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1. Introduction

S tudies in normed spaces have been carried out with very interesting results obtained as shown in [1–
3]. Several properties of operators in these spaces have been studied including norms, orthogonality,

spectra, among others in Hilbert spaces and Banach spaces in general [4]. Regarding norm-attainable classes, a
lot has been done in terms of structural properties [6–13]. Elementary operators have also been of considerable
attention on many aspects particularly on their orthogonality, (see [14] and the references therein).

Let H be an infinite dimensional complex Hilbert space and B(H) the algebra of all bounded linear
operators on H. We say T ∈ B(H) is said to be norm-attainable if there exists a unit vector x0 ∈ H such
that ‖Tx0‖ = ‖T‖. We denote by NA(H) the class of all norm-attainable operators on H. Benitez [15] gave a
detailed description of several types of orthogonality which have been studied in real normed spaces namely:
Robert’s orthogonality, Birkhoff’s orthogonality, Orthogonality in the sense of James, Isosceles, Pythagoras,
Carlsson, Diminnie, Area among others as described in [16].

For x ∈ M and y ∈ N , whereM and N are subspaces of E which is a normed linear space, we have:

• Roberts-‖x− λy‖ = ‖x + λy‖, ∀, λ ∈ R;
• Birkhoff -‖x + λy‖ ≥ ‖x‖;
• Isosceles-‖x− y‖ = ‖x + y‖;
• Pythagorean-‖x− y‖2 = ‖x‖2 + ‖y‖2;
• a-Pythagorean-‖x− ay‖2 = ‖x‖2 + a2‖y‖2, a 6= 0;
• Diminnie-sup{ f (x)g(y) − f (y)g(x) : f , g ∈ S′} = ‖x‖‖y‖ where S′ denotes the unit sphere of the

topological dual of E;
• Area-‖x‖‖y‖ = 0 or they are linearly independent and such that x,−x, y,−y divide the unit ball of their

own plane (identified by R2) in four equal areas [4].

For characterizations of elementary operators, we consider Banach algebras and norm-attainable classes.
Let A be a normed space and let TA,B : A → A. T is called an elementary operator if it has the following
representation:

T(X) =
n

∑
i=1

AiXBi, ∀ X ∈ A,

where Ai, Bi are fixed in A.
Let A = B(H). For A, B ∈ B(H) we define specific elementary operators as follows [21]:
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• the left multiplication operator LA : B(H)→ B(H) by LA(X) = AX, ∀ X ∈ B(H);
• the right multiplication operator RB : B(H)→ B(H) by RB(X) = XB, ∀ X ∈ B(H);
• the generalized derivation (implemented by A, B) by δA,B = LA − RB;
• the basic elementary operator(implemented by A, B) by MA, B(X) = AXB, ∀ X ∈ B(H);
• the Jordan elementary operator(implemented by A, B) by UA, B(X) = AXB + BXA, ∀ X ∈ B(H).

In this paper, we characterize the orthogonality of the range and the kernel of several types of important
elementary operators in normed spaces. Let X ∈ B(H) be a compact operator, and let s1(X) ≥ s2(X) ≥ ... ≥ 0
denote the eigenvalues of |X| = (X ∗ X)

1
2 arranged in their decreasing order. Considering the normed classes,

we call Cp:1≤p<∞(H) (simply denoted by Cp(H)), the Von Neumann-Schatten p-class, if

‖X‖ =
[

∞

∑
i=1

Si(X)p

] 1
p

= tr(|X|p)
1
p < +∞,

where tr denotes the trace functional. Hence, C1(H) is the trace class, C2(H) is the Hilbert-Schmidt class and
the case p = ∞, corresponds to the class of compact operators C∞(H) equipped with the norm ‖X‖∞ = S1(X).

2. Preliminaries

In this section, we give the basic concepts which are useful in the sequel. We begin with the following
definition;

Definition 1. Let W be a complex normed space, then for any elements x, y ∈ W, we say that x is orthogonal
to y, noted by x ⊥ y, if and only if for all α, β ∈ C there holds ‖αy + βx‖ ≥ ‖βx‖.

Definition 2. Let W be a complex Banach space. If P and Q are linear subspaces in W, we say that P is
orthogonal to Q , denoted by P ⊥ Q, if ‖x + y‖ ≥ ‖x‖ for all x ∈ P and all y ∈ Q. If P = x, we simply write
x ⊥ Q.

Remark 1. We note that the orthogonality in the definition above is not symmetric [17] and if W is a Hilbert
space with its inner product then it follows from [18] that 〈x, y〉 = 0 which means that Birkhoff-James’s
orthogonality generalizes the usual sense of orthogonality in a Hilbert space [19].

Definition 3. Let F : X → Y and J : Y → Z be operators between norm-attainable classes. We say J is
orthogonal to F if s ∈ KerT ⇒ ‖s + E(x)‖ ≥ ‖s‖, ∀ x ∈ X. Moreover, if F = J, we shall say that F is
orthogonal.

Remark 2. The authors in [10] proved that if A and B are normal operators then for all X, S ∈ B(H), S ∈
kerδA,B ⇒ ‖δA,B(X) + S‖ = ‖S‖, where the kerδA,B denotes the kernel of δA,B. This means that the kernel of
δA,B is orthogonal to its range. This result has been generalized in different directions, to non-normal operators
[20], to Cp(H), and to some elementary operators [19].

3. Conditions for orthogonality in norm-attainable class and Cp-classes

Let X be a normed linear space over the field K and X† its topological dual. For all x ∈ X,

D(X) =
{

ϕ ∈ X† : ϕ(x) = ‖x‖2; ‖ϕ‖ = ‖x‖
}

is called the duality mapping. The Hahn-Banach’s theorem [12] ensures that there always exists at least one
support functional (a support functional ϕ at x ∈ X is a norm-one linear functional in X† such that (ϕ(x) =

‖x‖) at each vector x ∈ X) and therefore D(x) is non-empty for every x ∈ X. Moreover, it is well known that
D(x) is convex and weak*-compact subset of X†. Hence, D is not linear in general but it is homogeneous, that
is, for all α ∈ R, D(αx) = αD(x).

Proposition 1. Let K be a norm-attainable subclass of a norm-attainable set X and x 6∈ K, then x ⊥ K if and only if
there exists ϕ̃ ∈ D(x) such that K ⊆ kerϕ̃.
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Proof. Since K is a norm-attainable class, let ϕ ∈ D(x) be such that 〈ϕ, y〉 = 0, for all y ∈ K. Then ϕ(x + y) =
ϕ(x) = ϕ‖x‖2 and ‖x‖2 = ‖ϕ‖‖x + y‖ = ‖x‖‖x + y‖, that is, ‖x‖ = ‖x + y‖, for all y ∈ K. Hence, x ⊥ K.

Conversely, let x 6∈ K such that x ⊥ K. Then, for all y ∈ K, x and y are linearly independent vectors.
Let L be the closed norm-attainable subclass spanned by K and x, L = [K, x]. Define the function ϕ on L by
ϕ(αx + βy) = α‖x‖2, for all y ∈ K and α , β ∈ C. Clearly, ϕ is linear (by the assumption that K is a linear subset
of X ). To prove the continuity of ϕ, let z ∈ L, then z = αx + βy and ϕ(z) = α‖x‖2. By the definition of ϕ and
the assumption that x ⊥ K, we derive that ‖z‖ = ‖αx‖. If α 6= 0, it is easy to see from known inequalities that

|ϕ(z)| = |α|‖x‖2. ‖z‖‖z‖ ≤
|α|‖x‖2

‖αx‖ ‖z‖ = ‖x‖‖z‖. If α = 0, then |ϕ(z)| = |ϕ(βy)| = 0. Hence, |ϕ(z)| ≤ ‖x‖‖z‖,
for all z ∈ L. Therefore, ϕ is continuous on L and ‖ϕ‖ = ‖x‖. By Hahn-Banach theorem there is a continuous
linear functional ϕ̃ on X such that ϕ̃|L = ϕ and ‖ϕ̃‖ = ‖ϕ‖, where ϕ̃|L is the restriction of ϕ on L. It follows, by
the definition of ϕ and ϕ̃|L = ϕ that K ⊆ kerϕ̃ and ϕ̃ ∈ D(x).

Theorem 1. Let K be a norm-attainable subclass of a norm-attainable set X. For all x, y ∈ X , x ⊥ y if and only if there
exists ϕ ∈ D(x) such that ϕ(y) = 0. Moreover, for all x ∈ X and for all ϕ ∈ D(x), x ⊥ kerϕ.

Proof. From Proposition 1 and an analogous computation from [20], the proof is clear.

Remark 3. We can consider general normed spaces as follows: Let K be a nonempty subset of a Banach space
X and T ∈ NA(X), we denote the duality adjoint of T by T† and set K⊥r = {x ∈ X : x ⊥ y; ∀y ∈ K}. It
is clear that if {xn}n is a sequence in a subset K converging to y and x ⊥ xn, for all n, then x ⊥ y. Hence,
x ⊥ K → x ⊥ K.

Proposition 2. Let X be a norm-attainable subclass of NA(H), then

(1). If K and L are closed subclasses of X and K⊕ L.
(2). Let T ∈ NA(H) and s ∈ X. Then

(i). s ⊥ ranT ⇔ ∃ϕ ∈ D(s) such that ϕ ∈ kerT†.
(ii). If T is orthogonal, then kerT ⊕ ran(T) is a closed subclass of X.

Proof. (1). Let z ∈ X : z = limn(xn + yn) and zn = (xn + yn); for all n ≥ 1, where xn ∈ K and yn ∈ L. From
K ∈ L⊥r, we obtain,

‖zn − zn+p‖ = k‖yn − yn+p + xn − xn+p‖ = ‖xn − xn+p‖, for all n, p.

So, {xn}n is a Cauchy sequence, hence limn xn ∈ K. Setting x = limn xn, we get limn yn = z− x ∈ L and
therefore, z ∈ K⊕ L.

(2). (i). By Proposition 1, s ⊥ ranT ⇔ ∃ϕD(s), ran(T) ⊆ kerϕ that is ϕ(Tx) = (T† ϕ)x = 0, for all x ∈ X.
Hence s ⊥ ran T ⇔ ∃ϕ ∈ D(s) : ϕ ∈ KerT†.

(ii). It is a direct consequence of the assertions (1) and (2)(i).

Remark 4. Let f : X → X be a map on X, not necessarily linear or additive, and Ff : X → R+ be a map defined
by Ff (x) = ‖ f (x)‖, ∀ x ∈ X. We say that Ff has a global minima at a ∈ X if ‖ f (a)‖ = ‖ f (x)‖, for all x ∈ X.

As an application of the previous results, the following result gives us a necessary and sufficient
conditions in term of Birkhoff-James orthogonality for minimizing the map Ff .

Lemma 1. Let T and f : X → X be norm-attainable maps and a ∈ X. Suppose that the relation f (x) + T(y) =

f (y) + T(x) holds for all x, y ∈ X, if f (a) ⊥ T(x), ∀x ∈ X then the map Ff has a global minima at a. Moreover, if we
suppose that T is linear and f (x) = T(x) + f (0), ∀x ∈ X, then Ff has a global minima at a if and only if f (a) ⊥ ranT
if and only if there is ϕ ∈ D( f (a)) such that ϕ ∈ kerT†, where T† is the duality map of T. Lastly, if f (a) is a smooth
point, then the existence of ϕ is unique.

Proof. It follows from Theorem 1, that for all x ∈ X, f (a) ⊥ T(x) ⇔ ∃ϕ ∈ X† : ϕ( f (a)) = ‖ f (a)‖2 = ‖ϕ‖2

and ϕ(T(x)) = 0. Then by the relation defined in (i), we get ϕ( f (a)) = ϕ( f (a) + T(x)) = ϕ( f (x) + T(a)) =
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ϕ( f (x)), so that ‖ϕ( f (a))‖ = ‖ f (a)‖‖ϕ‖ ≤ ‖ϕ‖‖ f (x)‖. Hence, ‖ f (a)‖ ≤ ‖ f (x)‖, for all x ∈ X. Since the
maps f , T satisfy the relation cited in (i), the sufficient condition follows from the first part of the proof. By
linearity of T, we get f (a) + λT(x) = f (a + λx), for all x ∈ X, λ ∈ C. Hence, Ff has a global minima at a
implies ‖ f (a) + λg(x)‖ ≥ ‖ f (a + λx)‖ = ‖ f (a)‖. The other equivalence follows immediately. To complete
the proof, if f (a) is a smooth point, then f (a) has only one functional support and therefore D( f (a)) has one
element.

Lemma 2. If J is a separable ideal of norm-attainable operators in NA(H) equipped with unitary invariant norm, then
its dual I is isometrically isomorphic to an ideal of compact operator Q not necessarily separable, i.e.,

φ : Q → J †, R 7→ φR(X) = tr(XR).

Proof. Following the argument in Lemma 1, the proof is trivial.

Theorem 2. Let A ∈ Cp(H), T ∈ B(Cp(H)) and f , Ff are defined as in Lemma 1, where f (A) is given by its polar
decomposition f (A) = u| f (A)|. If A ∈ Cp(H), then Ff has a global minimizer at A if and only if f (A) ⊥ ranT if and
only if | f (A)|p−1u∗ ∈ kerT†. Moreover, if A ∈ C1(H) and f (A) is a smooth point, then Ff has a global minimizer at
A if and only if f (A) ⊥ ranT if and only if u∗ ∈ kerT† when f (A) is injective (or u ∈ kerT† when f (A)∗is injective).

Proof. From Lemma 1, we have that Ff has a global minimizer at A if and only if there exists ϕ ∈ D( f (A))

such that ϕ ∈ kerT†. If A ∈ Cp(H), then by the properties of the isomorphism, it follows that ϕ ∈ Cp(H)† if
and only if there exists R ∈ Cp(H) such that φR = ϕ, ‖ϕ‖ = ‖R‖ and ϕ(X) = tr RX, for all X ∈ Cp(H). Hence,
the smoothness of Cp(H), Ff has a global minimizer at A if and only if there is a unique operator R such that
ϕ( f (A)) = tr( f (A)R) = ‖ f (A)‖2

p = ‖R‖2
q and tr(T†(R)X) = 0, for all X ∈ Cp(H). To complete the proof, it

is well known that C1(H) is neither reflexive, nor smooth and its dual C1(H)† is isometrically isomorphic to
NA(H). This isomorphism is given by φ ∈ NA(H) if and only if C1(H)† contains R 7→ φR such that φR(X) =

tr(XR) so we have that ϕ ∈ C1(cH)† ⇔ ∃R ∈ NA(H) : φR = ϕ, ‖ϕ‖ = ‖R‖ and ϕ(X) = tr RX ∀X ∈ C1(H),
so that if f (A) is a smooth point then Ff has a global minimizer at A if and only if there is a unique operator R
such that ϕ( f (A)) = tr( f (A)R) = ‖ f (A)‖2

1 = ‖R‖2 and tr(T†(R)X) = 0, ∀X ∈ C1(H). Since f (A) is smooth
then by [7], either f (A) or f (A)∗ is injective, thus either u or u∗ is an isometry i.e., uu∗ = I or u∗u = I. So
it suffices to take R = ‖ f (A)‖1u∗or R = ‖ f (A)‖1u, which is the unique operator required in both cases. So,
f (A) or f (A)∗ is injective.

Proposition 3. Let K be a closed subclass of a norm-attainable class X. If X is separable and K⊥r = 0, then K = X.

Proof. If K 6= X, then there exists ϕ ∈ X† : K ⊆ kerϕ. Since D(ϕ) is not empty, then there is f ∈ X†† with
f (ϕ) = ‖ϕ‖2 = ‖ f ‖2. Let J be the natural injection between X and X†† i.e., J : X → X††, ∀x ∈ X, ∀ψ ∈ X†,
such that J(x)ψ = ψ(x), ‖J(x)‖ = ‖x‖. So, by the separability of X, J is a bijection and, then there is 0 6= x ∈ X
such that J(x) = f . Hence, ϕ(x) = ‖x‖2 = ‖ϕ‖2. Thus, ϕ ∈ D(x) and by application of Proposition 1, we get
0 6= x ∈ K⊥r = 0, a contradiction.

Proposition 4. Let X be a separable, smooth and strictly convex norm-attainable class and T ∈ NA(X). If T†is
orthogonal, then ∀s ∈ X, s ⊥ ranT ⇒ s ∈ KerT.

Proof. Let s ∈ X such that ⊥ ranT. Then by [7] and the smoothness of X, there is a unique ϕs ∈ D(s)
such that ϕs ∈ kerT†. Again, by assumptions of the proposition and arguments in [21], there is ψϕs ∈ D(ϕs)

such that ψϕs ∈ kerT††. Let J be the natural injection between X and X∗ as defined in [22]. We see that
J(s)ϕs = ‖ϕsk‖ and ‖J(s)‖ = ‖ϕs‖, which means that J(s) ∈ D(ϕs). By the separability of X, J is a bijection.
Hence, there is c ∈ X such that ψϕs = J(c) and ‖J(c)‖ = ‖c‖ = ‖ϕ‖, J(c)ϕs = ϕs(c) = ψϕs(ϕs) = ‖ϕs‖2.
Then ϕs ∈ D(s)

⋂
D(c) and since X is strictly convex, we get c = s. Thus, J(c) = J(S) ∈ kerT††. Therefore, it

immediately follows that (T†† J(s))ϕ = J(s)(T†) = (T† ϕ)s = ϕ(Ts) = 0, for all ϕ ∈ X†. That is s ∈ kerT.

In the next result we consider general Banach spaces. If X is a reflexive separable Banach space and T†

is orthogonal then the implication of orthogonality holds with respect to a suitable norm in X. Indeed, if X is
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separable, then there is an equivalent norm which is smooth and strictly convex in X. This can be seen in the
next theorem.

Theorem 3. Let X be a reflexive, smooth and strictly convex Banach space and T ∈ B(X). If T and † are orthogonal.
Then ∀s ∈ X : s ⊥ ranT ⇔ s ∈ kerT, where X = kerT ⊕ ran(T).

Proof. If T is orthogonal then, by Definition 2, it follows that ∀s ∈ X such that s ⊥ ranT, it implies that s ∈ kerT
and the reverse implication follows by Proposition 1. Let us prove the decomposition. Let y ∈ X such that
y ∈ (kerT ⊕ ran(T))⊥r, then there is ϕy ∈ D(y) such that ϕy(s⊕ TX) = 0, for all s ∈ kerT and all x ∈ X. For
s = 0, it follows, by [12], that Y ⊥ ranT, and by [13], ranT ⊆ kerT. So, we can choose x = 0 and s = y, such that
this yields ϕy(y) = 0. This means y ⊥ y, and hence y = 0. Finally, the decomposition follows immediately.

4. Orthogonality conditions for elementary operators

In this section, we consider the important case, when the operator T, cited in the previous section, is
replaced by the elementary operators defined as follows:

E(X) = ∑ Xn
i=1 AiXBi on Cp(H)

where A = (A1, A2, ..., An) and B = (B1, B2, ..., Bn) are n-tuples in (NA(H))n. The duality adjoint of E on
Cp(H) has the form E†(X) = ∑n

i=1 BiXAi. Indeed, let X ∈ Cp(H) and R ∈ B(H)(orR ∈ Cq(H) if X ∈ Cp(H),
where we have 1

p + 1
q = 1 and that 1 < p, q < ∞ then the following form suffices, that is,

φR(E(X)) = tr

(
n

∑
i=1

AiXBiR

)
= tr

(
X

n

∑
i=1

AiRBi

)
= tr(XE†(R)) = φE†(R)(X).

We denote the formal adjoint of E by Ẽ = ∑n
i=1 A∗i XB∗i , where (A∗1 , A∗2 , ..., A∗n) and (B∗1 , B∗2 , ..., B∗n) are n-tuples

of operators in (B(H))n.

Proposition 5. Let H, K be Hilbert spaces, A ∈ NA(H), B ∈ NA(K) and E ∈ B(NA(K, H)) such that E(X) =

AXB + BXA. If A and B∗ are injective operators then E is injective.

Proof. If either AXB = 0 or BXA = 0 with A injective, then we have that XB = 0 = B∗X = 0 implies
X∗ = 0 = X since B∗ is injective. Thus, E is injective.

Proposition 6. Let A = (A1, A2, ..An) and B = (B1, B2, ..Bn) with Ai, Bi be operators in B(H) such that
n
∑

i=1
Ai A∗i ≤

1,
n
∑

i=1
Ai A∗i ≤ 1,

n
∑

i=1
BiB∗i ≤ 1, and

n
∑

i=1
BiB∗i ≤ 1. If E is the elementary operator defined on Cp:1≤p<∞ by E(X) =

∑n
i=1 AiXBi − X then kerE = kerẼ ⇒ kerE† = kerẼ†. Moreover, if E(S) = 0 = Ẽ(S) for some compact operator S,

then [|S|, Bi] = 0 ∀1 ≤ i < n.

Proof. We have that E†(S) = 0⇔ ẼS∗ = 0. Then from the equality, KerE = KerẼ. It follows that E†(S) = 0⇔
E(S∗) = 0⇔ Ẽ†(S) = 0. The rest is trivial.

At this point we give certain necessary conditions and characterization of the operators in Cp-classes
whose kernels are orthogonal to the ranges of certain kinds of elementary operators, in particular, we consider
the Jordan elementary operator.

Proposition 7. Let E be an elementary operator defined on Cp then ∀S, X ∈ Cp(H), ‖E(X) + S‖p ≥ ‖S‖p ⇒ S ∈
kerE then E(X) = AXB with A∗ and B injective operators E(X) = AXB−CXD, where A, B normal operators, D, C∗

hyponormal operators with [A, C] = [B, D] = 0 and kerA∗
⋂

kerC∗ = 0 = kerB
⋂

kerD.
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Proof. The duality adjoint E† is defined by E†(X) = BXA and using a result of [19], we get E† is injective and
hence orthogonal. So, the result follows by Proposition 1. Next, we have E†(X) = BXA− DXC and applying
the result of [20], we get E† is orthogonal, and so by [16], the proof is complete.

Theorem 4. Let A, B ∈ NA(H) be hyponormal operators, such that AB = BA, and let U (X) = AXB + BXA.
Furthermore, suppose that A∗A + B∗B > 0. If S ∈ KerU , then |‖U (X) + S‖| ≥ |‖S‖|.

Proof. Follows trivially from the proof of the sum of two basic elementary operators as shown in [5] and from
the fact that |‖.|‖ is a unitarily invariant norm.

We extend Theorem 4 to distinct hyponormal operators A, B, C, D ∈ NA(H) in the theorem below:

Theorem 5. Consider A, B, C, D ∈ NA(H) as hyponormal operators, such that AC = CA, BD = DB, AA∗ ≤ CC∗

, B∗B ≤ D∗D. Let the Jordan elementary operator be given as U (X) = AXB + CXD and S ∈ NA(H) satisfying
ASB = CSD, then ‖U (X) + S‖ ≥ ‖S‖, for all X ∈ NA(H).

Proof. Since U (X) = AXB + CXD and the fact that AC = CA, BD = DB, AA∗ ≤ CC∗ , B∗B ≤ D∗D, then it is
easy to see that the operator is injective. So, with S ∈ NA(H) satisfying ASB = CSD, then ‖U (X) + S‖ ≥ ‖S‖
follows analogously from the proof of the sum of two basic elementary operators as shown in [8].

Theorem 6. Consider A, B, C, D ∈ NA(H) as hyponormal operators, such that AC = CA, BD = DB, AA∗ ≤ CC∗

, B∗B ≤ D∗D. Let the Jordan elementary operator be give as U (X) = AXB − CXD and S ∈ NA(H) satisfying
ASB = CSD, then ‖U (X) + S‖ ≥ ‖S‖, for all X ∈ NA(H).

Proof. From AA∗ ≤ CC∗ and B∗B ≤ D∗D, let A = CU, and B = VD, where U, V are unitaries. So we have
AXB − CXD = CUXVD − CXD = C(UXV − X)D. Assume C and D∗ are injective, ASB = CSD if and
only if USV = S. Moreover, C and U commute. Indeed, from A = CU we obtain AC = CUC. Therefore,
C(A−UC) = 0. Thus since C is injective A = CU. Similarly, D and V commute. So,

‖U (X) + S‖ = ‖[AXB− CXD] + S‖ = ‖[U(CXD)V − CXD] + S‖ ≥ ‖S‖, ∀X ∈ NA(H).

The rest is clear from the analogous assertions in [10] for hyponormal operators.

5. Conclusion

In this paper, we have given necessary conditions and characterize the elements that are orthogonal
to the range of an operator defined in certain classes of normed spaces. We have also given range-kernel
orthogonality conditions for elementary operators defined on Cp-classes and on norm-attainable class,
particularly, the Jordan elementary operators.
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