Open Journal of Mathematical Analysis

Article

Starlikeness of meromorphic functions involving certain differential inequalities

Kuldeep Kaur Shergill ${ }^{1, *}$ and Sukhwinder Singh Billing ${ }^{1}$

1 Department of Mathematics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140407(Punjab), India.

* Correspondence: kkshergill16@gmail.com

Communicated by: Absar ul Haq
Received: 27 October 2020; Accepted: 31 March 2021; Published: 21 May 2021.

Abstract

In the present paper, we define a class of non-Bazilevic functions in punctured unit disk and study a differential inequality to obtain certain new criteria for starlikeness of meromorphic functions.

Keywords: Meromorphic function; Meromorphic starlike function.
MSC: 30C45; 30C80.

1. Introduction

L
et Σ be the class of functions of the form

$$
f(z)=\frac{1}{z}+\sum_{0}^{\infty} a_{n} z^{n}
$$

which are analytic in the punctured unit disc $\mathbb{E}_{0}=\mathbb{E} \backslash\{0\}$, where $\mathbb{E}=\{z:|z|<1\}$. A function $f \in \Sigma$ is said to be meromorphic starlike of order α if $f(z) \neq 0$ for $z \in \mathbb{E}_{0}$ and

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad(\alpha<1 ; z \in \mathbb{E})
$$

The class of such functions is denoted by $\mathcal{M} \mathcal{S}^{*}(\alpha)$ and the class of meromorphic starlike functions is denoted by $\mathcal{M S}^{*}=\mathcal{M S}^{*}(0)$.

In the theory of meromorphic functions, many authors have obtained different sufficient conditions for meromorphically starlike functions. Some of them are stated below:

Kargar et al., [1] proved the following results:
Theorem 1. Assume that $f(z) \neq 0$ for \mathbb{E}_{0}. If $f \in \Sigma(p)$ satisfies

$$
\left|\frac{1}{\sqrt[p]{f(z)}}\left(\frac{f^{\prime}(z)}{f(z)}+\right)+p\right|<p \lambda(\beta)|b(z)|, z \in \mathbb{E}_{0}
$$

then f is a p-valently meromorphic strongly-starlike of order β.
Theorem 2. Assume that $f(z) \neq 0$ for \mathbb{E}_{0}. If $f \in \Sigma$ satisfies

$$
\left|\left(\frac{f(z)}{z^{-\alpha}}\right)^{\frac{1}{\alpha-1}}\left(\frac{f^{\prime}(z)}{f(z)}+\frac{\alpha}{z}\right)+1-\alpha\right|<\frac{2}{\sqrt{5}}, z \in \mathbb{E}_{0}
$$

then f is meromorphic starlike function of order α.
Goswami et al., [2] proved the following results:

Theorem 3. If $f(z) \in \Sigma_{p}$, n with $f(z) \neq 0$ for all $z \in \mathbb{E}_{0}$, satisfies the following inequality

$$
\left|\left[z^{p} f(z)\right]^{\frac{1}{\alpha-p}}\left(\frac{z f^{\prime}(z)}{f(z)}+\alpha\right)+p-\alpha\right|<\frac{(n+1)(p-\alpha)}{\sqrt{(n+1)^{2}+1}}, z \in \mathbb{E}
$$

for some real values of $\alpha(0 \leq \alpha<p)$, then $f \in \mathcal{M} \mathcal{S}_{p, n}^{*}(\alpha)$.
Theorem 4. If $f(z) \in \Sigma_{p}, n$ with $f(z) \neq 0$ for all $z \in \mathbb{E}_{0}$ satisfies the following inequality

$$
\left|\frac{\gamma\left[z^{p} f(z)\right]^{\gamma}}{z}\left(\frac{z f^{\prime}(z)}{f(z)}+p\right)\right| \leq \frac{(n+1)}{2 \sqrt{(n+1)^{2}+1}}, z \in \mathbb{E},
$$

for $\gamma \leq-\frac{1}{p}$, then $f \in \mathcal{M} \mathcal{S}_{p, n}^{*}\left(p+\frac{1}{\gamma}\right)$.
In [3], Sahoo et al., investigated a new class $\mathcal{U}_{n}(\alpha, \lambda, \mu)$, of non-Bazilevic analytic functions by

$$
\mathcal{U}_{n}(\alpha, \lambda, \mu)=\left\{f \in \mathcal{A}_{n}:\left|(1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu+1}-1\right|<\lambda, z \in \mathbb{E}\right\}
$$

For different choices of μ with $\alpha=1$, many authors has studied this class which are included in [4-6]. In this paper, we define above class of non-Bazilevic functions in punctured unit disk and study a differential inequality to obtain certain new criteria for starlikeness of meromorphic functions.

2. Main results

To prove our main result, we shall make use of following lemma of Hallenback and Ruscheweyh [7].
Lemma 1. Let G be a convex function in \mathbb{E}, with $G(0)=a$ and let γ be a complex number, with $\Re(\gamma)>0$. If $F(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots$, is analytic in \mathbb{E} nd $F \prec G$, then

$$
\frac{1}{z^{\gamma}} \int_{0}^{z} F(w) w^{\gamma-1} d w \prec \frac{1}{n z^{\frac{\gamma}{n}}} \int_{0}^{z} G(w) w^{\frac{\gamma}{n}-1} d w
$$

Theorem 5. Let α, β, δ be real numbers such that $\alpha<\frac{2}{\delta-1}, \beta>0,0 \leq \delta<1$ and let

$$
\begin{equation*}
0<M \equiv M(\alpha, \beta, \delta)=\frac{(\beta-\alpha)[2+\alpha(1-\delta)]}{\alpha[1+\beta(1-\delta)]} \tag{1}
\end{equation*}
$$

If $f \in \Sigma$ satisfies the differential inequality

$$
\begin{equation*}
\left|\left(\frac{1}{z f(z)}\right)^{\beta}\left(1+\alpha+\alpha \frac{z f^{\prime}(z)}{f(z)}\right)-1\right|<M(\alpha, \beta, \delta), z \in \mathbb{E} \tag{2}
\end{equation*}
$$

then

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\delta, z \in \mathbb{E}
$$

Proof. Let us define

$$
\left(\frac{1}{z f(z)}\right)^{\beta}=u(z), z \in \mathbb{E}
$$

Differentiate logarithmically, we obtain

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=-\left(1+\frac{z u^{\prime}(z)}{\beta u(z)}\right) \tag{3}
\end{equation*}
$$

Therefore, in view of (3), we have

$$
\begin{equation*}
u(z)-\frac{\alpha}{\beta} z u^{\prime}(z) \prec 1+M z . \tag{4}
\end{equation*}
$$

The use of Lemma $1\left(\right.$ taking $\left.\gamma=-\frac{\beta}{\alpha}\right)$ in (4) gives

$$
u(z) \prec 1+\frac{\gamma M z}{\gamma+1},
$$

or

$$
|u(z)-1|<\frac{\beta M}{\beta-\alpha}<1
$$

therefore, we obtain

$$
\begin{equation*}
|u(z)|>1-\frac{\beta M}{\beta-\alpha} \tag{5}
\end{equation*}
$$

Write $-\frac{z f^{\prime}(z)}{f(z)}=(1-\delta) w(z)+\delta, 0 \leq \delta<1$ and therefore (2) reduces to

$$
|(1+\alpha) u(z)-\alpha u(z)[(1-\delta) w(z)+\delta]-1|<M
$$

We need to show that $\Re(w(z))>0, z \in \mathbb{E}$. If possible, suppose that $\Re(w(z)) \ngtr 0, z \in \mathbb{E}$, then there must exist a point $z_{0} \in \mathbb{E}$ such that $w\left(z_{0}\right)=i x, x \in \mathbb{R}$. To prove the required result, it is now sufficient to prove that

$$
\begin{equation*}
\left|(1+\alpha) u\left(z_{0}\right)-\alpha u\left(z_{0}\right)[(1-\delta) i x+\delta]-1\right| \geq M \tag{6}
\end{equation*}
$$

By making use of (3), we have

$$
\begin{align*}
\left|(1+\alpha) u\left(z_{0}\right)-\alpha u\left(z_{0}\right)[(1-\delta) i x+\delta]-1\right| & \geq\left|[1+\alpha(1-\delta)-\alpha(1-\delta) i x] u\left(z_{0}\right)\right|-1 \\
& =\sqrt{[1+\alpha(1-\delta)]^{2}+\alpha^{2}(1-\delta)^{2} x^{2}}\left|u\left(z_{0}\right)\right|-1 \\
& \geq|1+\alpha(1-\delta)|\left|u\left(z_{0}\right)\right|-1 \\
& \geq|1+\alpha(1-\delta)|\left(1-\frac{\beta M}{\beta-\alpha}\right)-1 \geq M . \tag{7}
\end{align*}
$$

Now (7) is true in view of (1) and therefore, (6) holds. Hence $\Re(w(z))>0$, i.e.,

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\delta, 0 \leq \delta<1, z \in \mathbb{E}
$$

Remark 1. Let α, β, δ be real numbers such that $\alpha<\frac{2}{\delta-1}, 0 \leq \delta<1, \beta>0$ and if $f(z) \in \Sigma$ satisfies

$$
\left|\left(\frac{1}{z f(z)}\right)^{\beta}\left(\frac{1}{\alpha}+1+\frac{z f^{\prime}(z)}{f(z)}\right)-\frac{1}{\alpha}\right|<\frac{(\beta-\alpha)[2+\alpha(1-\delta)]}{\alpha^{2}[1+\beta(1-\delta)]}
$$

then

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\delta, z \in \mathbb{E}
$$

Letting $\alpha \rightarrow \infty$ in above remark, we get the following result:

Theorem 6. Let β, δ be real numbers such that $\beta>0,0 \leq \delta<1$ and let $f(z) \in \Sigma$ satisfy

$$
\left|\left(\frac{1}{z f(z)}\right)^{\beta}\left(1+\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{1-\delta}{1+\beta(1-\delta)}
$$

then

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\delta, z \in \mathbb{E}
$$

3. Deductions

Setting $\beta=1$ in Theorem 5, we obtain
Corollary 1. Let α and δ be real numbers such that $\alpha<\frac{2}{\delta-1}, 0 \leq \delta<1$ and suppose that $f \in \Sigma$ satisfies

$$
\left|\frac{1}{z f(z)}\left(1+\alpha+\alpha \frac{z f^{\prime}(z)}{f(z)}\right)-1\right|<\frac{(1-\alpha)(2+\alpha(1-\delta))}{\alpha(2-\delta)}, z \in \mathbb{E}
$$

then

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\delta, z \in \mathbb{E}
$$

i.e., $f \in \mathcal{M S}^{*}(\delta), z \in \mathbb{E}$.

Writing $\delta=0$ in above corollary, we get the following result:
Corollary 2. Let $f \in \Sigma$ satisfy

$$
\left|\frac{1}{z f(z)}\left(1+\alpha+\alpha \frac{z f^{\prime}(z)}{f(z)}\right)-1\right|<\frac{(1-\alpha)(2+\alpha)}{2 \alpha}, z \in \mathbb{E},
$$

then $f \in \mathcal{M S}^{*}, z \in \mathbb{E}$.
Setting $\beta=1$ in Theorem 6, we get the following result:
Corollary 3. Let δ be a real number such that $0 \leq \delta<1$ and let $f(z) \in \Sigma$ satisfy

$$
\left|\frac{1}{z f(z)}\left(1+\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{1-\delta}{2-\delta}
$$

then

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\delta, z \in \mathbb{E}
$$

Setting $\delta=0$ in above corollary, we get the following result:
Corollary 4. Let $f(z) \in \Sigma$ satisfy

$$
\left|\frac{1}{z f(z)}\left(1+\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{1}{2}
$$

then $f \in \mathcal{M} \mathcal{S}^{*}, z \in \mathbb{E}$.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Kargar, R., Ebadian, A., \& Sokol, J. (2016). On p-Valently Meromorphic-Strongly Starlike and Convex Functions. International Journal of Analysis and Applications, 12(1), 62-65.
[2] Goswami, P., Bulboacă, T., \& Alqahtani, R. T. (2016). Simple sufficient conditions for starlikeness and convexity for meromorphic functions. Open Mathematics, 14(1), 557-566.
[3] Sahoo, P., Singh, S., \& Zhu, Y. (2011). Some starlikeness conditions for the analytic functions and integral transforms. Journal of Nonlinear Analysis and Application, 2011, 1-10.
[4] Obradovic, M. (1998). A class of univalent functions I. Hokkaido Mathematical Journal, 27(2), 329-335.
[5] Obradovic, M. (1999). A class of univalent functions II. Hokkaido Mathematical Journal, 28(3), 557-562.
[6] Obradovic, M., Ponnusamy, S., Singh, V., \& Vasundhra, P. (2002). Univalency, starlikeness and convexity applied to certain classes of rational functions. Analysis-International Mathematical Journal of Analysis and its Application, 22(3), 225-242.
[7] Hallenbeck, D. J., \& Ruscheweyh, S. (1975). Subordination by convex functions. Proceedings of the American Mathematical Society, 52(1), 191-195.
© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

