Article

On some new subclass of bi-univalent functions associated with the Opoola differential operator

Timilehin Gideon Shaba

Department of Mathematics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.; shabatimilehin@gmail.com
Received: 21 June 2020; Accepted: 25 August 2020; Published: 31 August 2020.
Abstract: By applying Opoola differential operator, in this article, two new subclasses $\mathcal{M}_{\mathcal{H}, \sigma}^{\mu, \beta}(m, \psi, k, \tau)$ and $\mathcal{M}_{\mathcal{H}, \sigma}^{\mu, \beta}(m, \xi, k, \tau)$ of bi-univalent functions class \mathcal{H} defined in ∇ are introduced and investigated. The estimates on the coefficients $\left|l_{2}\right|$ and $\left|l_{3}\right|$ for functions of the classes are also obtained.

Keywords: Univalent function, bi-univalent function, coefficient bounds, Opoola differential operator.

MSC: 30C45, 30C50.

1. Introduction

Let \mathcal{J} denote the subclass of \mathcal{G} which is of the form

$$
\begin{equation*}
\Im(z)=z+\sum_{k=2}^{\infty} l_{k} z^{k} \tag{1}
\end{equation*}
$$

consisting of functionas which are holomorphic and univalent in the unit disk ∇. Let \Im^{-1} be inverse of the function $\Im(z)$, then we have

$$
\Im^{-1}(\Im(z))=z
$$

and

$$
\Im^{-1}(\Im(b))=b, \quad|b|<r_{0}(\Im) ; r_{0}(\Im) \geq \frac{1}{4}
$$

where

$$
\begin{equation*}
\Im^{-1}(\Im(b))=b-l_{2} b^{2}+\left(2 l_{2}^{2}-l_{3}\right) b^{3}-\left(5 l_{2}^{3}-5 l_{2} l_{3}+l_{4}\right) b^{4}+\cdots \tag{2}
\end{equation*}
$$

A function $\Im(z) \in \mathcal{G}$ denoted by \mathcal{H} is said to be bi-univalent in ∇ if both $\Im(z)$ and $\Im^{-1}(z)$ are univalent in \triangle [1]. Subclasses of \mathcal{H}, such as class of bi-convex and starlike functions and bi-strongly convex and starlike function similar to the well known subclasses $\mathcal{L}^{*}(\vartheta)$ and $\mathcal{K}(\vartheta)$ of starlike and convex functions of order $\vartheta(0<$ $\vartheta<1$) respectively [2].

Recently, numerous researchers $[1,3,4]$ obtained the coefficient $\left|l_{2}\right|$ and $\left|l_{3}\right|$ of bi-univalent functions for the several subclasses of functions in the class \mathcal{H}. Motivated by the work of Darus and Singh [5], we introduce the subclasses $\mathcal{M}_{\mathcal{H}}^{\mu, \beta}(m, \psi, k, \tau)$ and $\mathcal{M}_{\mathcal{H}, \sigma}^{\mu, \beta}(m, \xi, k, \tau)$ of the function class \mathcal{H}, which are associated with the Opoola differential operator and to obtain estimates on the coefficients $\left|l_{2}\right|$ and $\left|l_{3}\right|$ for functions in these new subclasses of the function class \mathcal{H} applying the techniques used earlier by Darus and Singh [5], Frasin and Aouf [4] and Srivastava et al., [1].

Lemma 1. [6] Suppose $u(z) \in \mathcal{P}$ and $z \in \nabla$, then $\left|w_{k}\right| \leq 2$ for each k, where \mathcal{P} is the family of all function u analytic in ∇ for which $\Re(u(z))>0$,

$$
u(z)=1+w_{1} z+w_{2} z^{2}+\cdots
$$

Definition 1. A function $\Im(z) \in \mathcal{G}$ is in the class $\mathcal{M}_{\mathcal{H}, \sigma}^{\mu, \beta}(m, \psi, \tau)$ if the following condition are fulfilled:

$$
\begin{align*}
& \left|\arg \left[\frac{(1-\sigma) D_{\tau, \beta}^{m, \mu} \Im(z)+\sigma D_{\tau, \beta}^{m+1, \mu} \Im(z)}{z}\right]\right|<\frac{\psi \pi}{2}, \tag{3}\\
& \left|\arg \left[\frac{(1-\sigma) D_{\tau, \beta}^{m, \mu} h(b)+\sigma D_{\tau, \beta}^{m+1, \mu} h(b)}{b}\right]\right|<\frac{\psi \pi}{2} \tag{4}
\end{align*}
$$

where $0<\psi \leq 1, \sigma \geq 1, \tau \geq 0, z \in \triangle, b \in \triangle, 0 \leq \mu \leq \beta, m \in \mathcal{N}_{0}$ and

$$
\begin{equation*}
h(b)=b-l_{2} b^{2}+\left(2 l_{2}^{2}-l_{3}\right) b^{3}-\left(5 l_{2}^{3}-5 l_{2} l_{3}+l_{4}\right) b^{4}+\cdots \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\tau, \beta}^{m, \mu} \Im(z)=z+\sum_{k=2}^{\infty}(1+(k+\mu-\beta-1) \tau)^{m} l_{k} z^{k} \tag{6}
\end{equation*}
$$

where $0 \leq \mu \leq \beta, \tau \geq 0$ and $m \in \mathbb{N}_{0}=\{0,1,2,3 \cdots\}$ is the generalized Al-oboudi derivative defined by Opoola [7].

Remark 1.

1. $\mathcal{M}_{\mathcal{H}, 1}^{\mu, \beta}(0, \psi, \tau)=\mathcal{M}_{\mathcal{H}}(\psi)$ which Srivastava et al., [1] presented and studied.
2. $\mathcal{M}_{\mathcal{H}, \sigma}^{\mu, \beta}(0, \psi, \tau)=\mathcal{M}_{\mathcal{H}, \sigma}(\psi)$ which Frasin and Aouf [4] presented and studied.
3. $\mathcal{M}_{\mathcal{H}, \sigma}^{1,1}(m, \psi, 1)=\mathcal{M}_{\mathcal{H}, \sigma}(m, \psi)$ which Porwal and Darus [8] presented and studied.
4. $\mathcal{M}_{\mathcal{H}, \sigma}^{1,1}(m, \psi, \tau)=\mathcal{M}_{\mathcal{H}, \sigma}(m, \psi, \tau)$ which Darus and Singh [5] presented and studied.

2. Coefficient Bounds For The Function Class $\mathcal{M}_{\mathcal{H}}^{\mu, \beta}(m, \psi, k, \tau)$

Theorem 1. Let $\Im(z) \in \mathcal{G}$ be in the class $\mathcal{M}_{\mathcal{H}}^{\mu, \beta}(m, \psi, k, \tau), 0<\psi \leq 1, \sigma \geq 1, \tau \geq 0, z \in \triangle, b \in \triangle, 0 \leq \mu \leq \beta$, $m \in \mathcal{N}_{0}$, then

$$
\left|l_{2}\right| \leq \frac{2 \psi}{\sqrt{\begin{array}{c}
2 \psi\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]- \tag{7}\\
\psi(\psi-1)\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2}
\end{array}}}
$$

and

$$
\begin{align*}
\left|l_{3}\right| \leq & \frac{2 \psi}{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]} \\
& +\frac{4 \psi^{2}}{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]} \tag{8}
\end{align*}
$$

Proof. It follows from (3) and (4) that

$$
\begin{equation*}
\frac{(1-\sigma) D_{\tau, \beta}^{m, \mu} \Im(z)+\sigma D_{\tau, \beta}^{m+1, \mu} \Im(z)}{z}=(q(z))^{\psi} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\sigma) D_{\tau, \beta}^{m, \mu} h(b)+\sigma D_{\tau, \beta}^{m+1, \mu} h(b)}{b}=(t(b))^{\psi} \tag{10}
\end{equation*}
$$

where $q(z)=1+q_{1} z+q_{2} z^{2}+q_{3} z^{3}+\cdots$ and $t(b)=1+t_{1} b+t_{2} b^{2}+t_{3} b^{3} \cdots$ are in \mathcal{P}. Equating the coefficient in (9) and (10), we have

$$
\begin{equation*}
\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right] l_{2}=\psi q_{1} \tag{11}
\end{equation*}
$$

$$
\begin{gather*}
{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] l_{3}=\psi q_{2}+\frac{\psi(\psi-1)}{2} q_{1}^{2},} \tag{12}\\
-\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right] l_{2}=\psi t_{1}, \tag{13}\\
{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]\left(2 l_{2}^{2}-l_{3}\right)=\psi t_{2}+\frac{\psi(\psi-1)}{2} t_{1}^{2} .} \tag{14}
\end{gather*}
$$

From (11) and (13), we get

$$
\begin{equation*}
q_{1}=-t_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{2}^{2}=\psi^{2}\left(q_{1}^{2}+t_{1}^{2}\right) \tag{16}
\end{equation*}
$$

From (12),(14) and (16), we get

$$
\begin{aligned}
& 2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{2}^{2} \\
& -\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{3}=\psi t_{2}+\frac{\psi(\psi-1)}{2} t_{1}^{2}
\end{aligned}
$$

implies

$$
\begin{aligned}
& 2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{2}^{2} \\
& =\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{3}+\psi t_{2}+\frac{\psi(\psi-1)}{2} t_{1}^{2} .
\end{aligned}
$$

Then from (12), we have

$$
2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{2}^{2}=\psi q_{2}+\frac{\psi(\psi-1)}{2} q_{1}^{2}+\psi t_{2}+\frac{\psi(\psi-1)}{2} t_{1}^{2}
$$

implies

$$
2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{2}^{2}=\psi\left(q_{2}+t_{2}\right)+\frac{\psi(\psi-1)}{2}\left(q_{1}^{2}+t_{1}^{2}\right)
$$

Then from (16), we get

$$
\begin{aligned}
& 2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{2}^{2} \\
& =\psi\left(q_{2}+t_{2}\right)+\frac{\psi(\psi-1)}{2} \frac{2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2}}{\psi^{2}} l_{2}^{2}
\end{aligned}
$$

implies

$$
\begin{equation*}
l_{2}^{2}=\frac{\psi^{2}\left(q_{2}+t_{2}\right)}{2 \psi\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]-} . \tag{17}
\end{equation*}
$$

Applying Lemma 1 for (17), we get

$$
\left|l_{2}\right| \leq \frac{2 \psi}{\sqrt{\begin{array}{c}
2 \psi\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]- \\
\psi(\psi-1)\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2}
\end{array}}}
$$

which gives the desired estimate on $\left|l_{2}\right|$ in (7). Hence in order to find the bound on $\left|l_{3}\right|$,

$$
\begin{aligned}
& {\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] l_{3}-\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}\right.} \\
& \left.+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]\left(2 l_{2}^{2}-l_{3}\right)=\psi q_{2}+\frac{\psi(\psi-1)}{2} q_{1}^{2}-\left[\psi t_{2}+\frac{\psi(\psi-1)}{2} t_{1}^{2}\right]
\end{aligned}
$$

implies

$$
\begin{aligned}
& 2\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] l_{3} \\
& =\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] 2 l_{2}^{2}+\psi\left(q_{2}-t_{2}\right)+\frac{\psi(\psi-1)}{2}\left(q_{1}^{2}-t_{1}^{2}\right)
\end{aligned}
$$

Since $\left(q_{1}\right)^{2}=\left(-t_{1}\right)^{2} \Longrightarrow q_{1}^{2}=t_{1}^{2}$, then we have

$$
\begin{aligned}
& 2\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] l_{3} \\
& =\psi\left(q_{2}-t_{2}\right)+\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] 2 l_{2}^{2} \\
& l_{3}=\frac{\psi\left(q_{2}-t_{2}\right)}{2\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]} \\
& \quad+\frac{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]}{2\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]} 2 l_{2}^{2} .
\end{aligned}
$$

From (16), we have

$$
\begin{aligned}
l_{3}= & \frac{\psi\left(q_{2}-t_{2}\right)}{2\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]} \\
& +\frac{\psi^{2}\left(q_{1}^{2}+t_{1}^{2}\right)}{2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2}}
\end{aligned}
$$

Applying Lemma 1 for coefficient q_{1}, q_{2}, t_{1} and t_{2}, we have

$$
\begin{aligned}
\left|l_{3}\right| \leq & \frac{2 \psi}{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]} \\
& +\frac{4 \psi^{2}}{\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2}}
\end{aligned}
$$

3. Coefficient bounds for the function class $\mathcal{M}_{\mathcal{H}, \sigma}^{\mu, \beta}(m, \xi, k, \tau)$

Definition 2. A function $\Im(z) \in \mathcal{G}$ is said to be in the class $\mathcal{M}_{\mathcal{H}, \sigma}^{\mu, \beta}(m, \xi, k, \tau)$ if the following condition are fulfilled:

$$
\begin{align*}
& \Re\left[\frac{(1-\sigma) D_{\tau, \beta}^{m, \mu} \Im(z)+\sigma D_{\tau, \beta}^{m+1, \mu} \Im(z)}{z}\right]>\xi \tag{18}\\
& \Re\left[\frac{(1-\sigma) D_{\tau, \beta}^{m, \mu} h(b)+\sigma D_{\tau, \beta}^{m+1, \mu} h(b)}{b}\right]>\xi \tag{19}
\end{align*}
$$

where $\Im(z) \in \mathcal{H}, 0 \leq \xi<1, \sigma \geq 1, \tau \geq 0, z \in \triangle, b \in \triangle, 0 \leq \mu \leq \beta, m \in \mathcal{N}_{0}$, and

$$
\begin{equation*}
h(b)=b-l_{2} b^{2}+\left(2 l_{2}^{2}-l_{3}\right) b^{3}-\left(5 l_{2}^{3}-5 l_{2} l_{3}+l_{4}\right) b^{4}+\cdots, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\tau, \beta}^{m, \mu} \Im(z)=z+\sum_{k=2}^{\infty}(1+(k+\mu-\beta-1) \tau)^{m} l_{k} z^{k} \tag{21}
\end{equation*}
$$

where $0 \leq \mu \leq \beta, \tau \geq 0$ and $m \in \mathbb{N}_{0}=\{0,1,2,3 \cdots\}$ is the generalized Al-oboudi derivative defined by Opoola [7].

Remark 2.

1. $\mathcal{M}_{\mathcal{H}, 1}^{\mu, \beta}(0, \xi, \tau)=\mathcal{M}_{\mathcal{H}}(\xi)$ which Srivastava et al., [1] presented and studied.
2. $\mathcal{M}_{\mathcal{H}, \sigma}^{\mu, \beta}(0, \xi, \tau)=\mathcal{M}_{\mathcal{H}, \sigma}(\xi)$ which Frasin and Aouf [4] presented and studied.
3. $\mathcal{M}_{\mathcal{H}, \sigma}^{1,1}(m, \xi, 1)=\mathcal{M}_{\mathcal{H}, \sigma}(m, \xi)$ which Porwal and Darus [8] presented and studied.
4. $\mathcal{M}_{\mathcal{H}, \sigma}^{1,1}(m, \xi, \tau)=\mathcal{M}_{\mathcal{H}, \sigma}(m, \xi, \tau)$ which Darus and Singh [5] presented and studied.

Theorem 2. Let $\Im(z) \in \mathcal{G}$ be in the class $\mathcal{M}_{\mathcal{H}}^{\mu, \beta}(m, \xi, k, \tau), 0 \leq \xi<1, \sigma \geq 1, \tau \geq 0, z \in \triangle, b \in \triangle, 0 \leq \mu \leq \beta$, $m \in \mathcal{N}_{0}$, then

$$
\begin{equation*}
\left|l_{2}\right| \leq \sqrt{\frac{2(1-\xi)}{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]}} \tag{22}
\end{equation*}
$$

and

$$
\begin{align*}
\left|l_{3}\right| \leq & \frac{4(1-\xi)^{2}}{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]^{2}} \\
& +\frac{2(1-\xi)}{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]} \tag{23}
\end{align*}
$$

Proof. From (18) and (19), where $q(z), t(z) \in \mathcal{P}$,

$$
\begin{equation*}
\frac{(1-\sigma) D_{\tau, \beta}^{m, \mu} \Im(z)+\sigma D_{\tau, \beta}^{m+1, \mu} \Im(z)}{z}=\xi+(1-\xi) q(z) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\sigma) D_{\tau, \beta}^{m, \mu} h(b)+\sigma D_{\tau, \beta}^{m+1, \mu} h(b)}{b}=\xi+(1-\xi) t(b) \tag{25}
\end{equation*}
$$

where $q(z)=1+q_{1} z+q_{2} z^{2}+q_{3} z^{3}+\cdots$ and $t(b)=1+t_{1} b+t_{2} b^{2}+t_{3} b^{3} \cdots$. Now on equating the coefficient in (24) and (25), we have

$$
\begin{gather*}
{\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right] l_{2}=(1-\xi) q_{1}} \tag{26}\\
{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] l_{3}=(1-\xi) q_{2}} \tag{27}\\
-\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right] l_{2}=(1-\xi) t_{1} \tag{28}\\
{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]\left(2 l_{2}^{2}-l_{3}\right)=(1-\xi) t_{2}} \tag{29}
\end{gather*}
$$

From (26) and (28), we have

$$
\begin{equation*}
q_{1}=-t_{1}, \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2} l_{2}^{2}=(1-\xi)^{2}\left(q_{1}^{2}+t_{1}^{2}\right) \tag{31}
\end{equation*}
$$

From (27) and (29), we have

$$
\begin{equation*}
2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right] l_{2}^{2}=(1-\xi)\left(q_{2}+t_{2}\right) \tag{32}
\end{equation*}
$$

or we have

$$
l_{2}^{2}=\frac{(1-\xi)\left(q_{2}+t_{2}\right)}{2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]}
$$

implies

$$
\left|l_{2}^{2}\right| \leq \frac{2(1-\xi)}{\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]}
$$

which is the bound on $\left|l_{2}\right|$ as given in (22). Hence in order to find the bound on $\left|l_{3}\right|$, we subtract (27) and (29) and get

$$
\begin{aligned}
& {\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] l_{3}} \\
& -\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]\left(2 l_{2}^{2}-l_{3}\right)=(1-\xi) q_{2}-\left[(1-\xi) t_{2}\right]
\end{aligned}
$$

implies

$$
\begin{aligned}
& 2\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] l_{3} \\
& =\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right] 2 l_{2}^{2}+(1-\xi)\left(q_{2}-t_{2}\right),
\end{aligned}
$$

implies

$$
l_{3}=l_{2}^{2}+\frac{(1-\xi)\left(q_{2}-t_{2}\right)}{2\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]}
$$

Then from (31), we have

$$
\begin{aligned}
l_{3}= & \frac{(1-\xi)^{2}\left(q_{1}^{2}+t_{1}^{2}\right)}{2\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2}} \\
& +\frac{(1-\xi)\left(q_{2}-t_{2}\right)}{2\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]}
\end{aligned}
$$

Applying Lemma 1 for the coefficient q_{1}, q_{2}, t_{1} and t_{2}, we get

$$
\begin{aligned}
\left|l_{3}\right| \leq & \frac{4(1-\xi)^{2}}{\left[(1-\sigma)(1+\tau(1+\mu-\beta))^{m}+\sigma(1+\tau(1+\mu-\beta))^{m+1}\right]^{2}} \\
& +\frac{2(1-\xi)}{\left[(1-\sigma)(1+\tau(2+\mu-\beta))^{m}+\sigma(1+\tau(2+\mu-\beta))^{m+1}\right]^{\prime}}
\end{aligned}
$$

which is the bond on $\left|l_{3}\right|$ in (23).

4. Conclusion

In this present paper, two new subclasses of bi-univalent functions associated with Opoola differential operator $D_{\tau, \beta}^{m, \mu}$ were introduced and worked on. Furthermore, the coefficient bounds for $\left|l_{2}\right|$ and $\left|l_{3}\right|$ of functions in these classes are obtained.

Conflicts of Interest: "The author declares no conflict of interest."

References

[1] Srivastava, H. M., Mishra, A. K., \& Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10), 1188-1192.
[2] Brannan, D.A., \& Taha, T. (1986). On some classes of bi-univalent functions. Babes-Bolyai Math, 31(2), 70-77.
[3] Xu, Q.H., \& Gui, Y.C., \& Srivastava, H.M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218, 11461-11465.
[4] Frasin, B.A., \& Aouf, M.K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24, 1569-1573.
[5] Darus, M., \& Singh, S. (2018). On some new classes of bi-univalent functions. Journal of Applied Mathematics, Statistics and Informatics, 14, 19-26.
[6] Pommerenke, C.H. (1975). Univalent Functions. Vandendoeck and Rupercht, Gottingen.
[7] Opoola, T.O. (2017). On a subclass of univalent function defined by generalized differential operator. International Journal of Mathematical Analysis, 11, 869-876.
[8] Porwal, S., \& Darus, M. (2013). On a class of bi-univalent functions. Journal of Egyptian Mathematical Society, 21, 190-193.
(C) 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

