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1. Introduction

n harmonic analysis, uncertainty principles play an important role. It states that a non-zero function and
m its Fourier transform cannot be simultaneously sharply concentrated. many of them have already been
studied from several points of view for the Fourier transform, Heisenberg-Pauli-Weyl inequality [1] and local
uncertainty inequality [2]. As a classical uncertainty principle, the Heisenberg uncertainty principle has been
extended to transforms such as the spherical mean transforms [3,4], the Dunkl transform [5] and so forth.

The Hankel transform #, is defined for every integrable function f on Ry = [0, +-oo[ with respect to the
measure dv,, by

—+oo
Ha(HA) = | f(0)ja(Ax)dva(x),

where dv, is the measure defined on R by

x21x+1

dVa<x) == mdx,

and j, is the modified Bessel function given in the next section.

The Hankel transform is found as a very useful mathematical tool in many fields of physics, signal
processing and other [6,7]. Also, many uncertainty principles related to this transform H, have been proved
[8-10].

Time-frequency analysis plays an important role in harmonic analysis, in particular in signal theory. With
the development of time-frequency analysis, the study of uncertainty principles have gained considerable
attention and have been extended to a wide class of integral transforms such as Weinstein transforms [11,12],
Dunkl transforms [13], Hankel-Stockwell transforms [14] and so on.

Based on the ideas of Faris [15] and Price [2,16], we show a general form of the local uncertainty principles
for the Hankel-Stockwell transform and we deduce L7 version of Heisenberg-Pauli-Weyl uncertainty principle.
We shall use also the Heisenberg uncertainty principle, the properties of the Hankel-Stockwell transform and
the techniques of Donoho-Stark [17,18], we show a continuous-time principle for the L? theory, when 1 < p <
2. Finally, Pitt’s inequality and Beckner’s uncertainty principle are proved for this transform.
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This work is organized as follows; in Section 2 we recall some harmonic analysis results related
to the Hankel transform. In Section 3, we present some elements of harmonic analysis related to the
Hankel-Stockwell transform. In Section 4, we introduce some uncertainty principles for this transform.

2. The Hankel transform

In this section, we summarize some harmonic analysis tools related to the Hankel transform that will be
used hereafter, (see [19]). The modified Bessel function x — j(x) has the following integral representation
[20,21];

Zad1) )*- 2 cos(xt)dt, ifa> =L
ja(x) =< VaT(a+}) Jo@ (xt)dt, . 2/
Ccos X, ifa = 5.

In particular, for every x € R and k € N, we have

We define the Hankel translation operators Ty, x € [0, +00[ by

T (f)(y) = \Fr(razlk Jo' F(/x* + y2 4+ 2xycos 0, x + y) sin®* (0)d6, ifa > 3,
' W 1

ifa = -,

whenever the integral in the right-hand side is well defined. In the following, we denote by;

¢ S.(R) the Schwartz space, constituted by the even infinitely differentiable functions on the real line,
rapidly decreasing together with all their derivatives,

e L7(dv,) the Lebesgue space of measurable functions f on R, such that || f|,,, < -+co.

Forevery f € LF(dv,), p € [1, +00], and for every x € R, the function 7, ( f) belongs to the space L? (dvy)
and

PVu < Hf

[T (f) PVa-

In particular, for every x,y € R, we have

() = ()
If f € L'(dv,), then
+o0
[ wthwan) = [ fwanw)

The convolution product of f, g € L!(dv,) is defined by
+oo
frel) = [ wH@sWdly).

Let p,q,7 € [1, 4+00] such that 1 + L 1+ % Then for every f € LP(dv,) and g € L9(dv,), the function f * ¢
belongs to the space L' (dv, ), and we have the following Young's inequality
1f 5 &l <A pi 181l g,va

The Hankel transform H, is defined on L!(dv,) by

—+o00

VAER; Ho(H)(A) = | f(0)ja(Ax)dve(x).
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Theorem 1. (1) [Inversion formula] Let f € L'(dv,) such that Hy(f) € L (dvy), then we have

£ = [ Hl DO iaAx)n (1), ae

(2) [Plancherel theorem] The Fourier transform H, can be extended to an isometric isomorphism from L?(dv,) onto
itself and we have

[ Ha (P2 = [1fl2-

(3) [Parseval’s formula] For all functions f and g in L?(dv,) , we have

+oo N +o0
f(x)g(x)dva(x) 2/0 Ha(f)(A)Ha(g)(A)dva(A).

0

The Hankel transform H, satisfies the following properties;
For every f € L'(dv,) and g € LP(dvy), p = 1,2, the function f * g belongs to LP(dv,), p = 1,2, and we
have

Ha(f *8) = Half)Ha(g)-
Let f,g € L2(dvy). Then f x ¢ € L?(dv,), if and only if H,(f)Ha(g) € L?(dvy) and we have

Hao(f xg) = Half)Halg), 1)

moreover,
“+o00 —+o0
|1 s P = [ a(DPIHa() () P (1),
where both integrals are finite or infinite.

3. Hankel-Stockwell transform

We recall some results introduced and proved in [14]. The modulation operator is defined for every
function ¢ in L?(dv,) by

Ma(¢) = Ha ( Ta(|Hu¢(7~/})|2)> , a>0.

Then for every ¢ € L2(dv,), M,(¢) belongs to L?(dv,) and we have

IMa () ll2v0 = [$ll20-

Now, for every ¢ € L?(dv,), we consider the family ¢, (a,7) € R% x R, defined by
Vx e Ry, 9" (x)=1tM;Dapp(x),
where D, is the dilatation operator given by

Dy () (x) = a* Tl (ax).
Then, we have the following properties;

(i) Forevery ¢ € L?(dvy)
TeDa(9) = DaTax (). &)

(ii) For every ¢ € L2(dv,)
Hu(Da()) = D1 (Hu($))- ®)

Definition 1. A nonzero function ¢ € L?(dv,) is said to be an admissible window function if

1

0<Cp= gy [ DT <o
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In the following we denote by y, the measure defined on R* x R, by
dug(a,r) = dvg(a)dvy(r),

and LP(dua),1 < p < +oo, the Lebesgue space on R*. x R, with respect to the measure i, with the LP-norm
denoted by ||.|[,u,-

Definition 2. Let i be an admissible window function. The continuous Hankel-Stockwell transform S% is
defined in L?(dv,) by

S50 = [ FEPTEau(s)
= f* MDA () = £+ DMy B)0) = (F 9, @

where (, )y, is the usual inner product in the Hilbert space L?(dvy ).

Proposition 1. Let ¢ be an admissible window function. For every f € L*(dvy), we have

15p Mo e < N F 212,00 )

Proposition 2. Let i be an admissible window function.

(i) [Plancherel formula] For every f € L?(dv,), we have

195 (Allae = /Collf o (6)

(ii) [Parseval formulal Forall f,h € L?(dv,), we have

/+°°/+°°s'* )0, )85 () (@, P, 7) = cl,,/ F(s) () dva(s).

(iii) [Inversion formulal For all f € L' (dv,) N L?(dvy), such that Ha(f) belongs to L1 (dv,), we have

flu) = Clw I ( I sg(f)(a,r)w(u)m(m) dve(a),ac.

where for each u € R, both the inner integral and the outer integral are absolutely convergent, but possible not
the double integral.

By Riesz-Thorin’s interpolation theorem we obtain the following.

Proposition 3. Let i be an admissible window function, f € L?(dvy) and 2 < p < +oo, then we have

1 1-2
1Sp U ppa < Cy 9l 11 fll2,0,- @)

4. Uncertainty principle for the Hankel-Stockwell transform

In this section, we obtain some uncertainty principles for the Hankel-Stockwell transform.

Theorem 2. [L” local uncertainty principle for Sy1 Let ¢ be an admissible window function and ¥ be measurable
subset of RY, x Ry such that 0 < py(X) < +o0. Let p €]1,2],q = £, then or every f € LP(dv,), we have
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C1(b,9) (1a(£)) (nrhfnzM 1l s ) if0<b <2,

atl at1
ifb > LH,

« 1
=Sy ()l < cz<b,¢><m<z>>a||f|\2p;” || bfnz,,m
1
Ca0,9) (e (2D (19l 1P A1, + £ 1P, ), i = 252,
where
b
B 1 T j-ah
1
b— 2q «
(") N e B N\
2(b1¢) = b a1 q qb_ (DC+1) a+1 - 1 H¢||2,Vur and
p2o T (a0 + 1)T (?)
b
Proof. (i) Itis clear that the first inequality holds if

_2
17 Fllzp + 191155, 7 Fllzw, = +oo.

Let f € LP(dv,),1 < p<2,9= % such that

2
b T ,b
177 Fll2pve + N1l 77 Fll2, < oo
Denote by x5 the characteristic function associated to . Using Minkowski’s inequality, relations (5) and

(7), we obtain for every p > 0

x2Sy llgue < x2Sy (X0 M an + 1xzSy(F) (Ko, ool g
1
< (Ha(E)) 715y (Xj0,01f) oo + 1St (F) (X(p, 4001 1

1 1 1—-2
< (1a(E)) WMz X100 200 + CyI1915,0, 1X]0,+00(f 12,00

On the other hand, by Holder’s inequality

—b b
||X[0,p[f||2ﬂ/a < lr X[O,p[H2q,vaH7’ fll2p,ve-

By simple calculus and the hypothesis 0 < b < “—;rl, we obtain

IX0,01fll2ve < Coagl N7 fll2pver ®)
1

1 2

©)

(o, +colf 120 < 077 Fll2,vs -

From (8) and (9), we get

1 atl_y 1 1-2
IxeSH (A llgin < Coag(1a(E)) 7 1ll200 T I Fllzpan + 0~ Collll,,! 17 fll2,

We choose
9
0= (Coag) ™1 (ua(2)F1CH T,
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hence, we obtain the first inequality.
(ii) It is clear that the second inequality holds if || f|2p,,, or |7 f ll2p,v, = +00. Assume that

b
1A 2+ 1177 fll2p e < o0

-1
From hypothesis b > “TH, we deduce that the function r — (14 r?*?)7 belongs to L9(dv,) and By

Holder’s inequality, we have

112, = (T s 0o i) )

oo du,(r)
< (/0 (1+r2bv)§> (Hf”Zp,va + HrbeZpVA) .

However, with a standard computation, we obtain

14 b 14
/*“M T (reshreEth
0 (1_;[_,,217;7)% o bp2"‘+11"(a+1)r(%) = Mpaq

Replacing f(r) by f(r) = f(rt),t > 0in the relation (10), we deduce that for all > 0

r
20+42)(p—1) 2042 1)—2pb||,.b
S G [ e e [ P

(2bp—(2a+2)(p— 1))Hrbf\|2p],a
(2042)(p=1)[ fl25

2bp
In particular for t = ( ) , we obtain

1 atl A+1

% qb L qb b
£112,v, <Mb,,x,q(qb_(a+1))2 (DCJrl )qupl\fllz,,,,a |7 fllzp,,/a

Moreover,

aiin < (Ha(2))T[85(f)]
< (1a(2))7
gb L, gb &l | K

1 +1 o
2q _ b
SMb,a,q(qb_ (a+1))2”(a+1 1) (j10 (£)) ||f|\2p, £,

xSy (f) i

This completes the proof of the second inequality.
(iii) Lets > 0, from the inequality

it follows that

atl —(a+1
(|72 fH2p,va < Zq I fll2p, +8 5 ||7 P f||2p,va

a+1

2p v WE obtain

In particular, by choosing s = ||r T f||2p bl

||7 & f”zP/Va < 2||f”2p,1/a‘|r 1 fH:Zp,ya‘

Similarly, we prove that

a+l
[r21

.
<2l Ir 7 113,

1
v [P l2,0,

(10)
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Thus, we deduce that

x2Sy llgua < C1(062+q1 ¥) (pa(2) 7 (II %f||2pl/,x

<26 g (@) (vl

5 1l )

! bt
3e H 1130 177 £113,0, ),

a+1

which gives the result for b = o

O

From the L” local uncertainty principle, we can find the following L? Heisenberg-Pauli-Weyl uncertainty
principle for the Hankel-Stockwell transform.

Theorem 3. [L” Heisenberg-Pauli-Weyl uncertainty principle for the Hankel-Stockwell transform] Let i be
an admissible window function, p €]1,2],q = and d > 0. Then for every f € LP(dv,), we have

pP— 1'
5
Ci(bd, ) (nrbfnzm il ) @ SN, F0<b< 5,
g < . (g— L ‘i(aﬂ) a4u+4 '
199Dl <3 cy(0,4, ¢>||f\|§,,;t*”’” ) S [ORTER TR ifb > o5,

1 1 1 _2b
Cs(b,d, ) (Ht/fllz,v”ul\fllimHr"f\lm 1 I I A1, ) 7 PSSP 352, i = 21,

where

= =

Ci(b,d,p) = (C1(b,p))Tw <<d>dﬂb+(4b>m> ,
(22a+21"(2“_|_3)> @+1) d+4h 4b d

(Ca(b 4)))7%43%11 d WSt (4o 4 4\ 5 '
Co(b,d,¢p) = 2\ ( q >A++q+<(x )HH , and
2(b,d, 9) (T (2 4 3)) ( 4a+ 4 dq

ﬁ % d+2b %
Ca(b,d, ) = — AN ((;Z)d S+ (Zdb> ) .
(22"‘+2F(206 + 3)) 2q(d+2b)

Proof. (i) Let0<b < ’”1 ,d >0.Forp>0,let Ep = {(a,r) €R% xRy; a® +r*> < p*}. Then

155 ()15

Qe = ||XB Sy (f) T ||XBCSIX (f) 9 ha- (11)

From Theorem 2, we get

18,55 i < CHO )t (B (16l + Dl I

On the other hand,

_ p4oc+4
Ha(Bo) = smraraa s 3y

Using the previous result, we obtain

p4oc+4
1x5,5y ()< C (B, l/’)(m) <|V fllzpu ||r f|2v,,¢> : (12)
Moreover,
H)Cgfgsﬁ(f)”?;,m <o~ [(a, 1) 1SG )N - (13)
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By Combining relations (11), (12) and (13), we get

4n+4 hi _2 q -
15 e < €10 etz (17l + 10,10 s, )+ 07010, S5 e
We choose
b\ @ d 7
. (d(22“+21"(2a+3))w+1) 11Ga, P)1S5(F) g1
B 4bCI (b, -7 '
1(b9) 172z + 91l 172

hence, we obtain the first inequality.
(i) Letb > “TH, d > 0 and let p > 0. From Theorem 2, we obtain

s SSCAN 0 < CLb, ) ua B IS 7 f T,
B2\ Mlgpa S 20, W) Ha(Bp 2p,a 2p,va

q P4k+4 b
= Cz(ﬁ#’)m”f”zp,w 17 fll2p v,
Combining the relations (11), (13) and (14), we get

q

q plett S —d don [ (|19
Qe S Cz(b/'a’])mnfnzp,v{ 17 fllop v, 0N, 7)|*Sy(f)

9 Ha"

154 (f)

We choose

1
4a+-4+4-d
q q

dq2** 2T (20 + 3)|[[(a, 1) "S5 () 1,0

JRyEs) atl
(4a +4)C (0,9 fllap 170 fllp

hence, we obtain the second inequality.
(iii) Letb = "‘qil,d > 0 and let p > 0. From Theorem 2, we get

3 onbea 3 beiz o )\!
313, + 113 I £, )

15,55 (e < CE0, ) (aa(Bo))E (Il 11

. p2a+2 ,% % b % % b % q
= Gl ) (0 15,17 15, + 15130, 1, )
Combining the relations (11), (13) and (15), we obtain
20+2 _2 1 1 1 1 q
IS5 <CHb ) s (W 17 P, Ul 17 F )
+0 12, )85 ()11 -
We choose
1 m d 2a+g+dq
) (dq(22“+zr(2a+3))2> . 11, r) 1S5, g
B Cl(b, ) (2 + 2 -2 1 1 1 1
(b )2 +2) (18l 17130, 17 £13,, + 1 £, )

hence, we obtain the result.
O

(14)

(15)

In the following, we shall use the LP Heisenberg-Pauli-Weyl uncertainty principle to obtain a

concentration uncertainty principle.
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Definition 3. Let 0 < € < 1 and let S be a measurable set of R.. We say that f € LF(dv,), p € [1,2], is
e-concentrated on S in L? (dv,)-norm if there is a measurable function / vanishing outside S such that

||f*th,V.x < EHf”p,va'

We introduce a projection operator Ps as Psf(r) = f(r), if r € Sand Psf(r) =0, if r ¢ S. Let
0 < &g < 1. Then f is eg-concentrated on S in L7 (dv, )-norm if and only if

Il f—Psf

pre S SS||J[Hp,v,>¢-

Definition 4. Let 1 be an admissible window function and X be a measurable set of R} x R;. We define a
projection operator Qy as

Qsf = (55) 7 (Pe(S5(£)))-

Let0 < ex < 1. Then Sy is ex -concentrated on X in L9(dpq)-norm, 1 < g < 2if and only if

154(f) = Sp(QeN)llgua < exlISy(F)llg -

Proposition 4. Let ¢ be an admissible window function and X. be a measurable set of R, x R... Then, for every p > 2
and e > 0, if Sy, is e-concentrated in X with respect to the norm |.[|2,p,, then

p—2

oy 12 E )
(ha(X)) 7 = (1=€)Cy "[9ll3,, -
where iy (%) = // Avy(a)dv, (7).
b
Proof. Let f € L?(dv,) and p > 2. As Sy (f) is e-concentrated in X with respect to the norm ||.[|5,,,, we have

e SN llze < 4/Cypll

Now, using relation (6), we get
x=S3 (A3 = (1= )Cyl 113,

Applying Holder’s inequality, we obtain

r—2
P

IxeSHUNNE ., < NSHOIT iy (1a(2))

By relation (7), we obtain

2 24 P2
IxeSHOIE e < Cp 9l 11130, (1a(2)) 7
Finally,
=2 1-2 i_o
(ha(D) 7 = 1 =e)Cy Plyll3,, -
O

Proposition 5. Let ¢ be an admissible window function and f € L'(dvy) N L?(dvy) such that ||S$ e = 1.
If f is es-concentrated on S in L(dvy)-norm and Sy(f) is ex-concentrated on ¥ in L?(dpy)-norm, then vy(S) >

Cyp(1—es)[IfIR,,, and pa () F13,, 119113, =1 — &5

Proof. As Si( f) is ex-concentrated on ¥ in L?(d,)-norm and by the orthogonality of the projection operator
Py, it follows that

1551134, = I155(f) = Pe(SEUN N3 0, = IP(SENNF > 1~ €3,
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and thus
1— &5 < ISHN% uuta(Z) < pa(E) I fI5,, 191130,

By the same way, f is e5-concentrated on S in L' (dv, )-norm, we obtain

(

< [ 17)dva(r)

Now, by the Cauchy-Schwarz inequality and the fact that

we get

1
- =
vi (S)

e

Rl

(1 —es)lflliw <

O

Definition 5. Let ¢ be an admissible window function and X be a measurable set of R} x R;. Letd > 0,
feLl(dv), p€[l,2]and 0 < ex < 1. We say that |(a,r)|d5$ is ey, -concentrated on X in L7(dpu, )-norm, if and
only if

1(a,1)1455(F) = (@, 1)|*S5(Qu ) g < exlll(@ "G g -

Theorem 4. Let ¢ be an admissible window function and ¥. be a measurable set of R% x R. Let f € LP(dv,), p €
11,2],0< ey <landd > 0. If |(a, r)|dS”‘ is ey, -concentrated on . in L(du, )-norm, then

16, p) (17l + 19 12 )

(ks |||(ﬂfr)|d5$(Q2f)Hq,m>%/ Fo<b< s,
185D llans <3 e, 4) IIfHZZ}t”” i Hr”f\lzpﬁw‘” (e @S Qs Pl ) <, > 282,

Ca(b,d, ) ( | bfum U1, bfnz,,va)”’i"

x (ﬁn|(a,r>|ds;~,,<sz>|\q,M)2"*"’, ifb = o1,

Proof. Let f € LP(dv,), p €]1,2]. Since |(a,r) \‘{% is ey, -concentrated on X in L7(dp, )-norm, then we have

12, 1S (A e < (a1 SGQEf) g + exlll (g, 1)I*S(f)

Thus,
1
@D SH e < 5= 1@ IS5 Qe f)llg s

and we obtain the result from Theorem 3. [

Definition 6. Let = be a measurable set of R} x R, and 0 < # < ,/Cy. Then a nonzero function f €
LP(dvy),1 < p < 2is y-bandlimited on X in L7 (d‘u,x)—norm, if
1x2e S ()llga < 111 fllpva-

where g = %.

Corollary 1. Let 1 be an admissible window function.
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(i) If0 < b < “5L, then there exists a positive constant C such that for every function f which is y-bandlimited on &

P 3 2
(a(E) (17l + 19U 17 f o ) > C(Cp = 1) £ B

(il) Ifb > %L, then there exists a positive constant C such that for every function f which is n-bandlimited on .

-5 b 211 £112
PN f g, " 17 fllan, = C(Cop =) f 1120,
Proof. Since f € L?(dv,) is y-bandlimited on %, then

xS (O3 4, = Cyll F1Z, = IxzSH(NIE,, = (Cp = )13,

For (i) and (ii), we use the local inequalities given respectively by Theorem 2. [

According to the following Pitt’s inequality for the Hankel transform [9], we obtain the Pitt’s inequality
for the Hankel-Stockwell transform.

Proposition 6. Let 0 < 7 < a + 1. For every f € S.(R), we have
oo ) +oo )
LA ) Pave3) < Cpa [ 11150 Pava ), (16

(=)

where Cy o =271 (1‘(2‘"‘*2"”7>> and T'(.) denotes the well known Eurler’s gamma function.
)

Theorem 5. [Pitt’s inequality the Hankel- Stockwell transform] Let ¢ be an admissible window function and
0 < <a+1 Forevery f € S,(R), the Pitt's inequality for the Hankel- Stockwell transform is given by

Co [N P ) < o [ [T 11850 @) Pt

Proof. For 7 = 0, the result follows from relation (6). Now suppose that 0 < 7 < a + 1. For every f € S.(R)
and by (16), we can write

+c0 +o00
| AT (S5 (0,) W) Pvn(A) < Cpa [ 171501 (0, ) P,

Integrating with respect dv, (a), we get

Coa [ [Isy (@ Pt > [T [T RS D WP @dun (). a7

By (1)—(4) and using Fubini’s theorem, we obtain

+oo  pHoo0
L [T A sy @) () Pava@va (1)
o0 _ 400
=/0 Al ”IHa(f)(A)IZ(/O [Ha(DaMy () (A) Pdva (@) ) dva(2)

= [ W[ Dy (VaHa R ) ()P (1)

= [T WR( [ D (5 ()P ) ) ) (2)

ot [T DR [ )R ) v (1)

=G [T I () P (1), as)
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Relations (17) and (18) gives the Pitt’s inequality for the Hankel-Stockwell transform. O

Now, using the following logarithmic uncertainty principle for the Hankel transform [9], we obtain the
logarithmic uncertainty principle for the Hankel-Stockwell transform.

Proposition 7. For every f € S¢.(R), the following inequality holds:

a+1

[ @@ Ra® + [ 0P > (24 o 5D) [P, a9)

where w denotes the logarithmic derivative of the gamma function I [20,21].

Theorem 6. [Logarithmic uncertainty principle for the Hankel-Stockwell transform] Let ¢ be an admissible
window function. For every f € S.(R), we have

Gy [N O P+ [ [T mO)ISH ) @) Pdpaa,r) > Cp (102 + @ E) 1B,

Proof. Replacing f by Sj,(f) in the inequality (19), we obtain

+co +o0
| O (S DO P + [ () ISG(F) (0, ()

> (m2+w (552)) [T IS0 @0 P

Integrating both sides with respect to a4, we have

/ h / "I (S} @, )0 dpaa,0) + /0+°° /0+°° In(r)| S (f)(a,7) Pdpa(a, )
> (m2ra (S50) [ [Tissn@nPamtan. o

By (1), (4) and using Fubini’s theorem, we obtain

+00
L [ ma 3 @) 0 P,
=[O AOP( [ 1 (DuM () (1) Pavia) )1
= Cy [ (O Ha (1) () Pl () 1)

Hence, by (6), (20) and (21), we have

Clp/ () [Ha (F) (1) Pdv (1) +/ /+oo |Sa Y(a,7)|?dpg(a, ) = Cy (1n2—|— (“+1>)
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