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1. Introduction

W e consider the initial value problem (ivp) for a particular modification of nonlinear Schrödinger
(MNLS) equation that has been used to model the formation of rogue or freak waves [1]. The Cauchy

problem for the MNLS is given by{
ut + iuxx − uxxx + i|u|2u + |u|2ux + u2ūx + iu∂|x|(|u|2) = 0,

u(x, 0) = ϕ(x), x, t ∈ R.
(1)

We use the symbol ∂|x|, or partial with respect to |x|, which appears in the last nonlinear term to represent
the Riesz derivative which can be described as the Fourier multiplier

f̂|x|(ξ) = −|ξ| f̂ (ξ). (2)

The Riesz derivative is of particular interest in this equation and it appears in many applications of
fractional calculus. It represents a fractional derivative term that appears in many equations, including the
(1), Benjamin-Ono and the fractional Schrödinger equations. Recent scattering results for the scattering results
for related Dysthe equation, which has many structural similarities to the MNLS with the Riesz derivative
occuring in the nonlinearities, can be found in [2].

Rogue waves can be informally thought of as extremely rare events arising from the constructive
interference of the surrounding waves. This construction interference can result in waves with heights as
large as eight times that of the surrounding free surface [3,4]. There are many real world consequences of these
large spontaneous events, which can include damage and disruption to commercial shipping, human lives
and many other nautical operations. For an examination of the mechanisms that lead to the development of
these rogue waves, we refer the readers to [5–8], and the references found therein.

In this paper, we consider a higher-order approximation of the fully nonlinear model, which is given by

ut +
1
2

ux +
i
8

uxx −
1

16
uxxx +

i
2
|u|2u +

3
2
|u|2ux +

1
4

u2ūx + iu∂|x|(|u|2) = 0. (3)
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Changing variables and using a Galilean lift simplifies (3) to the equation we refer to as the MNLS (1).
This particular approximation has been used in applied settings [9,10], and there are other modification to the
NLS which have been studied, including including the compact Zakharov equation [11,12].

The basis of the analytical investigation in this work work lies in the theory of the nonlinear Schrödinger
equation (NLS),

iut + uxx + |u|2u = 0, (4)

and the Korteweg-de Vries equation (KdV),

ut + uux + uxxx = 0. (5)

The inspiration for this work comes from the seminal works of Bourgain [13,14], where he proves that
the NLS and KdV equations are, among other things, well-posed. In particular, as the method of proof largely
follows the same principles for both of these equations, we were interested in adapting Bourgain’s method, as
further extended in [15] and [16]. Here we adapt these methods to an equation where the linear symbol was
a combination of both that of the NLS and KdV. In a similar vein, this work builds on previous analysis of a
modified Korteweg-de Vries (KdVm) equation where the dispersion was taken to be an odd natural number
m ≥ 3 and is given by

∂tu + ∂m
x u + u∂xu = 0.

In [17] and [18], the well-posedness for the KdVm was demonstrated for initial data in Sobolev spaces
Hs where s ≥ −(m− 1)/4. Thus, we immediately see that there is a relationship between the structure of the
linear symbol and the smoothness required of the initial data.

The broad strategy to demonstrate well-posedness of (1) relies on using a contraction mapping argument
on a Bourgain space Xs,b. Here the Bourgain space will be tailored to the linear symbol present in (1).
Additionally, the presence of the Riesz derivative creates some analytical problems to overcome in the trilinear
estimates. There is a significant amount of literature devoted to results on the NLS, and we refer the reader to
the following works and the references therein, [9,10,15,19–25].

Our work revolves around reformulating (1) into a related fixed point problem for an integral operator T.
We start by defining W to be the solution operator to the homogeneous problem associated with (1),

W(t)ϕ(x) =
1

2π

∫
R

exiξ+itγ(ξ) ϕ̂x(ξ)dξ, (6)

where γ(ξ) = ξ2 − ξ3. The associated Bourgain space to our problem is given by:

Definition 1. Let Xs,b be a space such that, for any s, b ∈ R, Xs,b is the completion of the Schwartz space S(R2)

with respect to the norm

|||u|||s,b =

(∫∫
R2
〈ξ〉2s〈τ − γ(ξ)〉2b|û(ξ, τ)|2dξdτ

) 1
2

, (7)

where 〈ξ〉 = 1 + |ξ|.

Using the usual methods, we reformulate the problem in terms of the following integral operator. Should
the reader desire more details on going about this procedure, we refer them to [17,18]. Taking the space-time
Fourier transform of w allows us to express the mapping T in the phase space (ξ, τ). To continue, we use a
cutoff function, ψ ∈ C∞

0 (R) with supp(ψ) ⊂ [−1, 1] and ψ ≡ 1 on [−1/2, 1/2]. The corresponding integral
operator we obtain is

Tu(x, t) = ψ(t)W(t)ϕ(x) +
i

4π2 ψ(t)
∫∫

R2
eixξ+itγ(ξ)ŵ(ξ, τ)dτdξ, (8)



Open J. Math. Anal. 2021, 5(1), 105-117 107

where w corresponds to the sum of the nonlinearities

w = i|u|2u + |u|2ux + |u|2ūx + iu∂|x|(|u|2). (9)

In handling w, our focus will be on the final term iu∂|x|(|u|2). The Riesz derivative makes this term the
most novel. For an analysis of this equation where w strictly has the NLS nonlinearity, or w = i|u|2u, we refer
the reader to [19]. Additionally, we have adjusted our proof to use the strategies developed by Tao in [26] and
[27].

Our results regarding (1) can now be formalized in the following theorem:

Theorem 1. If s > 1
4 then for any ϕ ∈ Hs with sufficiently small norm, the integral equation

u = Tu, (10)

where T is defined by (8) has a unique solution in the space Xs,b for some b > 1/2. Moreover, the data-to-solution map
is Lip-continuous.

This paper is organized as follows: In Section 2, we prove Theorem 1 while assuming the necessary
trilinear estimates needed to handle the nonlinear terms, which we catalogue in Theorem 2. In Section 3 we
provide the trilinear estimates outlines in Theorem 2, which completes the proof of our main result. We note
that in the proof of Theorem 2, we focus on the the estimate for the Riesz derivative term. We then give a
description of how to adapt this proof to the other terms.

2. Proof of Theorem 1

The main tool used to prove Theorem 1 involves the following trilinear estimates summarized below.
For convenience in later computations, we consider nonlinearities that include a Hilbert transform H and ∂x

instead of the Riesz derivative ∂|x|.

Theorem 2 (Trilinear Estimates). If s > 1
4 , then

|||u2ū|||s,b−1 . |||u|||3s,b, u ∈ Xs,b, (11)

|||∂x(u2ū)|||s,b−1 . |||u|||3s,b, u ∈ Xs,b, (12)

|||∂x(uH(uū))|||s,b−1 . |||u|||3s,b, u ∈ Xs,b, (13)

for some b > 1
2 .

Furthermore, to establish that T is a contraction mapping on a ball in Xs,b space, we need the following
result:

Proposition 1. If s > 1
4 , there exists some b > 7

12 and c=c(ψ)>0 such that

|||Tu|||s,b ≤ c(|||u|||3s,b + ||ϕ||Hs), u ∈ Xs,b, (14)

and

|||Tu− Tv|||s,b ≤ c
∣∣∣∣∣∣∣∣∣∣∣∣u + v

(
1 + i
√

3
2

)∣∣∣∣∣∣∣∣∣∣∣∣
s,b

∣∣∣∣∣∣∣∣∣∣∣∣u + v

(
1− i
√

3
2

)∣∣∣∣∣∣∣∣∣∣∣∣
s,b
|||u− v|||s,b, u, v ∈ Xs,b. (15)

Proof of Theorem 1. If ϕ satisfies the smallness condition

‖ϕ‖Hs ≤ 15

64c
3
2

, (16)

then, for any u in the closed ball

B =

{
u ∈ Xs,b : |||u|||s,b ≤

1

4c
1
2

}
, (17)
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we have

|||Tu|||s,b ≤ c
(

1

64c
3
2
+

15

64c
3
2

)
=

1

4c
1
2

. (18)

Thus demonstrating that T maps the ball B into itself. From (15), we have, for any u, v ∈ B

|||Tu− Tv|||s,b ≤ c

(
|||u|||s,b + |||v

(
1 + i
√

3
2

)
|||s,b

)(
|||u|||s,b + |||v

(
1− i
√

3
2

)
|||s,b

)
|||u− v|||s,b,

= c (|||u|||s,b + 2|||v|||s,b) (|||u|||s,b + 2|||v|||s,b) |||u− v|||s,b,

≤ c ·
(

9
16c

)
· |||u− v|||s,b,

=
9
16
|||u− v|||s,b. (19)

Which proves that T is a contraction mapping on B which guarantees us in turn gives us a unique fixed point
by the Banach Contraction Mapping Theorem.
Proof of Lip-Continuous dependence on initial data. Let ϕ and χ be in Hs both satisfying the smallness conditions

‖ϕ‖Hs ≤ 15

64c
3
2

and ‖χ‖Hs ≤ 15

64c
3
2

. (20)

Further let u and v be the solutions corresponding to ϕ and χ respectively. From here, we will use a
subscript on T to denote the dependence on the initial data. In particular, as u and v are fixed points, we have
u = Tϕu and v = Tχv. We then see that

|||u− v|||s,b = |||Tϕu− Tχv|||s,b = |||ψW(ϕ− χ) + T0u− T0v|||s,b. (21)

From here, a simple application of the triangle inequality in conjunction with Proposition 1 will complete
the argument. The first term is a linear operator which we will examine below to estimate (25). In particular
we use Lemma 2 to handle ψ to get

|||ψW(ϕ− χ)|||s,b . ||ϕ− χ||Hs .

For the second term, we follow the same argument used to obtain (19) which gives us |||T0u− T0v|||s,b ≤
9

16 |||u− v|||s,b. We therefore have for a constant c

|||u− v|||s,b ≤ c||ϕ− χ||Hs +
9
16
|||u− v|||s,b. (22)

Subtracting 9
16 |||u− v|||s,b from both sides of (22) allows to conclude

|||u− v|||s,b ≤
16c
7
||ϕ− χ||Hs .

which completes our proof of the Lip-continuity of the data-to-solution map.
Proof of Proposition 1. Before beginning this proof, we state the following Lemma.

Lemma 1. For s≥ 0, and u ∈ Xs,b we define

T(u, ū, u)(x, t) .
= ψ(t)W(t)ϕ(x)− ψ(t)

∫ t

0
W(t− t′)wuūu(x, t′)dt′, (23)
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then there exists a constant c = cψ such that

|||T(u, ū, u)|||s,b ≤ c|||u|||3s,b + c‖ϕ‖Hs . (24)

To continue, we look at the decompose map of T as defined in (8), by adding and subtracting ψ(τ− γ(ξ))

in the integral expression to localize near the singularity τ = γ(ξ). We thus obtain the decomposition

Tu(x, t) =
1

2π
ψ(t)

∫
R

eixξ+itγ(ξ) ϕ̂x(ξ)dξ (25)

+
i

4π2 ψ(t)
∫∫

R2
ei(ξx+τt) 1− ψ(τ − γ(ξ))

τ − γ(ξ)
ŵ(ξ, τ)dτdξ (26)

− i
4π2 ψ(t)

∫∫
R2

ei(ξx+tγ(ξ)) 1− ψ(τ − γ(ξ))

τ − γ(ξ)
ŵ(ξ, τ)dτdξ (27)

+
i

4π2 ψ(t)
∫∫

R2
ei(ξx+tγ(ξ)) ψ(τ − γ(ξ))[eit(τ−γ(ξ)) − 1]

τ − γ(ξ)
ŵ(ξ, τ)dτdξ. (28)

Estimate of (25). Defining

I(x, t) .
=

1
2π

ψ(t)
∫
R

exiξ+itγ(ξ) ϕ̂x(ξ)dξ,

we take the Fourier transform of I with respect to x and t. The Xs,b norm of I can then be directly estimated as

|||I|||s,b =

(∫∫
R2
〈ξ〉2s〈τ − γ(ξ)〉2b|ψ̂t(τ − γ(ξ))ϕ̂x(ξ)|2dξdτ

) 1
2

,

.
(∫

R
〈ξ〉2s|ϕ̂x(ξ)|2

∫
R
〈τ − γ(ξ)〉2b|ψ̂t(τ − γ(ξ))|2dτdξ

) 1
2

,

= cψ‖ϕ‖Hs .

Estimate of (26). Taking

I(x, t) .
=

1
4π2

∫
R

eixξ
∫
R

eiτt 1− ψ(τ − γ(ξ))

τ − γ(ξ)
ŵuūu(ξ, τ)dτdξ,

we have
|||(26)|||s,b = |||ψ(t)I(x, t)|||s,b.

To continue, we need the following Lemma:

Lemma 2. There exists a c=cψ such that

|||ψ(t)I(x, t)|||s,b ≤ cψ|||I(x, t)|||s,b. (29)

Using Lemma 2, we see that taking the space-time Fourier transform of I allows us to compute the Xs,b
norm of I as

|||I|||s,b =

(∫∫
R2
〈ξ〉2s〈τ − γ(ξ)〉2b

∣∣∣∣1− ψ(τ − γ(ξ))

τ − γ(ξ)
ŵuūu(ξ, τ)

∣∣∣∣2 dξdτ

) 1
2

,

.
(∫

R
〈ξ〉2s

∫
R
〈τ − γ(ξ)〉2(b−1) |ŵuūu(ξ, τ)|2 dτdξ

) 1
2

,

' |||wuūu|||s,b−1,

≤ c|||u|||3s,b,
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where the last inequality follows from the trilinear estimates. Above, we also used the fact that |1− ψ(τ −
γ(ξ))| ≤ 1, and the fact that the ξ, τ integration is over the region {ξ, τ ∈ R2 : |τ − γ(ξ)| ≥ 1

2}, since
|1− ψ(τ − γ(ξ))| is 0 otherwise. Over this region,

1
|τ − γ(ξ)|2 .

1
〈τ − γ(ξ)〉2 .

Proof of Lemma 2. We begin by taking the space-time Fourier transform of ψ(t)I(x, t), and applying the Xs,b
norm. Using Fubini’s theorem, we get

|||ψ(t)I(x, t)|||2s,b '
∫
R
〈ξ〉2s

∫
R

∣∣∣∣∫R〈τ − γ(ξ)〉bψ̂(λ) Î(ξ, τ − λ)dλ

∣∣∣∣2 dτdξ.

Here, we use the fact that 〈τ − γ(ξ)〉 ≤ 〈τ − λ− γ(ξ)〉+ |λ| ≤ 〈τ − λ− γ(ξ)〉〈λ〉, along with Minkowski’s
inequality to get

|||ψ(t)I(x, t)|||2s,b ≤
∫
R
〈ξ〉2s

(∫
R
〈λ〉b|ψ̂(λ)|

(∫
R
〈τ − λ− γ(ξ)〉2b| Î(ξ, τ − λ)|2dτ

) 1
2

dλ

)2

dξ.

Which, after substituting τ̃ = τ − λ, yields

|||ψ(t)I(x, t)|||2s,b ≤
∫
R
〈ξ〉2s

(∫
R
〈τ̃ − γ(ξ)〉2b| Î(ξ, τ̃)|2dτ̃

)
·
(∫

R
〈λ〉b|ψ̂(λ)|dλ

)2
dξ

' cψ|||I(x, t)|||2s,b.

Estimate of (27). Let

I(x, t) .
=

1
2π

ψ(t)
∫
R

ei(ξx+tγ(ξ))c(ξ)dξ,

where

c(ξ) .
=
∫
R

1− ψ(τ − γ(ξ))

τ − γ(ξ)
ŵuūu(ξ, τ)dτ.

Taking the Xs,b norm of I yields

|||I|||s,b =

(∫∫
R2
〈ξ〉2s〈τ − γ(ξ)〉2b|c(ξ)ψ̂(τ − γ(ξ))|2dξdτ

) 1
2

,

. cψ

(∫
R
〈ξ〉2s

∣∣∣∣∫R 1− ψ(τ − γ(ξ))

τ − γ(ξ)
ŵuūu(ξ, τ)dτ

∣∣∣∣2 dξ

) 1
2

.

Since |τ − γ(ξ)| ≥ 1
2 and for |x| ≥ 1

2 , 1
|x| .

1
〈x〉 ,

|||I|||s,b . cψ

(∫
R
〈ξ〉2s

(∫
|τ−γ(ξ)|≥ 1

2

|ŵuūu(ξ, τ)|
|τ − γ(ξ)| dτ

)2

dξ

) 1
2

,

. cψ

(∫
R
〈ξ〉2s

(∫
R

|ŵuūu(ξ, τ)|
〈τ − γ(ξ)〉 dτ

)2

dξ

) 1
2

.

This, along with the trilinear estimate and the following lemma, is sufficient to show that |||(27)|||s,b ≤
cψ|||u|||3s,b.
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Lemma 3. If b> 1/2, then

cψ

(∫
R
〈ξ〉2s

(∫
R

|ŵuūu(ξ, τ)|
〈τ − γ(ξ)〉 dτ

)2

dξ

) 1
2

. |||wuūu|||s,b−1. (30)

Proof of Lemma 3. We follow the ideas of [16]. Should the reader desire more details, we refer them also to
[17] and [18]. We see that by the Cauchy-Schwarz inequality, for any measurable function I,∫

R
|I(τ)|dτ =

∫
R
〈τ − γ(ξ)〉−b〈τ − γ(ξ)〉b|I(τ)|dτ,

≤
(∫

R
〈τ − γ(ξ)〉−2bdτ

) 1
2
(∫

R
〈τ − γ(ξ)〉2b|I(τ)|2dτ

) 1
2

,

b>1/2'
(∫

R
〈τ − γ(ξ)〉2b|I(τ)|2dτ

) 1
2

.

We can therefore conclude

cψ

(∫
R
〈ξ〉2s

(∫
R

|ŵuūu(ξ, τ)|
〈τ − γ(ξ)〉 dτ

)2

dξ

) 1
2

. cψ|||wuūu|||s,b.

Estimate of (28). We will expand eit(τ−γ(ξ)) − 1 into its power series and divide by τ − γ(ξ) to get

(28) ' ψ(t)
∫∫

R2
ei(ξx+tγ(ξ))ψ(τ − γ(ξ))

∞

∑
n=1

intn

n!
(τ − γ(ξ))n−1ŵuūu(ξ, τ)dτdξ,

'
∞

∑
n=1

in

n!
In(x, t), (31)

where

In(x, t) .
=

1
2π

tnψ(t)
∫
R

ei(ξx+tγ(ξ))cn(ξ)dξ,

cn(ξ)
.
=
∫
R

ψ(τ − γ(ξ))(τ − γ(ξ))n−1ŵuūu(ξ, τ)dτ.

It follows from the space-time Fourier transform of In, that

|||(31)|||s,b .
∞

∑
n=1

1
n!
|||In(x, t)|||s,b,

=
∞

∑
n=1

1
n!

(∫∫
R2
〈ξ〉2s〈τ − γ(ξ)〉2b|cn(ξ)t̂nψ(t)

t
(τ − γ(ξ))|2dξdτ

) 1
2

,

=
∞

∑
n=1

1
n!

(∫
R
〈ξ〉2s|cn(ξ)|2

(∫
R
〈τ′〉2b|t̂nψ(t)

t
(τ′)|2dτ′

)
dξ

) 1
2

.

For all b between 0 and 1,∫
R
〈τ′〉2b|t̂nψ(t)

t
(τ′)|2dτ′ .

∫
R
〈τ′〉2|t̂nψ(t)

t
(τ′)|2dτ′ = ‖tnψ||2H1 .

To deal with the ||tnψ||2H1 term, we take the derivative with respect to t of tnψ yielding

‖tnψ||2H1 = ‖tnψ‖2
L2 + ‖ntn−1ψ‖2

L2 + ‖tnψ′‖2
L2 . n2,
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since ψ(t) ∈ C∞
0 (−1, 1). Thus

|||(31)|||s,b .
∞

∑
n=1

1
n!

(∫
R
〈ξ〉2s|cn(ξ)|2

(∫
R
〈τ′〉2b|t̂nψ(t)

t
(τ′)|2dτ′

)
dξ

) 1
2

,

.
∞

∑
n=1

n
n!

(∫
R
〈ξ〉2s

∣∣∣∣∫
τ∈R

ψ(τ − γ(ξ))(τ − γ(ξ))n−1ŵuūu(ξ, τ)dτ

∣∣∣∣2 dξ

) 1
2

.

Since the τ-integration is over |τ − γ(ξ)| ≤ 1 and ψ(τ − γ(ξ)) ≤ 1,

|||(31)|||s,b .

(∫
R
〈ξ〉2s

(∫
|τ−γ(ξ)|≤1

|ŵuūu(ξ, τ)|dτ

)2
dξ

) 1
2

·
∞

∑
n=1

n
n!

.

(∫
R
〈ξ〉2s

(∫
R

|ŵuūu(ξ, τ)|
〈τ − γ(ξ)〉 dτ

)2

dξ

) 1
2

. |||wuūu|||s,b−1

≤ c|||u|||3s,b.

Combining these estimates concludes the proof of Proposition 1, which leaves only the proof of the trilinear
estimates in order to prove Theorem 1.

3. Proof of the Trilinear Estimates

In this section, we prove the trilinear estimates presented in Theorem 2. The inequality (11) follows from
[19], so we will focus on (12) and (13).

We will follow Tao’s [k; Z]−multiplier norm method developed in [26]. For the convenience of the reader,
we provide an outline of the method. Let Z be an abelian, additive group, with an invariant measure dξ. For
any k ∈ N, k ≥ 2, Γk(Z) denotes the hyperplane

Γk(Z) := {(ξ1, ..., ξk) ∈ Z : ξ1 + .. + ξk = 0},

with the measure ∫
Γk(Z)

f :=
∫

Zk−1
f (ξ1, ..., ξk−1,−ξ1...− ξk−1)dξ1...dξk−1. (32)

We define a [k; Z]−multiplier to be a function m : Γk(Z) → C, and the multiplier norm ‖m(ξ)‖[k;Z] is defined
as the best constant such that the inequality∣∣∣∣∣

∫
Γk(Z)

m(ξ)
k

∏
j=1

f j(ξ j)

∣∣∣∣∣ ≤ ‖m(ξ)‖[k;Z]

k

∏
j=1
‖ f j‖L2(Z)

holds for all test functions f j on Z.
Summations over variables of the form Nj, Lj, and H are presumed to be dyadic. Letting N1, N2, N3 > 0,

we will define the notation Nmax ≥ Nmed ≥ Nmin to be the maximum, medium, and minimum values of
N1, N2, N3. We similarly define Lmax ≥ Lmed ≥ Lmin. Summations over Lmax ∼ ... are sums over the dyadic
variables L1, L2, L3 & 1, that is,

∑
Lmax∼H

:= ∑
L1,L2,L3&1:Lmax∼H

. (33)

Similarly, a sum of the form Nmax ∼ ... represents a sum over the variables N1, N2, N3 > 0, that is,

∑
Nmax∼Nmed∼N

:= ∑
N1,N2,N3>0:Nmax∼Nmed∼N

. (34)

Taking Γ3(R × R), where the hyperplane is parameterized by (ξ, τ), we are concerned with the resonance
functions in the (+ + −) case, h1(ξ) = h2(ξ) = ξ2 − ξ3, and h3(ξ) = −ξ2 − ξ3. We define, for each j, λj =
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τj − hj(ξ j), and our resonance function h(ξ) = h1(ξ2) + h2(ξ2) + h3(ξ3) = ξ2
1 + ξ2

2 − ξ2
3 − ξ3

1 − ξ3
2 − ξ3

3. Now,
we have ξ1 + ξ2 + ξ3 = 0, and λ1 + λ2 + λ3 + h(ξ) = 0. When we do the dyadic decomposition, we will have
|ξ j| ∼ Nj, |λj| ∼ Lj, and |h(ξ)| ∼ H. Now, we have ξ1 + ξ2 + ξ3 = 0, and λ1 + λ2 + λ3 + h(ξ) = 0, which
shows that

Nmax ∼ Nmed & 1, (35)

and
Lmax ∼ max(Lmed, H). (36)

Examining our resonance function, we can see that

h(ξ) = ξ2
1 + ξ2

2 − ξ2
3 − ξ3

1 − ξ3
2 − ξ3

3 = −2ξ1ξ2 − 3ξ1ξ2ξ3 = −ξ1ξ2(2 + 3ξ3).

Which, for ξ3 6= −2
3 , allows us to show

max{λ1, λ2, λ3} ≥
1
3
|λ1 + λ2 + λ3| & N1N2N3.

With this in mind, we may assume H ∼ N2
max Nmin, as the symbol vanishes otherwise. The issue now comes

down to attempting to bound estimates of the form

|||XN1,N2,N2;H;L1,L2,L3 |||[3,R×R],

where XN1,N2,N2;H;L1,L2,L3 is defined as

XN1,N2,N2;H;L1,L2,L3 := χ|h(ξ)|∼H

3

∏
j=1

χ|ξ j |∼Nj
χ|λj |∼Lj

.

Lemma 4. Let H, N1, N2, N3, L1, L2, L3 > 0 satisfy (35) and (36), then

• ((++) coherence) If Nmax ∼ Nmin, and Lmax ∼ H, then we have

(37) . L
1
2
minL

1
2
medN−1

max. (37)

• ((+-) coherence) If N2 ∼ N3 � N1, and H ∼ L1 & L2, L3, then

(37) . L
1
2
minN−1

max min(H,
Nmax

Nmin
Lmed)

1
2 , (38)

and similarly for permutations.
• In all other cases, we have

(37) . L
1
2
minN−1

max min(H, Lmed)
1
2 . (39)

Proof. In the high modulation case, we have, and Lmax ∼ Lmin � H. From [26], we can show that

(37) . L
1
2
minN

1
2

min . L
1
2
minN−1

max N
1
2

minNmax ' L
1
2
minN−1

max H
1
2 .

In the low modulation cases, we have Lmax ∼ H, here we must consider several cases, that is, (i) L1 ≥ L2 ≥ L3,
(ii) L1 ≥ L3 ≥ L2, and (iii) L3 ≥ L2 ≥ L1, the other cases follow by symmetry and permutation on the (12)
indices.

In (i), by Corollary 4.2 in [26], we get, for N1, N2, N3 > 0,

(37) . L
1
2
3 |{ξ2 ∈ R : |ξ2 − ξ0

2| � Nmin; h2(ξ2) + h3(ξ − ξ2) = τ +O(L2)}|
1
2 ,

for ξ0
1, ξ0

2, |ξ0
3| satisfying |ξ0

j | ∼ Nj, |ξ0
1 + ξ0

2 + ξ0
3| � Nmin, and for some τ, ξ ∈ R satisfying |ξ + ξ0

1| � Nmin.
We observe h2(ξ2) + h3(ξ − ξ2) = h3(ξ) + 3ξξ2(ξ − ξ2) + 2ξξ2 = τ + O(L2). Now, there are 3 subcases to
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consider: (1) N1 ∼ N2 ∼ N3, (2) N1 ∼ N2 � N3, and (3) N2 ∼ N3 � N1, with the case (4) N1 ∼ N3 � N2

following by symmetry:

(1) In case (1) we can see that the ξ2 variable is contained in an interval of length O(L2N−2
max), so

(37) . L
1
2
minL

1
2
medN−1

max.

(2) In case 2, we similarly see that the ξ2 variable is contained in an interval of length O(L2N−2
max), so

(37) . L
1
2
minL

1
2
medN−1

max.

(3) In case (3), it follows that the ξ2 variable is contained in an interval of length O(L2N−1
max N−1

min), so

(37) . L
1
2
minL

1
2
medN−

1
2

max N−
1
2

min,

and ξ2 is also contained in an interval of length� Nmin. (ii) In (ii), by Corollary 4.2 in [26], we get, for
N1, N2, N3 > 0,

(37) . L
1
2
2 |{ξ3 ∈ R : |ξ3 − ξ0

3| � Nmin; h3(ξ3) + h2(ξ − ξ3) = τ +O(L3)}|
1
2 ,

for ξ0
1, ξ0

2, |ξ0
3| satisfying |ξ0

j | ∼ Nj, |ξ0
1 + ξ0

2 + ξ0
3| � Nmin, and for some τ, ξ ∈ R satisfying |ξ + ξ0

1| �
Nmin. We now observe h3(ξ3) + h2(ξ − ξ3) = h2(ξ) − 2ξξ3 + 3ξξ3(ξ − ξ3) = τ + O(L3). In similar
subcases to before, for subcase (1), we again obtain

(37) . L
1
2
minL

1
2
medN−1

max,

in subcase (2) ((3) follows here by symmetry), we get

(37) . L
1
2
minL

1
2
medN−

1
2

max N−
1
2

min,

and in subcase (4),

(37) . L
1
2
minL

1
2
medN−1

max.

Finally, in (iii), again by Corollary 4.2 in [26], we get, for N1, N2, N3 > 0,

(37) . L
1
2
2 |{ξ2 ∈ R : |ξ2 − ξ0

2| � Nmin; h2(ξ2) + h1(ξ − ξ2) = τ +O(L2)}|
1
2 ,

for ξ0
1, ξ0

2, |ξ0
3| satisfying |ξ0

j | ∼ Nj, |ξ0
1 + ξ0

2 + ξ0
3| � Nmin, and for some τ, ξ ∈ R satisfying |ξ + ξ0

3| �
Nmin. We now observe h2(ξ2) + h1(ξ − ξ2) = h2(ξ) + (ξ − ξ2)(3ξξ2 − 2ξ2) = τ + O(L2). Again, in
subcases (1) and (3), we get

(37) . L
1
2
minL

1
2
medN−1

max,

and in subcases (2) and (4), we are left with

(37) . L
1
2
minL

1
2
medN−

1
2

max N−
1
2

min.

Now, we will apply this to our proof of the the trilinear estimates. For (12), we have |||(uūu)x|||s,b−1 .
|||u|||3s,b. By duality and Plancharel, we must show that∣∣∣∣∣∣∣∣∣∣∣∣ (ξ1 + ξ2 + ξ3)〈ξ4〉s

〈τ4 + ξ2
4 + ξ3

4〉1−b〈τ2 + ξ2
2 + ξ3

2〉b〈τ1 − ξ2
1 + ξ3

1〉b〈τ3 − ξ2
3 + ξ3

3〉b ∏3
j=1〈ξ j〉s

∣∣∣∣∣∣∣∣∣∣∣∣
[4,R×R]

. 1.
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We estimate |ξ1 + ξ2 + ξ3| by 〈ξ4〉, then use the fractional Leibniz rule to show

〈ξ4〉s+1 . 〈ξ4〉
1
2

3

∑
j=1
〈ξ j〉s+

1
2 ,

By symmetry of the 1 and 3 indices, it remains to prove∣∣∣∣∣∣∣∣∣∣∣∣ 〈ξ1〉
1
2 〈ξ2〉−s〈ξ4〉

1
2 〈ξ3〉−s

〈τ4 + ξ2
4 + ξ3

4〉1−b〈τ2 + ξ2
2 + ξ3

2〉b〈τ1 − ξ2
1 + ξ3

1〉b〈τ3 − ξ2
3 + ξ3

3〉b

∣∣∣∣∣∣∣∣∣∣∣∣
[4,R×R]

. 1, (40)

and, ∣∣∣∣∣∣∣∣∣∣∣∣ 〈ξ1〉−s〈ξ2〉
1
2 〈ξ4〉

1
2 〈ξ3〉−s

〈τ4 + ξ2
4 + ξ3

4〉1−b〈τ2 + ξ2
2 + ξ3

2〉b〈τ1 − ξ2
1 + ξ3

1〉b〈τ3 − ξ2
3 + ξ3

3〉b

∣∣∣∣∣∣∣∣∣∣∣∣
[4,R×R]

. 1. (41)

By minorizing 〈τ1− ξ2
1 + ξ3

1〉b by 〈τ1− ξ2
1 + ξ3

1〉1−b in (40), and 〈τ2 + ξ2
2 + ξ3

2〉b by 〈τ2 + ξ2
2 + ξ3

2〉1−b in (41), then
applying conjugation/TT* identity, (40) reduces to the bilinear estimates

‖uv̄‖L2 . |||u|||X−1/2,1−b |||v|||Xs,b ,

and
‖ūv‖L2 . |||u|||X−1/2,1−b |||v|||Xs,b .

For (13), we seek to show that |||∂x(uH(uū))|||s,b−1 . |||u|||3s,b. By duality and Plancharel, it suffices to show∣∣∣∣∣∣∣∣∣∣∣∣ sign(ξ1 + ξ2)(ξ1 + ξ2 + ξ3)〈ξ4〉s

〈τ4 + ξ2
4 + ξ3

4〉1−b〈τ2 + ξ2
2 + ξ3

2〉b〈τ1 − ξ2
1 + ξ3

1〉b〈τ3 − ξ2
3 + ξ3

3〉b ∏3
j=1〈ξ j〉s

∣∣∣∣∣∣∣∣∣∣∣∣
[4,R×R]

. 1. (42)

But (42).(40), so the result follows from the previous discussion.

Proof of (42). By Plancharel, it suffices to show that∣∣∣∣∣∣∣∣ 〈ξ1〉−s〈ξ2〉
1
2

〈τ2 + ξ2
2 + ξ3

2〉1−b〈τ1 − ξ2
1 + ξ3

1〉b

∣∣∣∣∣∣∣∣
[3,R×R]

.

Following from [26], we reduce this to showing that

∑
Nmax∼Nmed∼N

∑
L1,L2,L3&1

〈N1〉−s〈N2〉
1
2

Lb
1L1−b

2

‖XN1,N2,N2;Lmax ;L1,L2,L3‖[3,R×R] . 1, (43)

and,

∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H�Lmax

〈N1〉−s〈N2〉
1
2

Lb
1L1−b

2

‖XN1,N2,N2;H;L1,L2,L3‖[3,R×R] . 1. (44)

We first prove (44). Because H � Lmax ∼ Lmed, from (39), ‖XN1,N2,N2;H;L1,L2,L3‖[3,R×R] . L
1
2
minN−1

max H
1
2 .

Plugging this in, (44) becomes

∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed&N1 N2 N3

〈N1〉−s〈N2〉
1
2

Lb
1L1−b

2

L
1
2
minN−1

max(N1N2N3)
1
2 . 1.

Tao dealt with a similar term in [26], following his method, we estimate 〈N2
1
2 〉

〈N1
s〉 . N

1
2

〈Nmin〉s
, and Lb

1L1−b
2 &

Lb
minL1−b

med . Performing the L summation yields

∑
Nmax∼Nmed∼N

N
1
2 (N2Nmin)

b−1/2

〈Nmin〉sN
. 1,
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which holds for s > −1/4, and 1/2 < b < 3/4.
Proof of (43). First, we deal with the case N1 ∼ N2 ∼ N3 ∼ N & 1. In this case, (37) holds, Lmax ∼ N3, so (43)
reduces to showing

∑
Lmax∼N3

N
1
2

NsLb
minL1−b

med

L
1
2
minL

1
2
medN−1

max . 1.

Which holds for s > 1/4. Finally, we have three remaining cases. (i) N ∼ N1 ∼ N2 � N3; H ∼ L3 & L1, L2, (ii)
N ∼ N2 ∼ N3 � N1; H ∼ L1 & L2, L3, and (iii) N ∼ N1 ∼ N3 � N2; H ∼ L2 & L1, L3.

In (i), it reduces to

∑
N3�N

∑
1.L1,L2.N2 N3

N
1
2

NsLb
1L1−b

2

L
1
2
minN−1 min(N2N3,

N
N3

Lmed)
1
2 . 1

Performing the outer summation yields

∑
1.L1,L2.N3

N1/2−1+3/4−s

Lb
1L1−b

2

L
1
2
minL

1
4
med . 1,

which holds for s > 1/4, and 1/2 < b < 3/4. To get both (ii) and (iii), we minorize Lb
1 by L1−b

1 , it suffices to
show

∑
N1�N

∑
1.L1,L2�N2 N1

N
1
2

〈N1〉s(N2N1)1−bL1−b
2

L
1
2
minN

1
2

1 . 1.

Assuming N1 & N−2, since the L sum vanishes otherwise, we can perform the L summation to yield,

∑
N−2.N1�N

N
1
2 N

1
2

1
〈N1〉s(N2N1)3/2−2b . 1,

which holds for s > 1/2, and 1/2 < b < 3/4. Finally, we must deal with the case where (39) holds. We reduce
to showing

∑
Nmax∼Nmed∼N

∑
Lmax∼N1 N2 N3

〈N2〉
1
2

〈N1〉sLb
1L1−b

2

L
1
2
minN−1L

1
2
med . 1.

Doing the L summations, we reduce to showing

∑
Nmax∼Nmed∼N

〈N2〉
1
2 (N1N2N3)

b−1/2

〈N1〉s
N−1 . 1,

which holds for s > −1/2, and 1/2 < b < 3/4.

The proof of (42) follows from a similar estimate with the roles of L1 and L2 reversed.
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