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1. Introduction

L et Ω be a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. We consider the initial-boundary
value problem:

utt − ∆u− ∆utt + ∆2u− g ∗ ∆2u− ∆ut = |u|p−2u, x ∈ Ω, t > 0,
u = 0, ∂u

∂ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1)

where p > 2 and ν represents the unit outward normal to ∂Ω. Here, g(t) is a positive function that represents
the kernel of the memory term, which will be specified in Section 2 and

g ∗ ∆2u(t) =
∫ t

0
g(t− τ)∆2u(τ)dτ.

The motivation of our work is due to the initial boundary problem of the double dispersive-dissipative
wave equation with nonlinear damping and source terms

utt − ∆u− ∆utt + ∆2u− ∆ut + a|ut|m−2ut = b|u|p−2u, x ∈ Ω, t > 0,
u = 0, ∂u

∂ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
a, b > 0,

(2)

which has been discussed by Di and Shang [1] by considering the existence of global solutions and the
asymptotic behavior of global solutions with m ≥ p.

In the absence of the dispersive term and the nonlinear damping term, model (2) reduces to the following
wave equation

utt − ∆u− ∆utt − ∆ut = f (u). (3)

Shang [2] studied the well-posedness, asymptotic behavior, and the finite time blow-up of the solutions
under some suitable conditions on f and for N = 1, 2, 3. Zhang and Hu [3] showed the existence and the
stability of global weak solutions. Xie and Zhong [4] obtained the existence of global attractors in H1

0(Ω) ×
H1

0(Ω), where the nonlinear term f satisfies a critical exponential growth assumption. Xu et al., [5] used the
multiplier method to investigate the asymptotic behavior of solutions for (3).
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Mellah [6] considered the following initial-boundary value problem
utt − ∆u + ∆2u− g ∗ ∆2u + ut = |u|p−1u, x ∈ Ω, t > 0,
u = 0, ∂u

∂ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

in a bounded domain and p > 1. He investigated the small data global weak solutions and general decay of
solutions, respectively.

Motivated by previous works, it is interesting to prove that problem (1) has a global weak solution
assuming small initial data. In addition, we show the general decay of solutions. The global solutions are
constructed by means of the Galerkin approximations and the general decay is obtained by employing the
technique used in [7].

2. Preliminaries

In this section, we present some materials needed in the proof of our main result. We use the following
abbreviations; ‖ · ‖p = ‖ · ‖Lp(Ω) (1 ≤ p ≤ +∞) denotes usual Lp norm, (·, ·) denotes the L2-inner product, and
consider the Sobolev spaces H1

0(Ω) and H2
0(Ω) with their usual scalar products and norms. We also use the

embedding H1
0(Ω) ↪→ Lp(Ω) for 2 < p ≤ 2N

N−2 if N ≥ 3 or 2 < p < ∞ if N = 1, 2. In this case, the embedding
constant is denoted by C∗, that is ‖u‖p ≤ C∗‖∇u‖2. We define

Q(z) =
1
2

z2 − Cp
∗

p
zp.

By the direct computation, we deduce that Q is increasing in [0, z0], where z0 = C
p

2−p
∗ is its unique local

maximum.
Next, we give the assumptions for problem (1).

(G1) The relaxation function g : R+ → R+ is a bounded C1 function such that

g(0) > 0, 0 < η = 1−
∫ ∞

0
g(τ)dτ ≤ 1−

∫ t

0
g(τ)dτ = η(t).

(G2) There exist positive constants ξ1 and ξ2 such that

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t) ∀t ≥ 0.

(G3) We also assume that

2 < p ≤ 2N
N − 2

if N ≥ 3 and p > 2 if N = 1, 2,

where λ1 is the first eigenvalue of the following problem

∆2u = λ1u in Ω, u =
∂u
∂ν

= 0 in ∂Ω. (4)

Remark 1. [8] Assuming λ1 is the first eigenvalue of the problem (4), we have

‖∆u‖2
2 ≥ λ1‖∇u‖2

2. (5)

The energy associated with problem (1) is given by

E(t) =
1
2
‖ut‖2

2 +
1
2
‖∇ut‖2

2 +
1
2

(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖2

2 +
1
2
‖∇u‖2

2 +
1
2
(g ◦ ∆u)(t)− 1

p
‖u‖p

p, (6)

for u ∈ H2
0(Ω), where

(g ◦ ∆u)(t) =
∫ t

0
g(t− τ)‖∆u(τ)− ∆u(t)‖2

2dτ.
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Now, we are in a position to state our main results.

3. Main results

In this section, we are going to obtain the existence of global weak solutions for problem (1) with the
initial conditions ‖∇u0‖2 < z0 and E(0) < Q(z0).

Theorem 1. Assume that (G1) − (G3) hold, and that {u0, u1} belong to H2
0(Ω) × H1

0(Ω). Further assume that
‖∇u0‖2 < z0 and E(0) < Q(z0). Then, problem (1) admits a global weak solution, which satisfies

u ∈ L∞(0, ∞; H2
0(Ω)), ut ∈ L∞(0, ∞; H1

0(Ω)).

Moreover, the identity

E(t) +
∫ t

0
‖∇ut(τ)‖2

2dτ − 1
2

∫ t

0
(g′ ◦ ∆u)(τ)dτ +

1
2

∫ t

0
g(τ)‖∆u(τ)‖2

2dτ = E(0), (7)

holds for 0 ≤ t < ∞. Also, for an increasing C2 function ζ : R+ → R+ satisfying

ζ(0) = 0, ζt(0) > 0, lim
t→+∞

ζ(t) = +∞, ζtt(t) < 0 ∀t ≥ 0, (8)

and, if ‖g‖L1(0,∞) is sufficiently small, we have for κ > 0

E(t) ≤ E(0)e−κζ(t), ∀t ≥ 0.

Remark 2. From (8) and (G2), we obtain

d
dt

E(t) = −‖∇ut(t)‖2
2 +

1
2
(g′ ◦ ∆u)(t)− 1

2
g(t)‖∆u(t)‖2

2

≤ −‖∇ut(t)‖2
2 −

1
2

ξ2(g ◦ ∆u)(t)− 1
2

g(t)‖∆u(t)‖2
2 ≤ 0. (9)

Proof of Theorem 1 (Main result)

We divide the proof into two steps. In step 1, we prove the small data global existence of weak solutions
by using the Faedo-Galerkin approximation and in step 2, we establish the general decay of energy employing
the method used in [7].

Step 1: Global existence of weak solutions

Let
{

ωj
}∞

j=1 be an orthogonal basis of H2
0(Ω) with ωj being the eigenfunction of the following problem:

−∆ωj = λjωj, x ∈ Ω, ωj = 0, x ∈ ∂Ω.

Let Vn = Span {ω1, ω2, · · ·, ωn}. By the standard method of ODE, we know that there exists only one local
solution

un(t) =
n

∑
j=1

bn
j (t)ωj

of the Cauchy problem as follows:∫
Ω

un
ttωdx +

∫
Ω
∇un · ∇ωdx +

∫
Ω
∇un

tt · ∇ωdx +
∫

Ω
∆un · ∆ωdx

−
∫ t

0
g(t− τ)

∫
Ω

∆un(τ) · ∆ωdxdτ +
∫

Ω
∇un

t · ∇ωdx−
∫

Ω
|un|p−2unωdx = 0, (10)

un(0) = un
0 → u0, in H2

0(Ω), un
t (0) = un

1 → u1 in H1
0(Ω). (11)
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By the standard theory of ODE system, we prove the existence of solutions of problem (10)-(11) on some
interval [0, tn), 0 < tn < T for arbitrary T > 0, then, this solution can be extended to the whole interval [0, T]
using the first estimate given below.

A Priori Estimates

Setting ω = un
t (t) in (10), we have

1
2

d
dt
‖un

t ‖2
2 +

1
2

d
dt
‖∇un

t ‖2
2 +

1
2

d
dt
‖∇un‖2

2 +
1
2

d
dt
‖∆un‖2

2 −
1
p

d
dt
‖un‖p

p + ‖∇un
t ‖2

2

−
∫ t

0
g(t− τ)

∫
Ω

∆un(τ) · ∆un
t (t)dxdτ = 0. (12)

A direct computation shows that

−
∫ t

0
g(t− τ)

∫
Ω

∆un(τ) · ∆un
t (t)dxdτ

=
1
2

d
dt
(g ◦ ∆un)(t)− 1

2
d
dt

(∫ t

0
g(τ)dτ

)
‖∆un(t)‖2

2 −
1
2
(g′ ◦ ∆un)(t) +

1
2

g(t)‖∆un(t)‖2
2. (13)

Inserting (13) into (12) and integrating over [0, t] ⊂ [0, T], we obtain

1
2
‖un

t ‖2
2 +

1
2
‖∇un

t ‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +
1
2
‖∇un‖2

2 −
1
p
‖un‖p

p +
∫ t

0
‖∇un

t (τ)‖2
2dτ +

1
2
(g ◦ ∆un)(t)

−1
2

∫ t

0
(g′ ◦ ∆un)(τ)dτ +

1
2

∫ t

0
g(τ)‖∆un(τ)‖2

2dτ = En(0). (14)

From assumption (G3) and the Sobolev embedding, we have

‖un‖p
p ≤ Cp

∗‖∇un‖p
2 ,

and then we have

1
2
‖un

t ‖2
2 +

1
2
‖∇un

t ‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +Q(‖∇un‖2
2) +

∫ t

0
‖4un

t (τ)‖2
2dτ +

1
2
(g ◦ ∆un)(t)

−1
2

∫ t

0
(g′ ◦ ∆un)(τ)dτ +

1
2

∫ t

0
g(τ)‖∆un(τ)‖2

2dτ ≤ En(0). (15)

By using the fact that

−
∫ t

0
(g′ ◦ ∆un)(τ)dτ +

∫ t

0
g(τ)‖∆un(τ)‖2

2dτ ≥ 0,

estimate (15) yields

1
2
‖un

t ‖2
2 +

1
2
‖∇un

t ‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +
1
2
(g ◦ ∆un)(t) +Q(‖∇un‖2

2) +
∫ t

0
‖∇un

t (τ)‖2
2dτ ≤ En(0). (16)

From E(0) < Q(z0) and (11), it follows that

En(0) < Q(z0) (17)

for sufficiently large n. We claim that there exists an integer N such that

‖∇un(t)‖2
2 < z0 ∀t ∈ [0, tn) n > N. (18)

Suppose the claim is proved, then Q(‖∇un‖2
2) ≥ 0 and from (16) and (17),

1
2
‖un

t ‖2
2 +

1
2
‖∇un

t ‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +
1
2
(g ◦ ∆un)(t) +

∫ t

0
‖∇un

t (τ)‖2
2dτ ≤ En(0) < Q(z0), (19)
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for sufficiently large n and 0 ≤ t < ∞.

Proof of the claim

Suppose that (18) false, then for each n > N, there exists t ∈ [0, tn) such that ‖∇un(t)‖2 ≥ z0. Note that
from ‖∇u0‖2 < z0 and (11) there exists N0 such that

‖∇un(0)‖2 < z0 ∀n > N0.

Then by continuity there exits a first t̃n ∈ [0, tn) such that

‖∇un(t̃n)‖2 = z0, (20)

from where
Q(‖∇un(t)‖2) ≥ 0 ∀t ∈ [0, t̃n].

From E(0) < Q(z0) and (19), there exists N > N0 and γ ∈ (0, z0) such that

0 ≤ 1
2
‖un

t (t)‖2
2 +

1
2
‖∇un

t (t)‖2
2 +

η(t)
2
‖∆un(t)‖2

2 +
1
2
(g ◦ ∆un)(t) +Q(‖∇un(t)‖2

2)

≤ Q(γ) ∀ t ∈ [0, t̃n] ∀n > N.

The monotonicity of Q in [0, z0] implies that

0 ≤ ‖∇un(t)‖2
2 ≤ γ < z0 ∀t ∈ [0, t̃n],

in particular, ‖∇un(t)‖2
2 < z0, which is a contradiction to (20). From (19), we have

‖∆un‖2
2 <

2Q(z0)

η
, 0 ≤ t < ∞, (21)

‖un
t ‖2

2 < 2Q(z0), 0 ≤ t < ∞, (22)

‖∇un
t ‖2

2 < 2Q(z0), 0 ≤ t < ∞, (23)∫ t

0
‖∇un

t (τ)‖2
2dτ < Q(z0), 0 ≤ t < ∞. (24)

Using Sobolev inequality, (5) and (21), it follows that

‖un‖2
p ≤ C2

∗‖∇un‖2
2 ≤ C2

∗λ
−1
1 ‖∆un‖2

2 <
2C2
∗λ
−1
1 Q(z0)

η
, 0 ≤ t < ∞. (25)

Moreover, by (25), we get

|(|un|p−2un, un)| ≤ ‖un‖p
p < Cp

∗

(
2C2
∗λ
−1
1 Q(z0)

η

) p
2

, 0 ≤ t < ∞. (26)

Therefore, there exist u, χ and a subsequence still denotes {un} such that

un → u weak star in L∞(0, ∞; H2
0(Ω)), n→ +∞, (27)

un
t → ut weak star in L∞(0, ∞; H1

0(Ω)), n→ +∞, (28)

|un|p−2un → χ weak star in L∞(0, ∞; L
p

p−1 (Ω)), n→ +∞, (29)

Besides, from Lions-Aubin Lemma we also have

un → u strongly in L2(0, ∞; L2(Ω)), n→ +∞, (30)
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and consequently, making use of the Lemma 1.3 in [9], we deduce

|un|p−2un → χ = |u|p−2u weak star in L∞(0, ∞; L
p

p−1 (Ω)), n→ +∞. (31)

Thus, we obtain that u is a global weak of problem (1). In order to prove (7), we use the mean value theorem,
we see that there exists 0 < θn < 1 such that

‖un‖p
p − ‖u‖

p
p ≤ p

∣∣∣∣∫Ω
|u + θnun|p−2(u + θnun)(un − u)dx

∣∣∣∣
≤ p‖u + θnun‖p−1

p ‖un − u‖p

≤ c‖un − u‖p → 0 as n→ +∞,

and for each fixed t > 0, we obtain

|(g ◦ ∆u)(t)− (g ◦ ∆un)(t)| =

∣∣∣∣∫ t

0
g(t− τ)‖∆u(τ)− ∆u(t)‖2

2dτ −
∫ t

0
g(t− τ)‖∆un(τ)− ∆un(t)‖2

2dτ

∣∣∣∣
≤

∫ t

0
g(t− τ)‖∆u(τ)− ∆un(τ)‖2‖∆u(τ) + ∆un(τ)‖2dτ

+
∫ t

0
g(t− τ)‖∆u(τ)− ∆un(τ)‖2dτ‖∆u(t) + ∆un(t)‖2

+
∫ t

0
g(t− τ)‖∆u(τ) + ∆un(τ)‖2dτ‖∆u(t)− ∆un(t)‖2

+
∫ t

0
g(τ)dτ‖∆u(t) + ∆un(t)‖2‖∆u(t)− ∆un(t)‖2

≤ c
∫ t

0
g(t− τ)‖∆u(τ)− ∆un(τ)‖2dτ

+c
∫ t

0
g(τ)dτ‖∆u(t)− ∆un(t)‖2 → 0 as n→ +∞.

Thus, we have
lim

n→+∞
‖un‖p

p = ‖u‖p
p, lim

n→+∞
(g ◦ ∆un)(t) = (g ◦ ∆u)(t).

From (11), it follows that En(0) → E(0) as n → +∞. Finally, taking n → +∞ in (14), we deduce that the
energy identity (7) holds for 0 ≤ t < ∞.

Step 2: General decay of the energy

Here, we prove the energy decay estimate of the global solutions obtained in the previous section. To
obtain the decay result, we use the following lemmas which are of crucial importance in the proof.

Lemma 1. Let u ∈ L∞(0, ∞; H2
0(Ω)) with ut ∈ L∞(0, ∞; H1

0(Ω)) be the solution of (1) and E(0) < Q(z0),
‖∇u0‖2 < z0, then we have

0 ≤ E(t) ≤ C1‖∇ut‖2
2 + C2‖∆u‖2

2 +
1
2
(g ◦ ∆u)(t), (32)

where C1 = 1
2 (1 + B2), C2 = 1

2 (1 + λ−1
1 ) and B is the optimal constant satisfying the Poincaré inequality ‖ut‖2 ≤

B‖∇ut‖2.

Proof. From E(0) < Q(z0) and ‖∇u0‖2 < z0, we can obtain Q(‖∇u(t)‖2) ≥ 0 for 0 ≤ t < ∞. Thus we have

E(t) =
1
2
‖ut‖2

2 +
1
2
‖∇ut‖2

2 +
1
2
‖∇u‖2

2 +
1
2
(g ◦ ∆u)(t) +

1
2

(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖2

2 −
1
p
‖u‖p

p

≥ 1
2
‖ut‖2

2 +
1
2
‖∇ut‖2

2 +
η

2
‖∆u‖2

2 +
1
2
(g ◦ ∆u)(t) +Q(‖∇u(t)‖2)

≥ 0,
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and

E(t) ≤ 1
2
‖ut‖2

2 +
1
2
‖∇ut‖2

2 +
1
2
‖∆u‖2

2 +
1
2
(g ◦ ∆u)(t) +

1
2
‖∇u‖2

2

≤ 1
2

B2‖∇ut‖2
2 +

1
2
‖∇ut‖2

2 +
1
2

λ−1
1 ‖∆u‖2

2 +
1
2
‖∆u‖2

2 +
1
2
(g ◦ ∆u)(t).

Let C1 = 1
2 (1 + B2) and C2 = 1

2 (1 + λ−1
1 ), then we have (32).

Lemma 2. The energy E(t) satisfies

dE(t)
dt

≤ −‖∇ut(t)‖2
2 −

1
2

ξ2(g ◦ ∆u)(t)− 1
2

[
g(0)− ξ1‖g‖L1(0,∞)

]
‖∆u(t)‖2

2 ∀ t ≥ 0. (33)

Proof. From (9), we have

dE(t)
dt

≤ −‖∇ut(t)‖2
2 −

ξ2

2
(g ◦ ∆u)(t)− 1

2
g(t)‖∆u(t)‖2

2. (34)

From assumptions (G2) and since
∫ t

0 g′(τ)dτ = g(t)− g(0), we obtain

− 1
2

g(t)‖∆u(t)‖2
2 = −1

2
g(0)‖∆u(t)‖2

2 −
1
2

(∫ t

0
g′(τ)dτ

)
‖∆u(t)‖2

2

≤ −1
2

g(0)‖∆u(t)‖2
2 +

ξ1

2
‖g‖L1(0,∞)‖∆u(t)‖2

2

= −1
2

[
g(0)− ξ1‖g‖L1(0,∞)

]
‖∆u(t)‖2

2. (35)

Then, Combining (34) and (35) our conclusion holds. Multiplying (33) by eκζ(t) (κ > 0) and using (32), we have

d
dt

(
eκζ(t)E(t)

)
≤ −‖∇ut(t)‖2

2eκζ(t)E(t)− 1
2

ξ2(g ◦ ∆u)(t)eκζ(t)E(t)

−1
2

[
g(0)− ξ1‖g‖L1(0,∞)

]
‖∆u(t)‖2

2eκζ(t)E(t) + κζt(t)eκζ(t)E(t)

≤ − [1− κC1ζt(t)] ‖∇ut(t)‖2
2eκζ(t)E(t)− 1

2
[ξ2 − κζt(t)] (g ◦ ∆u)(t)eκζ(t)E(t)

−1
2
[g(0)− ξ1‖g‖L1 − 2C2κζt(t)] ‖∆u(t)‖2

2eκζ(t)E(t). (36)

Using the fact that ζt is decreasing by (8), we conclude that

d
dt

(
eκζ(t)E(t)

)
≤ − [1− κC1ζt(0)] ‖∇ut(t)‖2

2eκζ(t)E(t)− 1
2
[ξ2 − κζt(0)] (g ◦ ∆u)(t)eκζ(t)E(t)

−1
2

[
g(0)− ξ1‖g‖L1(0,∞) − 2C2κζt(0)

]
‖∆u(t)‖2

2eκζ(t)E(t). (37)

Choosing ‖g‖L1(0,∞) sufficiently small so that

g(0)− ξ1‖g‖L1(0,∞) = K > 0

and defining

κ0 = min
{

1
C1ζt(0)

,
ξ2

ζt(0)
,

K
2C2ζt(0)

}
,

we conclude by taking κ ∈ (0, κ0] in (37) that

d
dt

(
eκζ(t)E(t)

)
≤ 0, t > 0. (38)
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Integrating (38) over (0, t), it follows that

E(t) ≤ E(0)e−κζ(t), t > 0. (39)

Example 1. For ζ(t) = t + t
t+1 , we can get the exponential decay rate E(t) ≤ E(0)e−κt, ∀t ≥ 0. For ζ(t) =

ln(1 + t), we can get polynomial decay rate E(t) ≤ E(0)(1 + t)−κ , ∀t ≥ 0.
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