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1. Introduction

T he concept of b-metric spaces was first introduced by Bakhtin [1] and Czerwik [2] and utilized for s = 2
and for an arbitrary s ≥ 1 to prove some generalizations of Banach’s fixed point theorem [3]. In 2010,

Khamsi and Hussain [4] reintroduced the notion of b-metric and called it a metric-type. Afterwards, several
authors proved fixed and common fixed point theorems for single-valued mappings in b-metric spaces, see
[5–16].

In this paper, we introduce the definition of C-class functions and (ψ, ϕ, F)-contraction type mappings
where ψ is the altering distance function and ϕ is the ultra altering distance function. The unique fixed point
theorem for self mapping in the setting of b-complete metric spaces is proven. In the end of paper, we apply
our main result to approximating the solution of the Fredholm integral equation.

In the sequel, we always denote by N, R, and R+ the set of positive integers, real numbers, and
nonnegative real numbers, respectively. The following definitions, notations, basic lemma and remarks will be
needed in the sequel.

Definition 1. [1] Let X be a nonempty set and s ≥ 1 a given real number. A function d : X× X → R+ is called
a b-metric on X if for all x, y, z ∈ X, the following conditions are satisfied;

(bm-1) d(x, y) = 0 ⇐⇒ x = y,
(bm-2) d(x, y) = d(y, x),
(bm-3) d(x, y) ≤ s(d(x, z) + d(z, y)).

The pair (X, d) is called a b-metric space with a coefficient s.
Every metric space is a b-metric space with s = 1, but the converse is not true in general as it is shown by

the following example.

Example 1. [17] Let X = {0, 1, 2} and d : X× X → R+ defined by

d(0, 0) = d(1, 1) = d(2, 2) = 0,

d(1, 0) = d(0, 1) = d(2, 1) = d(1, 2) = 1,

d(0, 2) = d(2, 0) = m,
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where, m is given real number such that m ≥ 2. It is easy to check that for all x, y, z ∈ X

d(x, y) ≤ m
2
(d(x, z) + d(z, y)).

Therefore, (X, d) is a b-metric space with a coefficient s =
m
2

. The ordinary triangle inequality does not hold if

m > 2 and so (X, d) is not a metric space.

Example 2. [13] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where p > 1 is a real number. Then ρ is
a b-metric with s = 2p−1.

For other examples of a b-metric, see [1].

Definition 2. [18] Let (X, d) be a b-metric space and {xn} a sequence in X. The sequence {xn} is said to be

(i) Convergent to x ∈ X if limn→+∞ d(xn, x) = 0. In this case, we write limn→+∞ xn = x.
(ii) A Cauchy sequence if limn,m→+∞ d(xn, xm) = 0.

(iii) (X, d) is complete if every Cauchy sequence in X is convergent.

Remark 1. In general, a b-metric need not be continuous in each variable [13].

The following lemma was established by [12].

Lemma 1. Let (X, d) be a b-metric space with a coefficient s ≥ 1 and {xn} a sequence in X such that

d(xn, xn+1) ≤ λd(xn−1, xn), n = 1, 2, ...,

where 0 ≤ λ < 1. Then {xn} is a Cauchy sequence.

Recently, Ansari [19] introduced the concept of following C-class functions which covers a large class of
contractive conditions.

Definition 3. [19] A continuous function F : [0,+∞) → R is called C-class function if for any s, t ∈ [0,+∞);
the following conditions hold

(c1) F(s, t) ≤ s,
(c2) F(s, t) = s implies that either s = 0 or t = 0.

An extra condition on F that F(0, 0) = 0 could be imposed in some cases if required. The letter C will denote
the class of all C- functions.

Example 3. The following examples show that the class C is nonempty;

1. F(s, t) = s− t,
2. F(s, t) = ms; for some m ∈ (0, 1),
3. F(s, t) = s

(1+t)r for some r ∈ (0, 1),

4. F(s, t) = log(t+as)
(1+t) , for some a > 1,

5. F(s, t) = s− ( 1+s
2+s )(

t
1+t ),

6. F(s, t) = sβ(s), β : [0,+∞)→ (0, 1) is continuous,
7. F(s, t) = s− t

k+t .
8. F(s, t) = s− ( 2+t

1+t )t,
9. F(s, t) = n

√
ln (1 + sn).

Let Φu denote the class of the functions ϕ : [0,+∞)→ [0,+∞) which satisfy the following conditions;

(a) ϕ is continuous,
(b) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.
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In 1984, Khan et al., [20] introduced altering distance function as follows;

Definition 4. [20] A function ψ : [0,+∞) → [0,+∞) is called an altering distance function if the following
properties are satisfied;

(i) ψ is non-decreasing and continuous,
(ii) ψ(t) = 0 if and only if t = 0.

Let us suppose that Ψ denote the class of the altering distance functions.

Definition 5. A tripled (ψ, ϕ, F) where ψ ∈ Ψ; ϕ ∈ Φu and F ∈ C is said to be a monotone if for any x, y ∈
[0,+∞), we have

x ≤ y⇒ F(ψ(x), ϕ(x)) ≤ F(ψ(y), ϕ(y)).

Example 4. Let F(s, t) = s− t, ϕ(x) =
√

x and ψ(x) =

{ √
x if 0 ≤ x ≤ 1

x2 if x > 1
, then (ψ, ϕ, F) is monotone.

2. Main result

In this section we assume ψ is altering distance function, ϕ is ultra altering distance function and F is a
C-class function.

Theorem 1. Let (X, d) be a b-complete metric space and T be a self-mapping on X that satisfies the following contractive
condition;

ψ (d(Tx, Ty)) ≤ F (ψ(M(x, y)), ϕ(M(x, y))) , (1)

for all x, y ∈ X, where ψ ∈ Ψ, ϕ ∈ Φu and F ∈ C such that (ψ, ϕ, F) is monotone and

M(x, y) = max
{

d(x, y),
d2(x, y)

1 + d(y, Ty)
,

d2(y, Ty)
1 + d(x, y)

,
d(x, Tx)d(y, Ty)

1 + d(Ty, Tx)

}
. (2)

Then, T has a unique fixed point in X.

Proof. Let x in X and {xn}n be a sequence in X defined as

Txn = xn+1, yn = xn−1 n = 0, 1, 2 . . . .

Applying the inequality (1), we obtain

ψ (d(Txn, Txn−1)) ≤ F (ψ(M(xn, xn−1)), ϕ(M(xn, xn−1))) ,

where

M(xn, xn−1) = max
{

d(xn, xn−1),
d2(xn, xn−1)

1 + d(xn−1, Txn−1)
,

d2(xn−1, Txn−1)

1 + d(xn, xn−1)
,

d(xn, Txn)d(xn−1, Txn−1)

1 + d(Txn−1, Txn)

}
≤ d(xn−1, xn).

Thus

ψ (d(Txn, Txn−1)) ≤ F (ψ(d(xn, xn−1)), ϕ(d(xn, xn−1)))

≤ ψ(d(xn, xn−1)).

Since ψ is non-decreasing, then d(Txn, Txn+1) ≤ d(xn, xn−1). This means {d(xn, xn+1)} is a decreasing
sequence. Thus it converges and there exists r ≥ 0 such that lim

n→+∞
d(xn, xn+1) = r. Taking n → +∞,

then contractive condition impliesψ (r) ≤ F (ψ(r), ϕ(r)) ≤ ψ (r) . So, ψ(r) = 0. Therefore r = 0, that is
lim

n→+∞
d(xn, xn+1) = 0.
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Now, we prove that the sequence {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy sequence,
then there exists an ε > 0 for which we can nd two sequences of positive integers m(k) and n(k) such that for
all positive integers k, n(k) > m(k) > k and d(xm(k), xn(k)) ≥ ε. Let n(k) be the smallest positive integer
n(k) > m(k) > k, such that

d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) ≤ ε.

Then, we find ψ(ε) = 0 which is a contradiction. Thus {xn} is a b-Cauchy sequence in X. Since (X, d) is a
complete b-metric space, so there exists u ∈ X, such that lim

n→+∞
xn = u.

Uniqueness of fixed point

Let v 6= u be another fixed point of f , then from the contraction condition, we have

ψ (d(u, v)) ≤ ψ (sd(u, v)) = ψ (sd(Tu, Tv)) ≤ F (ψ(M(u, v)), ϕ(M(u, v))) ,

where

M(u, v) = max
{

d(u, v),
d2(u, v)

1 + d(v, Tv)
,

d2(v, Tv)
1 + d(u, v)

,
d(u, Tu)d(v, Tv)

1 + d(Tv, Tu)

}
.

Then ψ (d(u, v)) = 0, thus d(u, v) = 0. This shows T has a unique fixed point.

The following example supports our Theorem 1.

Example 5. Let the complete b-metric space (X, d) with X =
[
0, 1

2

]
and

d(x, y) = |x− y| f or all x, y ∈ X.

Consider T : X → X be given by Tx = x
4 for all x ∈ X. Then, for ψ (t) = t and F(s, t) = ms for some m ∈ (0, 1),

we have

d(Tx, Ty) =
1
4
|x− y| ≤ 1

2
|x− y|

≤ 1
2

d(x, y) ≤ 1
2

M(x, y).

Thus, T is satisfying all the conditions of Theorem 1 and 0 is its fixed point, which is unique.

The following results can be obtained immediately from Theorem 1.

Corollary 1. Let (X, d) be a complete b-metric space and T be a self-mapping on X that satisfies the following contractive
condition;

ψ (d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

for all x, y ∈ X where ψ ∈ Ψ; ϕ ∈ Φu and F ∈ C such that (ψ, ϕ, F) is monotone and

M(x, y) = max
{

d(x, y),
d2(x, y)

1 + d(y, Ty)
,

d2(y, Ty)
1 + d(x, y)

,
d(x, Tx)d(y, Ty)

1 + d(Ty, Tx)

}
.

Then, T has a unique fixed point in X.

Proof. Taking F(s, t) = s− t, in Theorem 1, we obtain the desired result.

Corollary 2. Let (X, d) be a complete b-metric space and T be a self-mapping on X that satisfies the following contractive
condition;

ψ (d(Tx, Ty)) ≤ M(x, y)Φ (ϕ(M(x, y)) ,
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for all x, y ∈ X where ψ ∈ Ψ; ϕ ∈ Φu and F ∈ C such that (ψ, ϕ, F) is monotone and

M(x, y) = max
{

d(x, y),
d2(x, y)

1 + d(y, Ty)
,

d2(y, Ty)
1 + d(x, y)

,
d(x, Tx)d(y, Ty)

1 + d(Ty, Tx)

}
.

Then, T has a unique fixed point in X

Proof. Taking ψ (t) = t and F(s, t) = s
(1+t)r for some r ∈ (0, 1) in Theorem 1, we obtain the desired result.

Corollary 3. Let (X, d) be a complete b-metric space and T be a self-mapping on X that satisfies the following contractive
condition;

d(Tx, Ty) ≤ M(x, y)
(1 + M(x, y))r ,

for all x, y ∈ X where ψ ∈ Ψ; ϕ ∈ Φu ,r ∈ (0, 1) and F ∈ C such that (ψ, ϕ, F) is monotone and

M(x, y) = max
{

d(x, y),
d2(x, y)

1 + d(y, Ty)
,

d2(y, Ty)
1 + d(x, y)

,
d(x, Tx)d(y, Ty)

1 + d(Ty, Tx)

}
.

Then, T has a unique fixed point in X

Proof. Taking F(s, t) = sΦ (t), (s, t > 0) in Theorem 1, we obtain the desired result.

3. Application to integral equations

Let X = C[a, b] be a set of all real valued continuous functions on [a, b], where [a, b] is closed and bounded
interval in R. For a real number p > 1, define d : X× X → R+ by

d(x, y) = max
t∈[a,b]

|x(t)− y(t)|p ,

for all x, y ∈ X. Therefore, (X, d) is a complete b-metric space with s = 2p−1. We apply Theorem 1 to establish
the existence of solution of Fredholm type defined by

x(t) = f (t) + λ

b∫
a

K(t, τ, x)dτ, (3)

where x ∈ C[a, b] is the unknown function, λ ∈ R, t, τ ∈ [a, b], K : [a, b]× [a, b]×R→ R and f : [a, b] → R are
given continuous functions.

Theorem 2. We assume the following conditions;

(i) There exists a continuous function ψ : [a, b]× [a, b] → R+ such that for all x, y ∈ X, λ ∈ R and t, τ ∈ [a, b],
we get|K(t, τ, x)− K(t, τ, y)|p ≤ ψ(t, τ). |x− y|p ,

(ii) |λ| ≤ 1,

(iii) maxt∈[a,b]

b∫
a

ψ(t, τ)dτ ≤ 1
(b− a)p−1 , where s =

1
2p−1 .

Then, the Equation (3) has a solution z ∈ C[a, b].

Proof. Define the mapping T : X → X by

Tx(t) = f (t) + λ

b∫
a

K(t, τ, x(τ))dτ,
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for all t ∈ [a, b]. So, the existence of a solution of (3) is equivalent to the existence of fixed point T. Let q ∈ R

such that
1
p
+

1
q
= 1. Using the Hölder inequality, and conditions (i)-(iii), we have

d(Tx, Ty) = max
t∈[a,b]

|Tx(t)− Ty(t)|p

≤ |λ|p max
t∈[a,b]

 b∫
a

|K(t, τ, x)− K(t, τ, y|p dτ



≤

max
t∈[a,b]

 b∫
a

1qdz


1
q
 b∫

a

|(K(t, τ, x)− K(t, τ, y))|p dτ


1
p


p

≤ (b− a)
p
q

max
t∈[a,b]

 b∫
a

ψ(t, τ) |x− y|p dτ


≤ (b− a)p−1 max

t∈[a,b]

 b∫
a

ψ(t, τ)dτ

 d(x, y)

≤ (b− a)p−1 1
(b− a)p−1 .M (x, y) .

Thus
d(Tx, Ty) ≤ M (x, y) .

Hence, all the conditions of Theorem 1 hold. Consequently, the Equation (3) has a solution z ∈ C[a, b].
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