Open Journal of Mathematical Analysis

Article

Certain new subclasses of m-fold symmetric bi-pseudo-starlike functions using Q-derivative operator

Timilehin Gideon Shaba
Department of Mathematics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.; shabatimilehin@gmail.com
Communicated by: Absar ul Haq
Received: 17 September 2020; Accepted: 21 February 2021; Published: 28 February 2021.

Abstract: In this current study, we introduced and investigated two new subclasses of the bi-univalent functions associated with q-derivative operator; both f and f^{-1} are m-fold symmetric holomorphic functions in the open unit disk. Among other results, upper bounds for the coefficients $\left|\rho_{m+1}\right|$ and $\left|\rho_{2 m+1}\right|$ are found in this study. Also certain special cases are indicated.

Keywords: m-fold symmetric bi-univalent functions, analytic functions, univalent function.
MSC: 30C45.

1. Introduction

Let \mathcal{A} be the family of holomorphic functions, normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ which is of the form

$$
\begin{equation*}
f(z)=z+\rho_{2} z^{2}+\rho_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

in the open unit disk $\Omega=\{z ; z \in \mathbb{C}$ and $|z|<1\}$. We denote by \mathcal{G} the subclass of functions in \mathcal{A} which are univalent in Ω (for more details see [1]).

The Keobe-One Quarter Theorem [1] state that the image of Ω under all univalent function $f \in \mathcal{A}$ contains a disk of radius $\frac{1}{4}$. Hence all univalent function $f \in \mathcal{A}$ has an inverse f^{-1} satisfy $f^{-1}(f(z))$ and $f\left(f^{-1}(v)\right)=v$ $\left(|v|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
g(v)=f^{-1}(v)=v-\rho_{2} v^{2}+\left(2 \rho_{2}^{2}-\rho_{3}\right) v^{3}-\left(5 \rho_{2}^{3}-5 \rho_{2} \rho_{3}+\rho_{4}\right) v^{4}+\cdots \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ denoted by Σ is said to be bi-univalent in Ω if both $f^{-1}(z)$ ans $f(z)$ are univalent in Ω (see for details [2-11]).

A domain Ψ is said to be m-fold symmetric if a rotation of Ψ about the origin through an angle $2 \pi / \mathrm{m}$ carries Ψ on itself. Therefore, a function $f(z)$ holomorphic in Ω is said to be m-fold symmetric if

$$
f\left(e^{\frac{2 \pi i}{m}} z\right)=e^{\frac{2 \pi i}{m}} f(z)
$$

A function is said to be m-fold symmetric if it has the following normalized form

$$
\begin{equation*}
f(z)=z+\sum_{\phi=1}^{\infty} \rho_{m \phi+1} z^{m \phi+1} \quad(z \in \Omega, \quad m \in \mathcal{N}=\{1,2,3, \cdots\}) \tag{3}
\end{equation*}
$$

Let \mathfrak{S}_{m} the class of m-fold symmetric univalent functions in Ω, that are normalized by (3), in which, the functions in the class \mathfrak{S} are one-fold symmetric. Similar to the concept of m-fold symmetric univalent functions, we introduced the concept of m-fold symmetric bi-univalent functions which is denoted by Σ_{m}. Each of the function $f \in \Sigma$ produces m-fold symmetric bi-univalent function for each integer $m \in \mathcal{N}$.

The normalized form of $f(z)$ is given as in (3) and the series expansion for $f^{-1}(z)$, which has been investigated by Srivastava et al., [12], is given below:

$$
\begin{align*}
g(v)= & f^{-1}(v) \\
= & v-\rho_{m+1} v^{m+1}+\left[(m+1) \rho_{m-1}^{2}-\rho_{2 m+1}\right] v^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) \rho_{m+1}^{3}-(3 m+2) \rho_{m+1} \rho_{2 m+1}+\rho_{3 m+1}\right] . \tag{4}
\end{align*}
$$

Some of the examples of m-fold symmetric bi-univalent functions are

$$
\begin{gathered}
\left\{\frac{z^{m}}{1-z^{m}}\right\}^{\frac{1}{m}} \\
{\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}}
\end{gathered}
$$

and

$$
\left\{\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}\right\}
$$

For more details on m-fold symmetric analytic bi-univalent functions (see [5,12-17]).
Jackson $[18,19]$ introduced the q-derivative operator \mathcal{D}_{q} of a function as follows;

$$
\begin{equation*}
\mathcal{D}_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z} \tag{5}
\end{equation*}
$$

and $\mathcal{D}_{q} f(0)=f^{\prime}(0)$. In case of $g(z)=z^{k}$ for k is a positive integer, the q-derivative of $f(z)$ is given by

$$
\mathcal{D}_{q} z^{k}=\frac{z^{k}-(z q)^{k}}{(q-1) z}=[k]_{q} z^{k-1}
$$

As $q \longrightarrow 1^{-}$and $k \in \mathcal{N}$, we get

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q}=1+q+\cdots+q^{k} \longrightarrow k \tag{6}
\end{equation*}
$$

where $(z \neq 0, q \neq 0)$. For more details on the concepts of q-derivative (see [5,20-27]).
Definition 1. [28] Let $f(z) \in \mathcal{A}, 0 \leq \chi<1$ and $\sigma \geq 1$ is real. Then $f(z) \in L_{\sigma}(\chi)$ of σ-pseodu-starlike function of order χ in Ω if and only if

$$
\begin{equation*}
\Re\left(\frac{z\left[f^{\prime}(z)\right]^{\sigma}}{f(z)}\right)>\chi \tag{7}
\end{equation*}
$$

Babalola [28] verified that, all pseodu-starlike function are Bazilevic of type $\left(1-\frac{1}{\sigma}\right)$, order $\chi^{\frac{1}{\sigma}}$ and univalent in Ω.

Lemma 1. [1] Let the function $\omega \in \mathcal{P}$ be given by the following series $\omega(z)=1+\omega_{1} z+\omega_{2} z^{2}+\cdots \quad(z \in \Omega)$. The sharp estimate given by $\left|\omega_{n}\right| \leq 2 \quad(n \in \mathcal{N})$ holds true.

In [29] Girgaonkar et al., introduced a new subclasses of holomorphic and bi-univalent functions as follows:

Definition 2. A function $f(z)$ given by (1) is said to be in the class $\mathcal{M}_{\Sigma}(\chi)(0<\chi \leq 1,(z, v) \in \Omega)$ if $f \in \mathcal{E}$, $\left|\arg \left(f^{\prime}(z)\right)^{\sigma}\right|<\frac{\chi \pi}{2}$ and $\left|\arg \left(g^{\prime}(v)\right)^{\sigma}\right|<\frac{\chi \pi}{2}$, where $g(v)$ is given by (2).

Definition 3. A function $f(z)$ given by (1) is said to be in the class $\mathcal{M}_{\Sigma}(\psi)(0 \leq \psi<1,(z, v) \in \Omega)$ if $\vartheta \in \Sigma$, $\Re\left[\left(f^{\prime}(z)\right)^{\sigma}\right]>\psi$ and $\Re\left[\left(g^{\prime}(v)\right)^{\sigma}\right]>\psi$, where $g(v)$ is given by (2).

In this current research, we introduced two new subclasses denoted by $\mathcal{M}_{\Sigma, m}^{q, \sigma}(\chi)$ and $\mathcal{M}_{\Sigma, m}^{q, \sigma}(\psi)$ of the function class Σ_{m} and obtain estimates coefficient $\left|\rho_{m+1}\right|$ and $\left|\rho_{2 m+1}\right|$ for functions in these two new subclasses.

2. Main 4esults

Definition 4. A function $f(z)$ given by (3) is said to be in the class $\mathcal{M}_{\Sigma, m}^{q, \sigma}(\chi)(m \in \mathcal{N}, 0<q<1, \sigma \geq 1,0<$ $\chi \leq 1,(z, v) \in \Omega)$ if

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad\left|\arg \left(\mathcal{D}_{q} f(z)\right)^{\sigma}\right|<\frac{\chi \pi}{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\mathcal{D}_{q} g(v)\right)^{\sigma}\right|<\frac{\chi \pi}{2} \tag{9}
\end{equation*}
$$

where $g(v)$ is given by (2).
Remark 1. We have the class $\lim _{q \rightarrow 1^{-1}} \mathcal{M}_{\Sigma, 1}^{\sigma}(\chi)=\mathcal{M}_{\Sigma}^{\sigma}(\chi)$ which was introduced and studied by Girgaonkar et al., [29].

Remark 2. We have the class $\lim _{q \rightarrow 1^{-1}} \mathcal{M}_{\Sigma, 1}^{1}(\chi)=\mathcal{M}_{\Sigma}(\chi)$ which was introduced and studied by Srivastava et al., [11].

Theorem 1. Let $f(z) \in \mathcal{M}_{\Sigma, m}^{q, \sigma}(\chi),(m \in \mathcal{N}, 0<q<1, \sigma \geq 1,0<\chi \leq 1,(z, v) \in \Omega)$ be given (3). Then

$$
\begin{equation*}
\left|\rho_{m+1}\right| \leq \frac{2 \chi}{\sqrt{(m+1) \sigma \chi[2 m+1]_{q}-(\chi-\sigma) \sigma[m+1]_{q}^{2}}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\rho_{2 m+1}\right| \leq \frac{2 \chi}{\sigma[2 m+1]_{q}}+\frac{2(m+1) \chi^{2}}{\sigma^{2}[m+1]_{q}^{2}} \tag{11}
\end{equation*}
$$

Proof. Using inequalities (1) and (9), we get

$$
\begin{equation*}
\left(\mathcal{D}_{q} f(z)\right)^{\sigma}=[\tau(z)]^{\chi} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathcal{D}_{q} g(v)\right)^{\sigma}=[\varsigma(v)]^{\chi} \tag{13}
\end{equation*}
$$

respectively, where $\tau(z)$ and $\varsigma(v)$ in \mathcal{P} are given by the following series

$$
\begin{equation*}
\tau(z)=1+\tau_{m} z^{m}+\tau_{2 m} z^{2 m}+\tau_{3 m} z^{3 m}+\cdots \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\varsigma(v)=1+\varsigma_{m} v^{m}+\varsigma_{2 m} v^{2 m}+\varsigma_{3 m} v^{3 m}+\cdots . \tag{15}
\end{equation*}
$$

Clearly,

$$
[\tau(z)]^{\chi}=1+\chi \tau_{m} z^{m}+\left(\chi \tau_{2 m}+\frac{\chi(\chi-1)}{2} \tau_{m}^{2}\right) z^{2 m}+\cdots,
$$

and

$$
[\varsigma(v)]^{\chi}=1+\chi \varsigma_{m} v^{m}+\left(\chi \varsigma_{2 m}+\frac{\chi(\chi-1)}{2} \varsigma_{m}^{2}\right) v^{2 m}+\cdots
$$

Also

$$
\left(\mathcal{D}_{q} f(z)\right)^{\sigma}=1+\sigma[m+1]_{q} \rho_{m+1} z^{m}+\left(\sigma[2 m+1]_{q} \rho_{2 m+1}+\frac{\sigma(\sigma-1)}{2}[m+1]_{q}^{2} \rho_{m+1}^{2}\right) z^{2 m}+\cdots,
$$

and

$$
\begin{aligned}
\left(\mathcal{D}_{q} g(v)\right)^{\sigma}= & 1-\sigma[m+1]_{q} \rho_{m+1} v^{m}-\sigma[2 m+1]_{q} \rho_{2 m+1} v^{2 m} \\
& +\left(\sigma(m+1)[2 m+1]_{q} \rho_{m+1}^{2}+\frac{\sigma(\sigma-1)}{2}[m+1]_{q}^{2} \rho_{m+1}^{2}\right) v^{2 m}+\cdots
\end{aligned}
$$

Comparing the coefficients in (12) and (13), we have

$$
\begin{align*}
& \quad \sigma[m+1]_{q} \rho_{m+1}=\chi \tau_{m}, \tag{16}\\
& \tag{17}\\
& \sigma[2 m+1]_{q} \rho_{2 m+1}+\frac{\sigma(\sigma-1)}{2}[m+1]_{q}^{2} \rho_{m+1}^{2}=\chi \tau_{2 m}+\frac{\chi(\chi-1)}{2} \tau_{m}^{2}, \tag{18}\\
& - \tag{19}\\
& \sigma[m+1]_{q} \rho_{m+1}=\chi \varsigma_{m}, \\
& - \\
& -\sigma[2 m+1]_{q} \rho_{2 m+1}+\left(\sigma(m+1)[2 m+1]_{q}+\frac{\sigma(\sigma-1)}{2}[m+1]_{q}^{2}\right) \rho_{m+1}^{2}=\chi \varsigma_{2 m}+\frac{\chi(\chi-1)}{2} \varsigma_{m}^{2} .
\end{align*}
$$

From (16) and (18), we obtain

$$
\begin{equation*}
\tau_{m}=-\varsigma_{m}, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \sigma[m+1]_{q}^{2} \rho_{m+1}^{2}=\chi^{2}\left(\tau_{m}^{2}+\varsigma_{m}^{2}\right) \tag{21}
\end{equation*}
$$

Further from (17), (19) and (21), we obtain that

$$
\sigma(\sigma-1) \chi[m+1]_{q}^{2} \rho_{m+1}^{2}+(m+1) \sigma \chi[2 m+1]_{q} \rho_{m+1}^{2}-(\chi-1) \sigma^{2}[m+1]_{q}^{2} \rho_{m+1}^{2}=\chi^{2}\left(\tau_{2 m}+\varsigma_{2 m}\right)
$$

Therefore, we have

$$
\begin{equation*}
\rho_{m+1}^{2}=\frac{\chi^{2}\left(\tau_{2 m}+\varsigma_{2 m}\right)}{\sigma[m+1]_{q}^{2}(\sigma-\chi)+(m+1) \sigma \chi[2 m+1]_{q}} \tag{22}
\end{equation*}
$$

By applying Lemma 1 for the coefficients $\tau_{2 m}$ and $\varsigma_{2 m}$, then we have

$$
\left|\rho_{m+1}\right| \leq \frac{2 \chi}{\sqrt{(m+1) \sigma \chi[2 m+1]_{q}-(\chi-\sigma) \sigma[m+1]_{q}^{2}}}
$$

Also, to find the bound on $\left|\rho_{2 m+1}\right|$, using the relation (19) and (17), we obtain

$$
\begin{equation*}
2 \sigma[2 m+1]_{q} \rho_{2 m+1}-(m+1) \sigma[2 m+1]_{q} \rho_{m+1}^{2}=\chi\left(\tau_{2 m}-\varsigma_{2 m}\right)+\frac{\chi(\chi-1)}{2}\left(\tau_{m}^{2}-\varsigma_{m}^{2}\right) \tag{23}
\end{equation*}
$$

It follows from (20), (21) and (23),

$$
\begin{equation*}
\rho_{2 m+1}=\frac{(m+1) \chi^{2} \tau_{m}^{2}}{2 \sigma^{2}[m+1]_{q}^{2}}+\frac{\chi\left(\tau_{2 m}-\varsigma_{2 m}\right)}{2 \sigma[2 m+1]_{q}} \tag{24}
\end{equation*}
$$

Applying Lemma 1 for the coefficients $\tau_{m}, \tau_{2 m}, \varsigma_{m}, \varsigma_{2 m}$, then we have

$$
\left|\rho_{2 m+1}\right| \leq \frac{2 \chi}{\sigma[2 m+1]_{q}}+\frac{2(m+1) \chi^{2}}{\sigma^{2}[m+1]_{q}^{2}}
$$

Choosing $q \longrightarrow 1^{-1}$ in Theorem 1, we get the following result:
Corollary 1. Let $f(z) \in \mathcal{M}_{\Sigma, m}^{\sigma}(\chi),(m \in \mathcal{N}, \sigma \geq 1,0<\chi \leq 1,(z, v) \in \Omega)$ be given (3). Then

$$
\begin{equation*}
\left|\rho_{m+1}\right| \leq \frac{2 \chi}{\sqrt{(m+1)\left[\sigma \chi m+\sigma^{2} m+\sigma^{2}\right]}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\rho_{2 m+1}\right| \leq \frac{2 \chi}{\sigma(2 m+1)}+\frac{2 \chi^{2}}{\sigma^{2}(m+1)} \tag{26}
\end{equation*}
$$

Choosing $m=1$ (0ne-fold case) in Theorem 1, we get the following result:
Corollary 2. Let $f(z) \in \mathcal{M}_{\Sigma}^{q, \sigma}(\chi),(0<q<1, \sigma \geq 1,0<\chi \leq 1,(z, v) \in \Omega)$ be given (1). Then

$$
\begin{equation*}
\left|\rho_{2}\right| \leq \frac{2 \chi}{\sqrt{2 \sigma \chi[3]_{q}-(\chi-\sigma) \sigma[2]_{q}^{2}}} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\rho_{3}\right| \leq \frac{2 \chi}{\sigma[3]_{q}}+\frac{4 \chi^{2}}{\sigma^{2}[2]_{q}^{2}} \tag{28}
\end{equation*}
$$

Choosing $q \longrightarrow 1^{-1}$ in Corollary 2, we get the following result:
Corollary 3. [29] Let $f(z) \in \mathcal{M}_{\Sigma}^{\sigma}(\chi),(\sigma \geq 1,0<\chi \leq 1,(z, v) \in \Omega)$ be given (1). Then

$$
\begin{equation*}
\left|\rho_{2}\right| \leq \frac{2 \chi}{\sqrt{2 \sigma(2 \sigma+\chi)}} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\rho_{3}\right| \leq \frac{\chi(2 \sigma+3 \chi)}{3 \sigma^{2}} \tag{30}
\end{equation*}
$$

Remark 3. For one-fold case, we have $\lim _{q \longrightarrow 1^{-1}} \mathcal{M}_{\Sigma, 1}^{q, 1}(\chi)=\mathcal{M}_{\Sigma}(\chi)$, and we can get the results of Srivastava et al., [11].

Definition 5. A function $f(z)$ given by (3) is said to be in the class $\mathcal{M}_{\Sigma, m}^{q, \sigma}(\psi)(m \in \mathcal{N}, 0<q<1, \sigma \geq 1,0 \leq$ $\psi<1,(z, v) \in \Omega)$ if

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad \Re\left[\left(\mathcal{D}_{q} f(z)\right)^{\sigma}\right]>\psi, \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left[\left(\mathcal{D}_{q} g(v)\right)^{\sigma}\right]>\psi \tag{32}
\end{equation*}
$$

where $g(v)$ is given by (2).
Remark 4. We have the class $\lim _{q \longrightarrow 1^{-1}} \mathcal{M}_{\Sigma, 1}^{\sigma}(\psi)=\mathcal{M}_{\Sigma}^{\sigma}(\chi)$ which was introduced and studied by Girgaonkar et al., [29].

Remark 5. We have the class $\lim _{q \rightarrow 1^{-1}} \mathcal{M}_{\Sigma, 1}^{1}(\psi)=\mathcal{M}_{\Sigma}(\chi)$ which was introduced and studied by Srivastava et al., [11].

Theorem 2. Let $f(z) \in \mathcal{M}_{\Sigma, m}^{q, \sigma}(\psi),(m \in \mathcal{N}, 0<q<1, \sigma \geq 1,0 \leq \psi<1,(z, v) \in \Omega)$ be given (3). Then

$$
\begin{equation*}
\left|\rho_{m+1}\right| \leq \min \left\{\frac{2(1-\psi)}{\sigma[m+1]_{q}}, 2 \sqrt{\frac{1-\psi}{\sigma(\sigma-1)[m+1]_{q}^{2}+(m+1) \sigma[2 m+1]_{q}}}\right\} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\rho_{2 m+1}\right| \leq \frac{2(m+1)(1-\psi)}{\sigma(\sigma-1)[m+1]_{q}^{2}+(m+1) \sigma[2 m+1]_{q}}+\frac{2(1-\psi)}{\sigma[2 m+1]_{q}} \tag{34}
\end{equation*}
$$

Proof. Using inequalities (31) and (32), we get

$$
\begin{equation*}
\left(\mathcal{D}_{q} f(z)\right)^{\sigma}=\psi+(1-\psi) \tau(z) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathcal{D}_{q} g(v)\right)^{\sigma}=\psi+(1-\psi) \varsigma(v) \tag{36}
\end{equation*}
$$

here $\tau(z)$ and $\varsigma(v)$ in \mathcal{P} are given by the following series

$$
\tau(z)=1+\tau_{m} z^{m}+\tau_{2 m} z^{2 m}+\tau_{3 m} z^{3 m}+\cdots
$$

and

$$
\varsigma(v)=1+\varsigma_{m} v^{m}+\varsigma_{2 m} v^{2 m}+\varsigma_{3 m} v^{3 m}+\cdots .
$$

Clearly,

$$
\psi+(1-\psi) \tau(z)=1+(1-\psi) \tau_{m} z^{m}+(1-\psi) \tau_{2 m} z^{2 m}+\cdots,
$$

and

$$
\psi+(1-\psi) \varsigma(v)=1+(1-\psi) \varsigma_{m} v^{m}+(1-\psi) \varsigma_{2 m} v^{2 m}+\cdots .
$$

Also

$$
\left(\mathcal{D}_{q} f(z)\right)^{\sigma}=1+\sigma[m+1]_{q} \rho_{m+1} z^{m}+\left(\sigma[2 m+1]_{q} \rho_{2 m+1}+\frac{\sigma(\sigma-1)}{2}[m+1]_{q}^{2} \rho_{m+1}^{2}\right) z^{2 m}+\cdots,
$$

and

$$
\begin{aligned}
\left(\mathcal{D}_{q} g(v)\right)^{\sigma}= & 1-\sigma[m+1]_{q} \rho_{m+1} v^{m}-\sigma[2 m+1]_{q} \rho_{2 m+1} v^{2 m} \\
& +\left(\sigma(m+1)[2 m+1]_{q} \rho_{m+1}^{2}+\frac{\sigma(\sigma-1)}{2}[m+1]_{q}^{2} \rho_{m+1}^{2}\right) v^{2 m}+\cdots
\end{aligned}
$$

Now comparing the coefficients in (35) and (36), we get

$$
\begin{align*}
& \sigma[m+1]_{q} \rho_{m+1}=(1-\psi) \tau_{m}, \tag{37}\\
& \sigma[2 m+1]_{q} \rho_{2 m+1}+\frac{\sigma(\sigma-1)}{2}[m+1]_{q}^{2} \rho_{m+1}^{2}=(1-\psi) \tau_{2 m}, \tag{38}\\
- & \sigma[m+1]_{q} \rho_{m+1}=(1-\psi) \varsigma_{m}, \tag{39}\\
- & \sigma[2 m+1]_{q} \rho_{2 m+1}+\left(\sigma(m+1)[2 m+1]_{q}+\frac{\sigma(\sigma-1)}{2}[m+1]_{q}^{2}\right) \rho_{m+1}^{2}=(1-\psi) \varsigma_{2 m} . \tag{40}
\end{align*}
$$

From (37) and (39), we obtain

$$
\begin{equation*}
\tau_{m}=-\varsigma_{m}, \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \sigma[m+1]_{q}^{2} \rho_{m+1}^{2}=(1-\psi)^{2}\left(\tau_{m}^{2}+\varsigma_{m}^{2}\right) \tag{42}
\end{equation*}
$$

Also, from (38) and (40), we get

$$
\begin{equation*}
\sigma(\sigma-1) \chi[m+1]_{q}^{2} \rho_{m+1}^{2}+(m+1) \sigma[2 m+1]_{q} \rho_{m+1}^{2}=(1-\psi)\left(\tau_{2 m}+\varsigma_{2 m}\right) \tag{43}
\end{equation*}
$$

Applying the Lemma 1 for the coefficients $\tau_{m}, \tau_{2 m}, \varsigma_{m}, \varsigma_{2 m}$, we find that

$$
\left|\rho_{m+1}\right| \leq 2 \sqrt{\frac{(1-\psi)}{\sigma(\sigma-1)[m+1]_{q}^{2}+(m+1) \sigma[2 m+1]_{q}}}
$$

Also, to find the bound on $\left|\rho_{2 m+1}\right|$, using the relation (40) and (38), we obtain

$$
\begin{equation*}
-(m+1) \sigma[2 m+1]_{q} \rho_{m+1}^{2}+2 \sigma[2 m+1]_{q} \rho_{2 m+1}=(1-\psi)\left(\tau_{2 m}-\varsigma_{2 m}\right) \tag{44}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\rho_{2 m+1}=\frac{(1-\psi)\left(\tau_{2 m}-\varsigma_{2 m}\right)}{2 \sigma[2 m+1]_{q}}+\frac{(m+1)}{2} \rho_{m+1}^{2} . \tag{45}
\end{equation*}
$$

By substituting the value of ρ_{m+1}^{2} from (42), we have

$$
\begin{equation*}
\rho_{2 m+1}=\frac{(1-\psi)\left(\tau_{2 m}-\varsigma_{2 m}\right)}{2 \sigma[2 m+1]_{q}}+\frac{(m+1)(1-\psi)^{2}\left(\tau_{m}^{2}+\varsigma_{m}^{2}\right)}{4 \sigma^{2}[m+1]_{q}^{2}} . \tag{46}
\end{equation*}
$$

Applying the Lemma 1 for the coefficients $\tau_{m}, \tau_{2 m}, \varsigma_{m}, \varsigma_{2 m}$, we get

$$
\left|\rho_{2 m+1}\right| \leq \frac{2(1-\psi)}{\sigma[2 m+1]_{q}}+\frac{2(m+1)(1-\psi)^{2}}{2 \sigma^{2}[m+1]_{q}^{2}} .
$$

Also, by using (43) and (45), and applying Lemma 1 we obtain

$$
\left|\rho_{2 m+1}\right| \leq \frac{2(m+1)(1-\psi)}{\sigma(\sigma-1)[m+1]_{q}^{2}+(m+1) \sigma[2 m+1]_{q}}+\frac{2(1-\psi)}{\sigma[2 m+1]_{q}} .
$$

This complete the proof.
Choosing $q \longrightarrow 1^{-1}$ in Theorem 2, we get the following result:
Corollary 4. Let $f(z) \in \mathcal{M}_{\Sigma, m}^{\sigma}(\psi),(m \in \mathcal{N}, \sigma \geq 1,0 \leq \psi<1,(z, v) \in \Omega)$ be given (3). Then

$$
\left|\rho_{m+1}\right| \leq\left\{\begin{array}{cc}
2 \sqrt{\frac{(1-\psi)}{\sigma(\sigma-1)[m+1)^{+}+(m+1) \sigma[2 m+1]}} & 0 \leq \psi \leq \frac{m}{1+2 m} \\
\frac{2(1-\psi)}{\sigma[m+1]} & \frac{m}{1+2 m} \leq \psi<1
\end{array}\right.
$$

and

$$
\left|\rho_{2 m+1}\right| \leq \frac{2(m+1)(1-\psi)}{\sigma(\sigma-1)[m+1]^{2}+(m+1) \sigma[2 m+1]}+\frac{2(1-\psi)}{\sigma[2 m+1]} .
$$

For one fold case, Corollary 4, yields the following Corollary:
Corollary 5. Let $f(z) \in \mathcal{M}_{\Sigma}^{\sigma}(\psi),(\sigma \geq 1,0 \leq \psi<1,(z, v) \in \Omega)$ be given (1). Then

$$
\left|\rho_{2}\right| \leq\left\{\begin{array}{cc}
\sqrt{\frac{2(1-\psi)}{\sigma(2 \sigma+1)}} & 0 \leq \psi \leq \frac{1}{3}, \\
\frac{1-\psi)}{\sigma} & \frac{1}{3} \leq \psi<1,
\end{array}\right.
$$

and

$$
\left|\rho_{3}\right| \leq \frac{(1-\psi)(2 \sigma-3 \psi+3)}{3 \sigma^{2}}
$$

Remark 6. Corollary 5 gives above is the improvement of the estimates for coefficients on $\left|\rho_{2}\right|$ and $\left|\rho_{3}\right|$ investigated by Girgaonkar et al., [29].

Corollary 6. [29] Let $f(z) \in \mathcal{M}_{\Sigma}^{\sigma}(\psi),(\sigma \geq 1,0 \leq \psi<1,(z, v) \in \Omega)$ be given (1). Then

$$
\left|\rho_{2}\right| \leq \sqrt{\frac{2(1-\psi)}{\sigma(2 \sigma+1)}}
$$

and

$$
\left|\rho_{3}\right| \leq \frac{(1-\psi)(2 \sigma-3 \psi+3)}{3 \sigma^{2}}
$$

Taking $\sigma=1$ in Corollary 7, we get the following result:

Corollary 7. [11] Let $f(z) \in \mathcal{M}_{\Sigma}^{\sigma}(\psi),(\sigma \geq 1,0 \leq \psi<1,(z, v) \in \Omega)$ be given (1). Then

$$
\left|\rho_{2}\right| \leq \sqrt{\frac{2(1-\psi)}{3}}
$$

and

$$
\left|\rho_{3}\right| \leq \frac{(1-\psi)(5-3 \psi)}{3}
$$

3. Conclusion

In this present paper, two new subclasses indicated by $\mathcal{M}_{\Sigma, m}^{q, \sigma}(\chi)$ and $\mathcal{M}_{\Sigma, m}^{q, \sigma}(\psi)$ of function class of \mathcal{E}_{m} was obtained and worked on. Also, the estimates coefficients for $\left|\rho_{m+1}\right|$ and $\left|\rho_{2 m+1}\right|$ of functions in these classes are determined.
Conflicts of Interest: "The author declares no conflict of interest."

References

[1] Duren, P. L. (2001). Univalent Functions (Vol. 259). Springer, New York, NY, USA.
[2] Brannan, D. A., \& Taha, T. S. (1988). On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications (pp. 53-60). Pergamon.
[3] Frasin, B. A., \& Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24(9), 1569-1573.
[4] Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18(1), 63-68.
[5] Sakar, F. M.,\& Güney, M. O. (2018). Coefficient estimates for certain subclasses of m-mold symmetric bi-univalent functions defined by the q-derivative operator. Konuralp Journal of Mathematics, 6(2), 279-285.
[6] Patil, A. B., \& Naik, U. H. (2018). Bounds on initial coefficients for a new subclass of bi-univalent functions. New Trends in Mathematical Sciences, 6(1), 85-90.
[7] Shaba, T.G., Ibrahim, A. A., \& Jimoh, A. A. (2020). On a new subclass of bi-pseudo-starlike functions defined by frasin differential operator. Advances in Mathematics: Scientific Journal, 9(7) (2020), 4829-4841.
[8] Shaba, T.G. (2020). On some new subclass of bi-univalent functions associated with the Opoola differential operator. Open Journal of Mathematical Analysis, 4(2), 74-79.
[9] Shaba, T. G. (2020). Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator. Turkish Journal of Inequalities,4(2), 50-58.
[10] Shaba, T. G. (2020). Certain new subclasses of analytic and bi-univalent functions using salagean operator. Asia Pacific Journal of Mathematics, 7(29), 7-29.
[11] Srivastava, H. M., Mishra, A. K., \& Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10), 1188-1192.
[12] Srivastava, H. M., Sivasubramanian, S., \& Sivakumar, R. (2014). Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Mathematical Journal, 7(2), 1-10.
[13] Akgül, A., \& Campus, U. (2017). On the coefficient estimates of analytic and bi-univalent m-fold symmetric functions. Mathematica Aeterna, 7(3), 253-260.
[14] Altinkaya, S., \& Yalçin, S. (2018). On some subclasses of m-fold symmetric bi-univalent functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 29-36.
[15] Bulut, S. (2016). Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turkish Journal of Mathematics, 40(6), 1386-1397.
[16] Hamidi, S. G., \& Jahangiri, J. M. (2014). Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. International Journal of Mathematics, 25(07), 1450064.
[17] Eker, S. S. (2016). Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turkish Journal of Mathematics, 40(3), 641-646.
[18] Jackson, D. O., Fukuda, T., Dunn, O., \& Majors, E. (1910). On q-definite integrals. Quarterly Journal of Pure and Applied Mathematics, 41, 193-203.
[19] Jackson, F. H. (1909). XI.-on q-functions and a certain difference operator. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 46(2), 253-281.
[20] Akgül, A. (2018, January). Finding initial coefficients for a class of bi-univalent functions given by q-derivative. In AIP Conference Proceedings (Vol. 1926, No. 1, p. 020001). AIP Publishing LLC.
[21] Aldweby, H., \& Darus, M. (2013). A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. ISRN Mathematical Analysis, 2013 , Article ID 382312.
[22] Aldweby, H., \& Darus, M. (2017). Coefficient estimates for initial taylor-maclaurin coefficients for a subclass of analytic and bi-univalent functions associated with q-derivative operator. Recent Trends in Pure and Applied Mathematics, 2017, 109-117.
[23] Aral, A., Gupta, V., \& Agarwal, R. P. (2013). Applications of q-calculus in operator theory (p. 262). New York: Springer.
[24] Bulut, S. (2017). Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 108-114.
[25] Mohammed, A., \& Darus, M. (2013). A generalized operator involving the q-hypergeometric function. Matematicki Vesnik, 65(254), 454-465.
[26] Seoudy, T. M., \& Aouf, M. K. (2014). Convolution properties for \mathfrak{C} certain classes of analytic functions defined by q-derivative operator, Abstract and Applied Analysis, 2014, Article ID 846719.
[27] Seoudy, T. M., \& Aouf, M. K. (2016). Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. Journal of Mathematical Inequalities, 10(1), 135-145.
[28] Babalola, K.O.(2013). On λ-pseudo-starlike function. Journal of Classical Analysis, 3, 137-147.
[29] Girgaonkar, V. B., Joshi, S. B., \& Yadav, P. P. (2017). Certain special subclasses of analytic function associated with bi-univalent functions. Palestine Journal of Mathematics, 6(2), 617-623.
© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

