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Abstract: This paper presents an existence theorem of the solutions for a boundary value problem
of fractional order differential equations with integral boundary conditions, by using measure of
noncompactness combined with Mönch fixed point theorem. An example is furnished to illustrate the
validity of our outcomes.

Keywords: Fixed point, measure of noncompactness, fractional differential equation.

MSC: 34A08, 34B15, 34G20, 47H08.

1. Introduction

Q uite recently, fractional differential equations become one of the most important research topic,
since their applications in various applied science, as in physics, finance, hydrology, biophysics,

thermodynamics, control theory, statistical mechanics, for example see [1,2]. many results were given
concerning the existence and uniqueness of the solution of such equations by using various techniques, while
the fixed point theory tool still one of the efficacy methods, see for example. Several authors tried to develop
a technique that depends on the Darbo or the Monch fixed point theorems with the Hausdorff or Kuratowski
measure of noncompactness.

This article deals with the existence of solutions for boundary value problems with fractional order
differential equations and nonlinear integral boundary conditions. We furnish an example to illustrate our
results.

Consider the following boundary value problems:


cDαx(t) + f (t, x(t),c Dαx(t)) = 0, 0 ≤ t ≤ 1, 1 < α ≤ 2
ax(0)− bx′(0) = 0
x(1) =

∫ 1
0 g(s, x(s))ds + λ

(1)

where λ > 0, cDα, 1 < α ≤ 2 is the Caputo fractional derivative, f and g are given functions
f : [0; 1]× C([0; 1];R)×R −→ R, g ∈ C([0, 1],R), a, b, λ ∈ R+, a + b > 0 and a

a+b < α− 1.

2. Preliminaries

Now, we give some definitions and preliminaries which will be used throughout this paper. Let X =

C([0, 1],R) be the Banach space of continuous functions x : [0, 1] −→ R, with the usual supermum norm

‖ x ‖∞= sup{‖ x(t) ‖, t ∈ [0, 1]}.
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Let L1([0; 1],R) be the Banach space of measurable functions x : [0, 1] −→ R which are Bochner integrable,
equipped with the norm

‖ x ‖L1=
∫ 1

0
x(t)dt.

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

Definition 1. [3,4] Let E be a Banach space and ΩE be the bounded subsets of E. The Kuratowski measure of
noncompactness is the map α : ΩE → [0, ∞] defined by

µ(B) = lim inf{ε > 0 : B ⊆ ∪n
i=1Bi, diam(Bi) ≤ ε}, B ∈ ΩE,

where
diam(Bi) = sup{‖u− v‖E : u, v ∈ Bi}.

The Kuratowski measure of noncompactness satisfies the following properties;

Lemma 1. [3,4] Let A and B bounded sets. Then

1. µ(B) = 0 if and only if B is compact (B is relatively compact).
2. µ(B) = µ(B).
3. A ⊂ B⇒ µ(A) ≤ µ(B).
4. µ(A + B) ≤ µ(A) + µ(B).
5. µ(cB) ≤ |c|µ(B), c ∈ R.
6. µ(conv B) = µ(B).

Definition 2. [5] The Riemann Liouville fractional integral of order q > 0 of x : (0, ∞)→ R is given by

Iα
0+x(t) =

1
Γ(α)

∫ t

0
(t− s)α−1x(s)ds

provided that the right hand side is defined on (0, ∞).

Definition 3. [5] The Riemann Liouville fractional derivative of order q ∈ (0, 1)0 of x : (0, ∞)→ R is given by

RLDα
0+x(t) =

1
Γ(n− q)

d(n)

dt

∫ t

0
(t− s)n−q−1x(s)ds, n = [q] + 1,

where Γ(q) denotes the classical gamma function, provided that the right-hand side is pointwise defined on
(0, ∞).

Definition 4. [5] The fractional derivative in Caputo sense of order q > 0 for a function x : (0, ∞)→ R is given
by

cDαx(t) =
1

Γ(n− q)

∫ t

0
(t− s)n−q−1x(n)(s)ds,

where n = [q] + 1, provided that the right side is pointwise defined on (0, ∞).

Lemma 2. [5] Let α > 0, then the differential equation

cDαx(t) = 0

has solutions x(t) =
n−1

∑
i=0

citi, ci ∈ R, n = [α] + 1.

Lemma 3. [5] Let α > 0, then

IαcDαx(t) = x(t)−
n−1

∑
i=0

citi, ci ∈ R, n = [α] + 1.
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Theorem 1. [1] Let X be a Banach space and 0 ∈ C be a nonempty, bounded, closed and convex subset of X. Suppose a
continuous mapping N : C → C is such that for all non empty subsets V of C,

µ(N(V)) ≤ kµ(V),

where 0 ≤ k < 1, and µ is the Kuratowski measure of noncompactness, then N has a fixed point in C.

Theorem 2. [6] Let C be a bounded, closed and convex subset of a Banach space such that 0 ∈ C, and let T be a
continuous mapping of C into itself. If the implication

V = convT(V) or V = T(V) ∪ 0⇒ µ(V) = 0

holds for every subset V of C, then T has a fixed point.

Lemma 4. [7] Let D be a bounded, closed and convex subset of the Banach space C(J, X), G a continuous function
on J × J and f a function from J × X → X which satisfies the Carathéodory conditions, and suppose there exists
p ∈ L1(J, R+) such that, for each t ∈ J and each bounded set B ⊂ X, we have

lim
h→0+

µ
(

f
(

Jt,h × B
))
≤ p(t)µ(B); here Jt,h = [t− h, t] ∩ J.

If V is an equicontinuous subset of D, then

µ
({ ∫

J
G(s, t) f (s, x(s))ds : x ∈ V

})
≤
∫

J
‖ G(t, s) ‖ p(s)µ(V(s))ds.

Lemma 5. Let X be a Banach space and F ⊂ C(J, X). If the following conditions are satisfied:

• family F in C(J, X) is called uniformly bounded if there exists a positive constant K such that | f (t)| ≤ K for all
t ∈ J and all f ∈ F;

• F is called equicontinuous, if for every ε > 0 there exists a δ > 0 such that | f (t1). f (t2)| < ε for all t1, t2 ∈ J with
|t1 − t2| < δ and all f ∈ F;

• for each x ∈ E, A(x) = { f (x); f ∈ A} is relatively compact.

3. Main results

Lemma 6. Let 1 < α < 2 and y ∈ C([0, 1]). A function x is a solution of the fractional integral equation

x(t) =
∫ 1

0
G(t, s) f (s)ds +

at + b
a + b

∫ 1

0
g(s)ds +

at + b
a + b

λ , (2)

where G is the Green function given by

G(t, s) =


(at+b)(1−s)α−1

(a+b)Γ(α) − (t−s)α−1

Γ(α) s ≤ t
(at+b)(1−s)α−1

(a+b)Γ(α) t ≤ s,
(3)

if and only if x is a solution of the fractional boundary value problem
cDαx(t) = − f (t), 0 ≤ t ≤ 1, 1 < α ≤ 2;
ax(0)− bx′(0) = 0;
x(1) =

∫ 1
0 g(s)ds + λ .

(4)

Proof. By Lemma 3, we reduce (4)) to an equivalent integral equation

x(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds + c0 + c1t,

x′(t) = − 1
Γ(α− 1)

∫ t

0
(t− s)α−2 f (s)ds + c1,
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for some constants c0, c1 ∈ X. Boundary conditions of (4) give

ac0 − bc1 = 0,

− 1
Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds + c0 + c1 =

∫ 1

0
g(s)ds + λ.

Therefore 
c0 = b

a+b

[
1

Γ(α)

∫ 1
0 (1− s)α−1 f (s)ds +

∫ 1
0 g(s)ds + λ

]
,

c1 = a
a+b

[
1

Γ(α)

∫ 1
0 (1− s)α−1 f (s)ds +

∫ 1
0 f (s)ds + λ

]
.

Thus

x(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds +

b
a + b

[
1

Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds +

∫ 1

0
h(s)y(s)ds + λ

]
+

at
a + b

[
1

Γ(α)

∫ 1

0
(1− s)α−1k(s)ds +

∫ 1

0
g(s)ds + λ

]
×
∫ t

0

[
(at + b)(1− s)α−1

(a + b)Γ(α)
− (t− s)α−1

Γ(α)

]
f (s)ds +

∫ 1

t

(at + b)(1− s)α−1

(a + b)Γ(α)
f (s)ds

+
at + b
a + b

∫ 1

0
g(s)ds +

at + b
a + b

λ

=
∫ 1

0
G(t, s) f (s)ds +

at + b
a + b

∫ 1

0
g(s)ds +

at + b
a + b

λ.

The proof is complete.

Since, we have ∫ 1

0
G(t, s)ds =

1
Γ(α)

( ∫
0t(t− s)α−1ds +

at + b
a + b

∫
01(1− s)α−1ds

)
1

Γ(α + 1)
(
tα +

at + b
a + b

)
≤ 2

Γ(α + 1)
.

Assume that

(A1): There exist K > 0 and L > 0 such that

| f (t, x(t), u(t))− f (t, y(t), v(t))| ≤ K‖x− y‖∞ + L‖u− v‖∞.

(A2): For any bounded subset A and B of X we have

µ( f (t, A, B)) ≤ Kµ(A) + Lµ(B),

or µ is a measure of non-compactness.
(A3): There exists N > 0 such that

‖g(t, x(t))− g(t, y(t)‖ ≤ N‖x− y‖.

(A4): For any bounded subset C of X, we have

µ(g(t, C)) ≤ Nµ(C).

(A5): K
(1−L)µ(α+1) + N < 1.

Theorem 3. Under the assumptions (A1)-(A5) the Problem (1) has a solution provided

2K
(1− L)Γ(α + 1)

+ N < 1.
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Proof. Transform the Problem (1) into a fixed point problem. Consider the operator T : X = C([0, 1],R) −→
C([0, 1],R) defined by

Tx(t) =
∫ 1

0
G(t, s) f (t, x(s),c Dαx(s))ds +

at + b
a + b

∫ 1

0
g(s, x(s))ds +

at + b
a + b

λ.

Clearly, the fixed points of the operator T are solutions of the Problem (1). We shall show that T satisfies
the assumptions of Theorem 3. The proof will be given in three steps.
Step 1: T is continuous. Let (xn) be a sequence such that xn −→ x in C([0, 1], X), then for each t ∈ [0, 1] we
have

|T(xn)(t)− T(x)(t)| ≤ |
∫ 1

0
|G(t, s) f (t, xn(t),c Dαxn(t))− f (t, x(t),c Dαx(t)|ds

+
at + b
a + b

∫ 1

0
(g(s, xn(s))− g(s, x(s))|ds.

By (A1) and (A3), we have

| f (t, xn(t),c Dαxn(t))− f (t, x(t),c Dαx(t)| ≤ K |xn − x|+ L |cDαxn(t)−c Dαx(t)|
≤ K|xn − x|+ L| f (t, xx(t),c Dαxn(t))− f (t, x(t),c Dαx(t))|.

Then
| f (t, xn(t),c Dαxn(t))− f (t, x(t),c Dαx(t)| ≤ K

1− L
|xn − x|,

and
|gt, xn(t)− g(t, x(t))| ≤ N|xn − x|.

So
|T(xn)(t)− T(x)(t)| ≤

( 2K
1− L

+ N
)
‖xn − x|.

Since xn −→ x, for each t ∈ [0, 1].

|T(xn(t)− T(x)(t))| −→ 0, when n −→ ∞.

So
‖T (xn) (t)− T(x)(t)‖ → 0, when n→ ∞.

Therefore, T is continuous. Now, let

r ≥ 1
(1− L)Γ(α + 1)

(Kr + f0) + Nr + g0 + λ

where
f0 = sup

t∈[0,1]
‖ f (t, 0, 0)‖, g0 = sup

t∈[0,1]
‖g(t, 0)‖.

Define Br = {x ∈ X : ‖x‖ ≤ r}. It is clear that Br is a bounded, closed and convex subset of X.
Step 2: T maps Br into itself, i.e., T(Br) ⊆ Br. Let x ∈ Br, so for each t ∈ [0, 1], we have

|T(x)(t)| =
∣∣∣ ∫ 1

0
G(t, s) f (t, xn(t),c Dαx(t))ds +

at + b
a + b

∫ 1

0
g(s, x(s))ds +

at + b
a + b

λ
∣∣∣

≤
∫ 1

0
G(t, s) f (t, xn(t),c Dαxn(t))ds +

at + b
a + b

∫ 1

0

∫ 1

0
g(s, x(s))ds +

at + b
a + b

λ

≤ 2
Γ(α + 1)

‖ f (s, x(s),c Dαx(t))‖+ ‖g(s, x(s))‖+ λ.

By (A1) et (A3), we have for each t ∈ [0, 1]
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‖ f (s, x(s),c Dαx(t))‖ = ‖ f (t, x(t),c Dαx(t))− f (t, 0, 0) + f (t, 0, 0)‖
≤ ‖ f (t, x,c Dαx(t))− f (t, 0, 0)‖+ ‖ f (t, 0, 0)‖
≤ K‖x‖+ L‖cDαx(t)‖+ f0

≤ 1
1− L

(Kr + f0)

(5)

and
‖g(t, x(t))‖ = ‖g(t, x(t))− g(t, 0) + g(t, 0)‖

≤ ‖g(t, x(t))− g(t, 0)‖+ ‖g(t, 0)‖
≤ N‖x‖+ g0

≤ Nr + g0.

(6)

So
‖Tx(t)‖ ≤ 2

(1− L)Γ(α + 1)
(Kr + f0) + Nr + g0) + λ ≤ r.

It follows that for each t ∈ [0, 1], we have

‖Tx(t)‖ ≤ r which implies T(Br) ⊆ Br.

Step 3: T(Br) is bounded and equicontinuous. According to step 2, we have

T(Br) = {T(x) : x ∈ Br} ⊂ Br.

So for every x ∈ Br we have ‖T(x)‖∞ ≤ r, which means that T(Br) is bounded. Now, let t1, t2 ∈ [0, 1], t1 <

t2 and x ∈ T(Br), then

|T(x)(t2)− T(x)(t1)| ≤‖ f (s, x(s),c Dαx(t))‖
∫ 1

0
|G(t2, s)− G(t1, s)|ds +

a|t2 − t1|
a + b

(
‖g(t, x(t))‖+ λ

)
.

According to (5) and (6), we have

‖T(x)(t2)− T(x)(t1)‖ ≤
1

1− L
(Kr + f0)|tα

2 − tα
1 |+

a|t2 − t1|
a + b

(Nr + g0 + λ).

As t2 −→ t1, the right hand side of the above inequality tends to zero, so T is equicontinuous. Let
V ⊂ TBr, such as V = {Tx, x ∈ Br}, so V ⊂ conv(T(V) ∪ {0}). The subset V is bounded and equicontinuous,
so the function t : 7−→ µ(V(t)) ∈ R is continuous on [0, 1]. Using Lemma 4 and the properties of the measure
µ, we have, for each t ∈ [0, 1]

v(t) = µ(V(t)) 6 µ(T(V)(t) ∪ {0})
6 µ(T(V)(t))

= µ
({ ∫ 1

0
G(t, s) f (t, x(t),c Dαx(t))ds +

at + b
a + b

∫ 1

0
g(s, x(s))ds +

at + b
a + b

λ, x ∈ V
})

≤ µ
({ ∫ 1

0
G(t, s) f (t, x(t),c Dαx(t))ds, x ∈ V

})
+ µ

({ at + b
a + b

(
∫ 1

0
g(s, x(s))ds + λ, x ∈ V

})
≤
∫ 1

0
G(t, s)µ ( f (t, x(t),c Dαx(t))) ds +

at + b
a + b

∫ 1

0
µ (g(s, x(s))) ds.

Thus for each s ∈ [0, 1],

µ
({

f (s, x(t),c Dαx(t)), x(i) ∈ V
})
≤ Kµ

({
x(t), x ∈ V

})
+ Lµ

({
f (s, x(t),c Dαx(t))

})
≤ K

1− L
µ
({

x(s), x ∈ V
})

=
K

1− L
v(t),
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and
µ(g(t, V(t)) = µ

({
g(t, x(t), x(t) ∈ V(t)

})
≤ Nv(t).

Then
µ(T(V)(t)) ≤ 2K

(1− L)Γ(α + 1)
µ(V(t)) +

at + b
a + b

Nµ(V(t))

≤ 2K
(1− L)Γ(α + 1)

v(t) + +Nv(t)

=
( 2K
(1− L)Γ(α + 1)

+ N
)
‖v‖∞.

So
‖v‖∞ ≤

( 2K
(1− L)Γ(α + 1)

+ N
)
‖v‖∞,

which gives ‖v‖∞ = 0, that is to say v(t) = 0, for each t ∈ [0, 1], then V(t) is relatively compact in X. In view of
the lemma of Ascoli - Arzela, V is relatively compact in Br. Applying now the Theorem of Mönch, we conclude
that T has a fixed point which is a solution of the Problem (1). This completes the proof.

Finally, we present a numerical example to illustrate our results.

Example 1. Let us consider the following fractional boundary value problem:
cD

3
2 x(t) = 1

10 (t cos x− xet) + 1
9 cos

(
cD

3
2 x(t)

)
, t ∈ [0, 1]

x(0)− x′(0) = 0
x(1) = 1

8

∫ 1
0 se−sx(s)ds

(7)

where
f (t, x, u) =

1
10

(t cos(x)− xet) +
1
9

cos
(

cD
3
2 x(t)

)
, x, u ∈ C([0, 1],R)

and

g(s, x) =
x(s)

8
, g ∈ C(I ×R,R), α =

3
2

, a = 1, b = 1.

Clearly a
a+b = 1

3 < α− 1. On other hand we have

‖ f (t, x, u)− f (t, y, v)‖ ≤ 1
10
|t|‖ cos x− cos y‖+ 1

10
|et|‖x− y‖+ 1

9
‖ cos u− cos v‖ ≤ 1 + e

10
‖x− y‖+ 1

9
‖u− v‖.

Therefore, the conditions (A1) and (A3) are satisfied with K = 1+e
10 , L = 1

9 , N = 1
8 and

K
Γ(α + 1)(1− L)

+ N =
3(1 + e)
10
√

π
+

1
8
< 1.

Then the Problem (7) admits at least one solution on [0, 1].
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