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Abstract: Recently, many extensions of some special functions are defined by using the extended Beta
function. In this paper, we introduce a new generalization of extended Gegenbauer polynomials of two
variables by using the extended Gamma function. Some properties of these generalized polynomials such as
integral representation, recurrence relation and generating functions are obtained.
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1. Introduction

n recent years, several extensions of the well known special functions have been considered by
several authors [1-5]. Extensions of Euler’s Gamma function together with the set of related higher
transcendental special functions were introduced by Chaudhry and Zubair [1] as:

Ip(x) = /OOO t*Lexp(—t—pt~1)dt, Re(p)>0,p=0,Re(x) > 0. (1)
Clearly, we have I'g(x) = I'(x) where I'(x) is the well known classical Gamma function defined by [6]:
T(x) = /Ooo Fletdt,  Re(x) > 0. @)
The integral (1) can be presented as (see [1, p.101] for x = 0) also [2, p.79]:
a *Tap(x) = /Ooo Lexp(—at — pt1)dt, ©)]

wherea+p >0, Re(a) >0, p=0, Re(x) > 0, which for a = 1 reduces to (1).
Here in this paper, we denote the right hand side of (3) as I', ) (x),1ie.,

T py(x) = /0 P Lexp(—at — pt1)dt, 4)
wherea+p >0, Re(a) >0, p=0, Re(x) > 0.
Note that,
F(ﬂ,p)(x) =a "Typ(x), (5)
L) (x) =Tp(x), (6)
La0)(x) =a T (x), @)

Open ]. Math. Anal. 2021, 5(1), 76-84; d0i:10.30538 / psrp-oma2021.0085 https:/ /pisrt.org/psr-press/journals/oma


https://pisrt.org/psr-press/journals/oma/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oma

Open ]. Math. Anal. 2021, 5(1), 76-84 77

Li10) (x) =T (x). ®)

Recently, Dattoli et al., [7] introduced the extended Gegenbauer polynomials of two variable C(x,y;a) as
follows:

C(x, s i (2x) k '(z:(_ gz’)‘!riﬁ;_nk— k) ©)
which specified by the following generating function and integral representation:
i C(x,y;a) t" = (a — 2xu + yu?) ™", (10)
n=0
Ch(x,y;a) = Iﬂ(;)n! /Ooo t*~Lexp(—at)H, (2xt, —yt) dt, (11)
where Hy(x,y) denotes the 2-variable Hermite-Kampé de Fériet polynomials defined by [8]:
[3] yRan =2k
& kzo k!(n — 2k)! (12)
and specified by the following generating function:
o n
exp(xt +yt?) = Y Hu(x,y) - (13)

In many recent works (see for example [9-12]), the extended Beta function and its systemic generalizations
are used to introduce new extended special functions such as hypergeometric function, Appell’s and
Lauricella’s hypergeometric functions, Mittag Leffler function and Zeta function. Very recently, in terms of
the extended Gamma function defined in (1) Atash and Al-Gonah [13] introduced the extended Gegenbauer
polynomials of two variables C%(x, y; p) as follows:

& (20)" K (—y)*Ty (a1 — k)

14
Calx.yip ki(n — 2k)! ’

(14)

k=0

where Re(p) > 0, p =0, Re(a+n—k) > 0, which specified by the following generating function and
integral representation:

2 e (T —2xu4yu?)®

rgcn(xry' P)“ - T(a) r(1—2xu+yu2)p(“)' (15)
o . _ 1 /oo a—1 oy -1 _

Ch(x,y;p) = Tt Jo 1" exp(—t — pt~ ") Hu(2xt, —yt)dt. (16)

From Equations (9) and (14), we have

1 X
Ch(x,y;0) = —Ch (E’ %,-o) ) 17)

2 (2x) "2 (—y)¥T(w + 1 — )
k!(n — 2k)! ’

Calx,y;a=1)=Ch(x,y;p =0) = Cy(x,y) = (18)

k:O

3] (2x)"K(—1)FT(a + 1 — k)

o 4. _ — 1y — «
Ciloy=La=1)=Ci(x,y=1Lp=0) = Cy( ki(n — 2k)! ’

(19)

k:0

where C%(x) is the classical Gegenbauer polynomials [6].
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Further, from Equations (9) and (14), we have

7]

(2x)" 2k (kT (e + 1 — k)

® 1: 4 E 2
C”(x' 12) = Calx;a) k:() k!(n — 2k)! ax+n— k ’ (20)
2] (2x)n 2K (—1)kT (0 + 1 — k)
o . o (p
Ci(x,1;p) = Ca(x;p) Th Ki(n = 28)1 , (21)

where Cj (x; p) is the extended Gegenbauer polynomials given in [13].

This paper is a further attempt in this direction to stress the importance of the use of extended Gamma
function in introducing new extended special polynomials. The main object of this paper is to introduce a
new generalization for the extended Gegenbauer polynomials defined in Equation (14) by using the extended
Gamma function defined in Equation (4).

2. A generalization of extended Gegenbauer polynomials

In terms of the extended Gamma function I'¢, ,,) (x) defined in (4), we introduce a new generalization of
extended Gegenbauer polynomials of two variables , denoted by C (x,y; a, p), as follows:

1 (@) ()T (a+ 1 — k)

Crlx Y0, p) = 7 ki(n — 2k)! ’ 2)

wherea+p >0, Re(p) >0,p =0, Re(a +n—k) > 0.

Remark 1. From Equation (22), we note that:

1. For y = 1, Equation (22) reduces to the following new extended Gegenbauer polynomials C(x; 4, p):

3] (20)" 2K (—1)FT (a1 — k
Ci(x;a,p) = ; (1) (k!()n—(z,r;c))(!a " ) (23)

2. For p = 0 and using relation (5), Equation (22) reduces to the extended Gegenbauer polynomials of two
variables C%(x, y;a) defined in (9).

3. For a = 1 and using relation (6), Equation (22) reduces to the extended Gegenbauer polynomials of two
variables Cj; (x, y; p) defined in (14).

4. For y = a = 1 and using relation (6), Equation (22) reduces to the extended Gegenbauer polynomials
C%(x; p) defined in (20).

Also, note that from Equations (22), (14), (23) and using relation (5), we have the following relations:

_ X
Ci(x,y;a,p) = a~* C <E’ %;ap) , (24)

Ch(x;a,p)=a*C;, ( 1 up) (25)

Now, we establish some properties for the generalization of extended Gegenbauer polynomials of two
variables C%(x, y;a, p) in the form of the following theorems:

Theorem 1. The following integral representation for the new extended Gegenbauer polynomials C&(x,y;a, p) holds
true:

1 ® _
Ch(x,y;a,p) = W/O t*Lexp(—at — pt—1)Hy (2xt, —ty)dt. (26)

Proof. Using Equations (22) and (17) in the left hand side of Equation (26), we get

B

H 2
o . _ 1 a—1 _ 1 Zz ) (th)”
Ci’l('x/y/alp) - r(“) /0 t eXp( at pt = n_zk)

dt. 7)
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Making use of Equation (12) in the right hand side of Equation (27), we get assertion (26) of Theorem 1. O

For y = 1 in assertion (26) of Theorem 1, we get the following result:

Corollary 1. The following integral representation for the new extended Gegenbauer polynomials C (x; a, p) holds true:

1"(03)71' /0 pr—1 exp(—at — ptil)Hn (2xt, —t)dt. (28)

Ca(x;a,p) =
Remark 2. From results (26) and (28), we note that:

1. For p = 0, result (26) reduces to a known result (21) given in [7].
2. For a = 1, result (26) reduces to a known result (16) given in [13].
3. For a = 1, result (28) reduces to a known result given in [13].

Further, by making use of result (26), we get the following results for Ci (x, y; 4, p):

Theorem 2. The following recurrence relation for the new extended Gegenbauer polynomials C (x,y;a, p) holds true:

(n+1) Ca1(x,y;a,p) = 2ax Cy (x,y;a,p) — 2ay Coi (x,y; 4, p). (29)

Proof. Consider the following recurrence relation [14]:

Hyia(x,y) = xHu(x,y) + 2nyHy 1 (x,y). (30)
Replacing x by 2xt and y by —yt in relation (30) and then multiplying both sides by % and
integrating the resultant equation with respect to t between the limits 0 to oo, we get
1 a1 PR | _
) /0 " exp(—at — pt " )Hy 41 (2xt, —yt)dt
- /Oo t* exp(—at — pt V) Hy, (2xt, —yt)dt — 2 /oo t* exp(—at — pt V) H,_1(2xt, —yt)dt
T'(a)n! Jo ’ T(a)(n—1)! Jo " ’ ’
@1

which on using relation (26) yields assertion (29) of Theorem 2. [

For y = 1 in assertion (26) of Theorem 2, we get the following result:
Corollary 2. The following recurrence relation for the new extended Gegenbauer polynomials C(x; a, p) holds true:
(n+1) Ch i (x;a,p) = 2ax CoT (x50, p) — 20 C*F (x50, p). (32)

Remark 3. 1. Setting p = 0 in result (30), we obtain a known result given in [7].
2. Setting a = 1 in results (30) and (32), we obtain a known results given in [13].

Theorem 3. The following differential equation of the new extended Gegenbauer polynomials C (x,y;a, p) holds true:

03 9
<y8x28p HERrr i 2”) C(x,y;a,p) = 0. 33)

Proof. Consider the following differential equation [14]:

? 9
(2de2 tas - n> Hy(x,y) = 0. (34)

Replacing x by 2xt and y by —yt in relation (34) and using the relation

(35)

QU
| =

9
o(tx) ox
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and then multiplying both sides by %ﬁf,—prl) and integrating the resultant equation with respect to ¢

between the limits 0 to oo, we get

2 1 S B
_yﬁwfo t* "2 exp(—at — pt~ ') Hy (2xt, —yt)dt
" (Zxaax _2"> r(;)ng /O 14~ exp(—at — pt~1)Hy (2xt, —yt)dt = 0. 36)

Using relation (26) in the above equation and then using the following relation:

3 o
@Cﬁ(x,y;,a,p) =(1-a)C (% y;,a,p), 37)

in the first term of the resultant equation, we get the desired result. [

For y = 1 in assertion (33) of Theorem 3, we get the following result:

Corollary 3. The following differential equation of the new extended Gegenbauer polynomials Cis (x; a, p) holds true:

il +2xi—2n Ch(x;a,p) =0. (38)
ax2ap | ox )=

3. Generating functions and other properties of C;(x,y;4, p)

Very recently, many generating functions for Gegenbauer polynomials and its extension are obtained
(see for example [13,15,16]). Here we prove some generating functions for the new extended Gegenbauer
polynomials C§ (x, y; 4, p) in the form of the following theorems:

Theorem 4. The following generating function for the new extended Gegenbauer polynomials Ci(x,y; a, p) holds true:

e}

1
2 (x, yv:a P F(Dé) r(u—2xu+yu2, p) (a), (39)

where Re(a — 2xu + yu?) > 0.

Proof. Using Equations (22) in the left hand side of Equation (39) and then putting n = n 4 2k in the resultant
equation, we get

‘ © 2xu i (—]/)kr, (a+n+k) u
ZC X,y;a,p)u Z ) (@p) = : (40)

n=0 k=0

Now, using Equation (17) in the right hand side of the above equation, we obtain

Y Ch(x,y;a,p)u” = 1"(1a) /Ooo t*Lexp(—t(a — 2xu +yu®) — pt~1)dt, 41)
n=0

which in view of Equation (17) yields assertion (39) of Theorem 4. [

For y = 1 in assertion (39) of Theorem 4, we get the following result:

Corollary 4. The following generating function for the new extended Gegenbauer polynomials Cii(x;a, p) holds true:

> 1
ZOCZ(X} a,p)u’ = a) Lo 2xutaz, p) (@), 42)
n—=

where Re(a — 2xu + u?) > 0.
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Remark 4. 1. Setting p = 0 in result (39) and using relation (7), we obtain a known result (20) given in [7].
2. Setting a = 1 in result (39) and then using relation (5), we obtain a known result (15) given in [13].
3. Setting a = 1 in result (42) and then using relation (5), we obtain a known result given in [13].

Theorem 5. The following generating function for the new extended Gegenbauer polynomials C(x,y; a, p) holds true:

n

ad u
Z (1+k)uCh k(x50 p)ﬁ = Ci(x —yu,y;a — 2xu + yu?, p). (43)
n=0 '

Proof. Consider the following generating function [17, p.452]:

Y Hyei(, ) = exp(au + yu?) Hy (x + 2ym, y). (44)

n=0
Replacing x by xt and y by —yt in above equation and multiplying both sides by % and
integrating the resultant equation with respect to t from 0 to co, we get

n

“W;k/ a1 B o
r;)k ()n+k t eXP( at — pt™— ) n+k(2Xtr yt)n'dt

— 1 o0 a—1 _ _ 2 _ -1 _ _
_k!r(a)/o 7 exp[—(a — 2xu +yu)t — pt = | H(2(x — yu)t, —yt)dt, (45)

which on using relation (26) yields assertion (43) of Theorem 5. [

For y = 1 in assertion (43) of Theorem 5, we get the following result:

Corollary 5. The following generating function for the new extended Gegenbauer polynomials C(x;a, p) holds true:
[e<) n

Y (1+k)uCh i (x;a, p)% = C{(x — w;a — 2xu +u?, p). (46)

n=0 '

Remark 5. 1. Setting p = 0 in result (43) and using relation (7), we obtain a known result given in [7].
2. Setting a = 1 in results (43) and (46), we have

n

ad u

> (1+K)uChy (v y;p) 7 = G (x = yu, 31 = 2xu+ yu?, p), (47)
n=0

[ee) n

2 (1+ k)anq‘%(x;p)% =Ci(x—u;1—2xu+ uz,p), (48)
n=0 :

which in view of relations (24) and (25) gives a known results given in [13].

Theorem 6. The following generating function for the new extended Gegenbauer polynomials Cis(x,y; a, p) holds true:
e8] [o0] n ’Uk 1
;; n+k)! Cyp(x y;a, P)H!HZWF(A,M(“)/ (49)

where A = a — 2xu + yu® — 2xv + 2yuv + yo?.

Proof. Using relation (26) in the left hand side of Equation (49) and interchanging the order of the summation
and integration, we get

uh k

i u" vk 1

2 Z(Tl +k)' C;er(x,y,‘a, p)mﬁ = WA t“71 eXp(—at — ptil)
k=0n=0 o

agh
agk

k=0n=0
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Now, using relation (44) in the right hand side of the above equation, we get

ul ok
2 Z n+k) ‘Cn+k X, 4, p)nlﬁ
k=0n=0
0 0 k
_ L / t*Lexp(—at + 2xtu — ytu® — pt 1) Y Hy(2xt —2ytu, —yt)v—dt, (51)
(@) Jo = k!

which on using relation (13) gives

SRR N L% 2 2 -1
Yo ) (n+k) ZJrk(x’a’p)EH:F(a)/o t*Lexp[—(a — 2xu + yu* — 2xv + 2yuv + yo* )t — pt~']dt.

k=0n=0
(52)

Making use of relation (17) in the right hand side of Equation (52), we get assertion (49) of Theorem 6. [
For y = 1 in assertion (49) of Theorem 6, we get the following result:
Corollary 6. The following generating function for the new extended Gegenbauer polynomials C(x;a, p) holds true:

> u" vk 1
Z (n+k)!Ci(x;a, p) Vi m Lia, p)(uc), (53)

HM8

where A = a — 2xu + u? — 2xv + 2uv + v,
Remark 6. Setting a = 1 in results (49) and (53) and using relation (6), we obtain a known results given in [13].

Further properties for the new extended Gegenbauer polynomials of two variables Ci(x,y;a, p) can be
obtained in the form of the following theorems:

Theorem 7. The following Mellin transform representation of the new extended Gegenbauer polynomials C%(x,y;a, p)

holds true:

/Ooo C(x,y;a,p) p* tdp = IW Cits(x,y;a), Re(s) > 0,Re(p) > 0. (54)

Proof. Multiplying both sides of Equation (26) by p*~! and integrating with respect to p between the limits 0
to oo, we get

{e)

* . 14, L * a1 -1 -1
|} Gieyiap) ptdp = g [ oxp(—at) Hu(xt, —yt) [ exp(-pt ) pNdpdt. (69

Now, using the following relation [18]:

/; exp(—pt™!) pldp = £ T(s), (56)
in the R.H.S. of Equation (55), we get

(e ) r o
[ i) vty = S [ explan) i 2xt, —ye, 7)

which on using relation (21) yields assertion (54) of Theorem 7. [

For y = 1 in assertion (54) of Theorem 7, we get the following result:

Corollary 7. The following Mellin transform representation of the new extended Gegenbauer polynomials C%(x; a, p)
holds true:

/Ooo C(x;a,p) p*ldp = IW Cits(x;a), Re(s) > 0,Re(p) > 0. (58)
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Theorem 8. The following series representations for the new extended Gegenbauer polynomials Cy(x,y;a,p) and
C5,(x,y;a, p) hold true:

% . _ = F(a—k) (_p)k a— .

C}’l(x’y’a’ p) - k;() 1—‘(“) k| Ci’l k(xlyla)l (59)
. 2" (n)2 &K (—1)528)!T(a + K)yF

C2n(x'y;a/ P) = (27’1)('1—'20()];)5;) 2(s(n)_<k>|)(k(_S)[(zyy)ZCZ;rk(x'y'a' P) (60)

Proof of (59). From relation (26), we have

oo (  \k 1 0
Ch(x,y;a,p) = k;) ( klf) ()t /0 k-1 exp(—at)Hy (2xt, —yt)dt, (61)

which on using relation (21) yields assertion (59) of Theorem 8. [

Proof of (60). Consider the following relation [19]:
Hau(x,y) = 2"(n!)? ) 0 62
Zn(x y) (1/1) sz(n_k)!(k!)z (62)
Replacing x by 2xt and y by —yt in relation (62) and then multiplying both sides by t*~1 exp(—at — pt 1) and
integrating the resultant equation with respect to t between the limits 0 to oo, we get

< a1 PR | _ _ [T o lvongo 2 v [He(2xt, —yt)]?
/0 t*" " exp(—at — pt~ " )Hp, (2xt, —yt)dt /0 " exp(—at — pt~")2"(n!) kg;‘)—Zk(nfk)!(k!)zdt' (63)

Next, using the following relation [19]:

k (_1\s x
Hule y)P = (29002 3 e e, (64

in the right hand side of Equation (63) and interchanging the order of summation and integration, we obtain

/ t*Lexp(—at — pt—1)Hy, (2xt, —yt)dt
0

n k (_1)5 k 00
=2"(n!)? Y / 19Tk =L exp(—at — pt =) Hys (2xt, —yt)dt, (65)
EL e nt e T ey
which on using relation (26) yields assertion (60) of Theorem 8. Thus the proof of Theorem 8 is completed. [

For y = 1 in assertions (59) and (60) of Theorem 8, we get the following results:

Corollary 8. The following series representations for the new extended Gegenbauer polynomials Ci (x; a, p) hold true:

N © T(ax—k)(—p)k
Cn(X;a/p):Z ( r(lx))gd p)

k=0
W N N2 & & (—1)°(28)T (e + k)
Con(x:a,p) = @) T () ; — 25(n — k)!(k —s)!(s!)

Cr  (xa), (66)

SC3K (xa,p). (67)

Remark 7. If we take 4 = 1 in relations (54),(58), (59), (60) (66) and (30), we obtain a known corresponding
results given in [13].
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