)

The term (u, ut)2 is estimated similarly as in (23) as

(u, ut)2 ≤ δ6S2
2‖u(t)‖2

H2∗(Ω)
+

1
4δ6
‖ut(t)‖2

2, δ6 > 0. (42)

For the term Hσ(t)‖u(t)‖2
2, we use the definition of H(t) in (17) and the choice of ε in (30) to get (see [10]

page 141 for detail computations)

Hσ(t)‖u(t)‖2
2 ≤

C2

(p + 1)σ

(
1 +

∫
Ω
|u|p+1dxdy

)
(43)

for some constant C2 > 0. Substituting (42) and (43) into (41) yields

G′(t) ≥
[
(1− σ)− η2α−1γαεΓ(−α)

B(p + 1)α

]
H−σ(t)H′(t) +

[
1 +

η2α−2γαε2Γ(−α)

B(p + 1)α−1 H−σ(t)
]

H(t)

+

[
A1

2
− ηA1

]
e−γεt‖u(t)‖2

H2∗(Ω)
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+ ε

[
η2α−3γα A1(p− 1)εΓ(−α)

B(p + 1)α
H−σ(t)− (ηδ4γS2

2 + δ6S2
2)

]
e−γεt‖u(t)‖2

H2∗(Ω)

+

[
1
2
+ η

(
1− γε

4δ4

)
− ε

4δ6

]
e−γεt‖ut(t)‖2

2 +

[
η − 1

p + 1
− ηµBC2

(p + 1)σΓ(−α)

]
e−γεt

∫
Ω
|u|p+1dxdy

+

(
λ− ηµBC2

(p + 1)σΓ(−α)

)
+ θF(t).

(44)

Now, we choose are parameters carefully. First, recalling σ = p−1
2(p+1) and selecting ε so small such that

ε ≤ ε2 :=
1
2

B(p + 1)α(1− σ)

η2α−1γαΓ(−α)
, (45)

we see that the coefficient of the first term is positive. By choosing η = p+3
4(p+1) , δ4 = δ6 = 1

2 , and ε small enough
so that

ε ≤ ε3 :=
4(p− 1)

(p + 11)2S2
2

, (46)

we find that the coefficient of ‖u(t)‖2
H2∗(Ω)

is positive. Next, we pick ε small enough such that

ε ≤ ε4 :=
2(3p + 5)

(p + 1)(p + 11),
(47)

to get the coefficient of ‖ut(t)‖2
2 greater or equal to 1

2 . We select B such that

B <
(p + 1)σΓ(−α)

(p + 3)µC2
min

{
p− 1

2
, 4λ(p + 1)

}
, (48)

to see that the coefficient of
∫

Ω |u|
p+1dxdy is greater than p−1

4(p+1) and the term

(
λ− ηµBC2

(p + 1)σΓ(−α)

)
> 0.

Thus, for any ε positive small enough such that

ε < min {ε1, ε2, ε3, ε4} , (49)

we arrive at
G′(t) ≥ H(t) +

1
2
‖ut(t)‖2

2 +
p− 1

4(p + 1)

∫
Ω
|u|p+1dxdy ∀ t ≥ 0. (50)

Using Cauchy-Schwarz and Young’s inequalities, we have

|(u, ut)2|
1

1−σ ≤ ‖u(t)‖
1

1−σ
2 ‖ut(t)‖

1
1−σ
2

≤ C2‖u(t)‖
1

1−σ
p+1‖ut(t)‖

1
1−σ
2

≤ C3

(
‖u(t)‖

r1
1−σ
p+1 + ‖ut(t)‖

r2
1−σ
2

)
,

(51)

where C2 = C2(|Ω|, p) > 0, C3 = C3(|Ω|, p, σ) > 0 are constants and 1
r1
+ 1

r2
= 1. We recall that σ = p−1

2(p+1) ,

therefore we select r1 = 2(1−σ)
1−2σ , r2 = 2(1− σ), and arrive at

|(u, ut)2|
1

1−σ ≤ C3

(
‖u(t)‖

2
1−2σ
p+1 + ‖ut(t)‖2

2

)
. (52)

We observe that 2
(p+1)(1−2σ)

= 1, so
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‖u(t)‖
2

1−2σ
p+1 =

∫
Ω
|u|p+1dxdy.

From the definition of G(t), we have

G(t)
1

1−σ =
(

H1−σ(t) + ηe−γεt(u, ut)2

) 1
1−σ ≤ 2

1
1−σ

(
H(t) + η

1
1−σ |(u, ut)2|

1
1−σ

)
≤ 2

1
1−σ

(
H(t) + C3η

1
1−σ

(
‖u(t)‖

2
1−2σ
p+1 + ‖ut(t)‖2

2

))
(53)

= 2
1

1−σ

(
H(t) + C3η

1
1−σ

(∫
Ω
|u|p+1dxdy + ‖ut(t)‖2

2

))
≤ C

(
H(t) +

1
2
‖ut(t)‖2

2 +
p− 1

4(p + 1)

∫
Ω
|u|p+1dxdy

)
,

for some positive constant C such that

C ≥ 2
1

1−σ max
{

1, 2C3η
1

1−σ , C3η
1

1−σ
4(p + 1)

p− 1

}
.

A combination of (50) and (53) leads to

(G(t))
1

1−σ ≤ CG′(t), ∀t ≥ 0. (54)

From (50), we see clearly that G′(t) ≥ 0. It follows from the definition of G(t) and the assumption on u0

and u1 that
G(t) ≥ G(0) > η(u0, u1)2 ≥ 0. (55)

Hence, G(t) > 0. Integrating (54) over (0, t) yields

(G(t))
−σ

1−σ ≤ (G(0))
−σ

1−σ − σ

C(1− σ)
t

which gives

(G(t))
σ

1−σ ≥ 1

(G(0))
−σ

1−σ − σ
C(1−σ)

t
. (56)

From (56), we obtain that G(t) blows up in time

T∗ ≤ C(1− σ)

σ (G(0))
σ

1−σ

. (57)

This completes the proof.

5. Conclusion

In this paper, we have studied a plate equation supplemented with partially hinged boundary conditions
as model for suspension bridge in the presence of fractional damping and non-linear source terms. We showed
that the solution blows up in finite time. We saw that, even in the present of a weaker damping, the bridge
will collapse in infinite time when the power p of the non-linear source term is sufficiently large. This is a very
important factor for engineers to consider when constructing such types of bridges.
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