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Abstract: In this article, we consider the limit cycles of a class of planar polynomial differential systems of
the form

ẋ = −y + ε(1 + sinn θ)xP(x, y)

ẏ = x + ε(1 + cosm θ)yQ(x, y),

where P(x, y) and Q(x, y) are polynomials of degree n1 and n2 respectively and ε is a small parameter. We
obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a linear center ẋ =

−y, ẏ = x, by using the averaging theory of first order.
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1. Introduction

O ne of the main problems in the theory of ordinary differential equations is the study of their limit
cycles, their existence, their number and their stability, these properties of limit cycles were studied

extensively by mathematicians and physicists, and more recently also by chemists, biologists, economists,
etc. A limit cycle of a differential equation is a periodic orbit in the set of all isolated periodic orbits of the
differential equation.

The second part of the 16th Hilbert’s problem [1] is related to the least upper bound on the number of
limit cycles of polynomial vector fields having a fixed degree. The study of differential equations or planar
differential systems has been considered by several authors. In [2] the authors studied the limit cycles for a
variant of a generalized Riccati equation. Mathieu, in [3] considered the second order differential equation

ẍ + b(1 + cos t)x = 0,

where b is a real constant. It is called Mathieu equation, which is the simplest mathematical model of an
excited system on a parameter. We also recall the Ermakov-Pinney equation which is the Mathieu-Duffing
type equation

ẍ + b(1 + cos t)x− xβ = 0,

where β is an integer and b > 0. The last two equations modeled the dynamics of a system with harmonic
parametric excitation and a nonlinear term corresponding to a restoring force, see [4,5].

There are several methods exist to study the number of limit cycles that bifurcate from the periodic orbits
such as the integrating factor, the abelian integral method, the Poincaré-Melnikov integral method, Poincaré
return map and averaging theory. The study of limit cycles for differential equations or planar differential
systems by applying the averaging method has been considered by several authors see for instance [6–8].

In [9], the authors studied the limit cycles of the second-order differential equations

ẍ + ε(1 + cosm θ)Q(x, y) + x = 0,
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where Q(x, y) is an arbitrary polynomial of degree n, and for each integer non-negative m.
In this paper, our goal is to study the maximum number of limit cycles of a differential planar system

bifurcating from the periodic orbits of the linear center{
ẋ = −y

ẏ = x,

given by {
ẋ = −y + ε(1 + sinn θ)xP(x, y)

ẏ = x + ε(1 + cosm θ)yQ(x, y),
(1)

where |ε| > 0 is a small parameter, m, n are non-negative integers, P(x, y) and Q(x, y) are polynomials of
degree n1 and n2 respectively. Our main result is the following theorem .

Theorem 1. For all polynomials P(x, y) and Q(x, y) have degree n1 and n2 respectively, n and m are non-negative
integers, then for |ε| > 0 sufficiently small, the maximum number of limit cycles of the differential systems (1) bifurcating
from the periodic orbits of the linear center ẋ = −y, ẏ = x using averaging theory of first order

(1) If m odd and n odd
max {n1, n2} ,

(2) If m even and n even
max

{[n1

2

]
,
[n2

2

]}
,

(3) If m odd and n even
max

{
n2, n2 +

[n1

2

]
−
[n2

2

]}
,

(4) If m even and n odd
max

{
n1, n1 +

[n2

2

]
−
[n1

2

]}
,

where [.] denotes the integer part function.

The statements of Theorem 1 is proved in §3. In §2 we recall the averaging theory of first order.

2. The averaging theory of first order

The averaging theory of first for studying periodic orbits was developed in [10,11].

Theorem 2. We Consider the differential system

ẋ(t) = εH(t, x) + ε2R(t, x, ε), (2)

where H : R× D → Rn, R : R× D× (−ε f , ε f ) → Rn are continuous functions, T-periodic in the first variable, and
D is an open subset of Rn. We define h : D → Rn as

h(z) =
1
T

∫ T

0
H(s, z)ds, (3)

and assume that

(i) H and R are locally Lipschitz with respect to x,

(ii) For a ∈ D with h(a) = 0, there exists a neighborhood V of a such that h(z) 6= 0 for all z ∈ V̄ \ {a} and
dB(h, V, 0) 6= 0.

Then for |ε| > 0 sufficiently small there exists an isolated T-periodic solution ϕ(·, ε) of system (2) such that ϕ(·, ε)→ a
as ε→ 0.
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Here we will need some facts from the proof of Theorem 2. Hypothesis (i) assures the existence and uniqueness of the
solution of each initial value problem on the interval [0, T]. Hence, for each z ∈ D, it is possible to denote by x(·, z, ε) the
solution of (2) with the initial value x(0, z, ε) = z.

We consider also the function ζ : D× (−ε f , ε f )→ Rn defined by

ζ(z, ε) =
∫ T

0

[
εH(t, x(t, z, ε)) + ε2R(t, x(t, z, ε), ε

]
dt. (4)

From (2) it follows for every z ∈ D that

ζ(z, ε) = x(T, z, ε)− x(0, z, ε). (5)

The function ζ can be written in the form
ζ(z, ε) = εh(z) + O(ε2), (6)

where h is given by (3), then for |ε| > 0 sufficiently small satisfies that zε = x(0, ε) tends to be an isolated zero of ζ(., ε)

when ε→ 0. Of course, due to (5) the function ζ is a displacement function for system (2), and its fixed points are initial
conditions for the T-periodic solution of system (2).

For additional information on the averaging theory, see the books [12,13].

Theorem 3 (Discartes Theorem). Consider the real polynomial p(x) = ai1 xi1 + ai2 xi2 + ...... + aik xik with 0 ≤ i1 <

i2 < ... < ik and aij 6= 0 real constants for j ∈ {1, 2, ..., k}. When aij aij+1 < 0, we say that aij and aij+1 have a variation
of sign. If the number of variations of signs is m, then p(x) has at most m positive real roots. Moreover, it is always
possible to choose the coefficients of p(x) in such a way that p(x) has exactly k− 1 positive real roots.

3. Proof Theorem 1

We need the first order averaging theory in to prove of Theorem 1. In order to apply first order averaging
method we write system (1), in polar coordinates (r, θ) where x = r cos(θ), y = rsin(θ) r > 0. If we take

P(x, y) =
n1

∑
i+j=0

aijxiyj,

Q(x, y) =
n2

∑
i+j=0

bijxiyj,

system (1) can be written as follows

ṙ = ε

(
n1

∑
i+j=0

aij

(
cosi+2 θ sinj θ + cosi+2 θ sinj+n θ

)
ri+j+1

+
n2

∑
i+j=0

bij

(
cosi θ sinj+2 θ + cosi+m θ sinj+2 θ

)
ri+j+1

)
,

θ̇ = 1 + ε

(
n2

∑
i+j=0

bij

(
cosi+1 θ sinj+1 θ + cosi+m+1 θ sinj+1 θ

)
ri+j

−
n1

∑
i+j=0

aij

(
cosi+1 θ sinj+1 θ + cosi+1 θ sinj+n+1 θ

)
ri+j

)
.

Taking θ as the new independent variable system, (1) can be written as

dr
dθ

=ε

(
n1

∑
i+j=0

aij

(
cosi+2 θ sinj θ + cosi+2 θ sinj+n θ

)
ri+j+1

+
n2

∑
i+j=0

bij

(
cosi θ sinj+2 θ + cosi+m θ sinj+2 θ

)
ri+j+1

)
+ O(ε2)
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=εF (r, θ) + O(ε2),

where

F(r, θ) = F1(r, θ) + F2(r, θ),

F1(r, θ) =
n1

∑
i+j=0

aij

(
cosi+2 θ sinj θ + cosi+2 θ sinj+n θ

)
ri+j+1,

F2(r, θ) =
n2

∑
i+j=0

bij

(
cosi θ sinj+2 θ + cosi+m θ sinj+2 θ

)
ri+j+1.

Let F10 be the averaging equation of first order associated with system (1), using the notation introduced in
Theorem 2 we compute F10 by integrating F1 with respect to θ,

F10(r) =
1

2π

∫ 2π

0
F(r, θ)dθ =

1
2π

∫ 2π

0
F1(r, θ)dθ +

1
2π

∫ 2π

0
F2(r, θ)dθ. (7)

In order to calculate the exact expression of F10 we use the following formulas

∫ 2π

0
sinp θ cos2q θdθ =

(2q− 1)!!
(2q + p)(2q + p− 2)..(p + 2)

∫ 2π

0
sinp θdθ,

∫ 2π

0
cosp θ sin2q θdθ =

(2q− 1)!!
(2q + p)(2q + p− 2)..(p + 2)

∫ 2π

0
cosp θdθ.

These formulas are applicable for arbitrary real p and arbitrary positive integer q, except for the following
negative even integers p = −2,−4, ...,−2n.

If p is a natural number and q = 0 we have

∫ 2π

0
sin2l θdθ =

(2l − 1)!!
2l l!

2π,∫ 2π

0
sin2l+1 θdθ = 0,∫ 2π

0
cos2l θdθ =

(2l − 1)!!
2l l!

2π,∫ 2π

0
cos2l+1 θdθ = 0.

We have also ∫ 2π

0
sinp θ cos2q+1 θdθ = 0,∫ 2π

0
cosp θ sin2q+1 θdθ = 0.

These last formulas are applicable for arbitrary real p and non-negative integer q, except the following negative
odd integers p = −1,−3, ...,−(2n + 1). For more details of these integrals and other, see [14].

Now we determine 1
2π

∫ 2π
0 F1(r, θ)dθ, in the following cases

(1) If n odd and n1 even

f1(r) =
1

2π

∫ 2π

0
F1(r, θ)dθ

=
1

2π

∫ 2π

0

n1

∑
i+j=0

[
ai,j

(
sinj θ + sinj+n θ

)
cosi+2 θ

]
ri+j+1dθ
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=
1

2π

∫ 2π

0

n1+2

∑
2q+j=2

[
a2q−2,j(sinj θ + sinj+n θ) cos2q θ

]
r2q+j−1dθ

=
1

2π

[
n1+1

∑
2q+2l+1=3

a2q−2,2l+1r2q+2l
∫ 2π

0
sin2l+n+1 θ cos2q θdθ

+
n1+2

∑
2l+2q=2

a2q−2,2lr2q+2l−1
∫ 2π

0
sin2l θ cos2q θdθ

]

=
n1/2

∑
l+q=1

a2q−2,2l+1r2l+2q (2q− 1)!!
(2q + 2l + 1)(2q + 2l − 1)...(2l + 3)

(2l + n)!!

2
2l+n+1

2 ( 2l+n+1
2 )!

+
(n1+2)/2

∑
l+q=1

a2q−2,2lr2l+2q−1 (2q− 1)!!
(2q + 2l)(2q + 2l − 2)...(2l + 2)

(2l − 1)!!
2l l!

=
n1/2

∑
l+q=1

a2q−2,2l+1r2q+2l (2l + n)!!(2q− 1)!!

2
2l+n+1

2 ( 2l+n+1
2 )!(2q + 2l + 1)(2q + 2l − 1)...(2l + 3)

+
(n1+2)/2

∑
l+q=1

a2q−2,2lr2q+2l−1 (2q− 1)!!(2l − 1)!!
2l+ql!(q + l)(q + l − 1)...(l + 1)

=
n1+1

∑
k=1

Akrk.

(2) If n odd and n1 odd

f2(r) =
1

2π

∫ 2π

0
F1(r, θ)dθ

=
1

2π

∫ 2π

0

n1

∑
i+j=0

[
ai,j(sinj θ + sinj+n θ) cosi+2 θ

]
ri+j+1dθ

=
1

2π

∫ 2π

0

n1+2

∑
2q+j=2

[
a2q−2,j(sinj θ + sinj+n θ) cos2q θ

]
r2q+j−1dθ

=
1

2π

[
n1+2

∑
2q+2l+1=3

a2q−2,2l+1r2q+2l
∫ 2π

0
sin2l+n+1 θ cos2q θdθ

+
n1+1

∑
2l+2q=2

a2q−2,2lr2q+2l−1
∫ 2π

0
sin2l θ cos2q θdθ

]

=
(n1+1)/2

∑
l+q=1

a2q−2,2l+1r2q+2l (2l + n)!!(2q− 1)!!

2
2l+n+1

2 ( 2l+n+1
2 )!(2q + 2l + 1)(2q + 2l − 1)...(2l + 3)

+
(n1+1)/2

∑
l+q=1

a2q−2,2lr2q+2l−1 (2q− 1)!!(2l − 1)!!
2l+ql!(q + l)(q + l − 1)...(l + 1)

=
n1+1

∑
k=1

Ãkrk.

(3) If n even and n1 even

f3(r) =
1

2π

∫ 2π

0
F1(r, θ)dθ

=
1

2π

∫ 2π

0

n1

∑
i+j=0

[ai,j(sinj θ + sinj+n θ) cosi+2 θ]ri+j+1dθ
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=
1

2π

∫ 2π

0

n1+2

∑
2q+j=2

[a2q−2,j(sinj θ + sinj+n θ) cos2q θ]r2q+j−1dθ

=
1

2π

[
n1+2

∑
2l+2q=2

a2q−2,2lr2q+2l−1
∫ 2π

0
(sin2l θ + sin2l+n θ) cos2q θdθ

]

=
(n1+2)/2

∑
l+q=1

a2q−2,2lr2q+2l−1 (2q− 1)!!
2q(q + l)(q + l − 1)...(l + 1)

 (2l − 1)!!
2l l!

+
(2l + n− 1)!!

2
2l+n

2 ( 2l+n
2 )!


=

n1+1

∑
k=1
k odd

Ākrk.

(4) If n even and n1 odd

f4(r) =
1

2π

∫ 2π

0
F1(r, θ)dθ

=
1

2π

∫ 2π

0

n1

∑
i+j=0

[ai,j(sinj θ + sinj+n θ) cosi+2 θ]ri+j+1dθ

=
1

2π

∫ 2π

0

n1+2

∑
2q+j=2

[a2q−2,j(sinj θ + sinj+n θ) cos2q θ]r2q+j−1dθ

=
1

2π

[
n1+1

∑
2l+2q=2

a2q−2,2lr2q+2l−1
∫ 2π

0
(sin2l θ + sin2l+n θ) cos2q θdθ

]

=
(n1+1)/2

∑
l+q=1

a2q−2,2lr2q+2l−1 (2q− 1)!!
2q(q + l)(q + l − 1)...(l + 1)

 (2l − 1)!!
2l l!

+
(2l + n− 1)!!

2
2l+n

2 ( 2l+n
2 )!


=

n1

∑
k=1

k impair

Ākrk.

And we determine 1
2π

∫ 2π
0 F2(r, θ)dθ in the following cases

(5) If m odd and n2 even

f5(r) =
1

2π

∫ 2π

0
F2(r, θ)dθ

=
1

2π

∫ 2π

0

n2

∑
i+j=0

[
bi,j(cosi θ + cosi+m θ) sinj+2 θ

]
ri+j+1dθ

=
1

2π

∫ 2π

0

n2+2

∑
i+2q=2

[
bi,2q−2(cosi θ + cosi+m θ) sin2q θ

]
ri+2q−1dθ

=
1

2π

[
n2+1

∑
2l+1+2q=3

b2l+1,2q−2r2l+2q
∫ 2π

0
cos2l+m+1 θ sin2q θdθ

+
n2+2

∑
2l+2q=2

b2l,2q−2r2l+2q−1
∫ 2π

0
cos2l θ sin2q θdθ

]

=
n2/2

∑
l+q=1

b2l+1,2q−2r2l+2q (2q− 1)!!
(2q + 2l + 1)(2q + 2l − 1)...(2l + 3)

(2l + m)!!

2
2l+m+1

2 ( 2l+m+1
2 )!

+
(n2+2)/2

∑
l+q=1

b2l,2q−2r2l+2q−1 (2q− 1)!!
(2q + 2l)(2q + 2l − 2)...(2l + 2)

(2l − 1)!!
2l l!
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=
n2/2

∑
l+q=1

b2l+1,2q−2r2l+2q (2l + m)!!(2q− 1)!!

2
2l+m+1

2 ( 2l+m+1
2 )!(2q + 2l + 1)(2q + 2l − 1)...(2l + 3)

+
(n2+2)/2

∑
l+q=1

b2l,2q−2r2l+2q−1 (2l − 1)!!(2q− 1)!!
2l+ql!(q + l)(q + l − 1)...(l + 1)

=
n2+1

∑
k=1

Bkrk.

(6) If m odd and n2 odd

f6(r) =
1

2π

∫ 2π

0
F2(r, θ)dθ

=
1

2π

∫ 2π

0

n2

∑
i+j=0

[
bi,j(cosi θ + cosi+m θ) sinj+2 θ

]
ri+j+1dθ

=
1

2π

∫ 2π

0

n2+2

∑
i+2q=2

[
bi,2q−2(cosi θ + cosi+m θ) sin2q θ

]
ri+2q−1dθ

=
1

2π

[
n2+2

∑
2l+1+2q=3

b2l+1,2q−2r2l+2q
∫ 2π

0
cos2l+m+1 θ sin2q θdθ

+
n2+1

∑
2l+2q=2

b2l,2q−2r2l+2q−1
∫ 2π

0
cos2l θ sin2q θdθ

]

=
(n2+1)/2

∑
l+q=1

b2l+1,2q−2r2l+2q (2l + m)!!(2q− 1)!!

2
2l+m+1

2 ( 2l+m+1
2 )!(2q + 2l + 1)(2q + 2l − 1)...(2l + 3)

+
(n2+1)/2

∑
l+q=1

b2l,2q−2r2l+2q−1 (2l − 1)!!(2q− 1)!!
2l+ql!(q + l)(q + l − 1)...(l + 1)

=
n2+1

∑
k=1

B̃krk.

(7) If m even and n2 even

f7(r) =
1

2π

∫ 2π

0
F2(r, θ)dθ

=
1

2π

∫ 2π

0

n2

∑
i+j=0

[
bi,j(cosi θ + cosi+m θ) sinj+2 θ

]
ri+j+1dθ

=
1

2π

∫ 2π

0

n2+2

∑
i+2q=2

[
bi,2q−2(cosi θ + cosi+m θ) sin2q θ

]
ri+2q−1dθ

=
1

2π

[
n2+2

∑
2l+2q=2

b2l,2q−2r2l+2q−1
∫ 2π

0
(cos2l θ + cos2l+m θ) sin2q θdθ

]

=
(n2+2)/2

∑
l+q=1

b2l,2q−2r2l+2q−1 (2q− 1)!!
2q(q + l)(q + l − 1)...(l + 1)

 (2l − 1)!!
2l l!

+
(2l + m− 1)!!

2
2l+m

2 ( 2l+m
2 )!


=

n2+1

∑
k=1
k odd

B̄krk.

(8) If m even and n2 odd

f8(r) =
1

2π

∫ 2π

0
F2(r, θ)dθ
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=
1

2π

∫ 2π

0

n2

∑
i+j=0

[
bi,j(cosi θ + cosi+m θ) sinj+2 θ

]
ri+j+1dθ

=
1

2π

∫ 2π

0

n2+2

∑
i+2q=2

[
bi,2q−2(cosi θ + cosi+m θ) sin2q θ

]
ri+2q−1dθ

=
1

2π

[
n2+1

∑
2l+2q=2

b2l,2q−2r2l+2q−1
∫ 2π

0
(cos2l θ + cos2l+m θ) sin2q θdθ

]

=
(n2+1)/2

∑
l+q=1

b2l,2q−2r2l+2q−1 (2q− 1)!!
2q(q + l)(q + l − 1)...(l + 1)

 (2l − 1)!!
2l l!

+
(2l + m− 1)!!

2
2l+m

2 ( 2l+m
2 )!


=

n2

∑
k=1
k odd

B̄krk.

Going back to the Equation (7), and we distinguish the following cases and subcases

(a) If m odd and n odd

(a.1) n1 even et n2 even

F10(r) =
n1+1

∑
k=1

Akrk +
n2+1

∑
k=1

Bkrk,

(a.2) n1 odd et n2 odd

F10(r) =
n1+1

∑
k=1

Ãkrk +
n2+1

∑
k=1

B̃krk,

(a.3) n1 odd et n2 even

F10(r) =
n1+1

∑
k=1

Ãkrk +
n2+1

∑
k=1

Bkrk,

(a.4) n1 even et n2 odd

F10(r) =
n1+1

∑
k=1

Akrk +
n2+1

∑
k=1

B̃krk.

We have that F10 is the polynomial in the variable r, then by Descartes Theorem F10 has most max {n1, n2} limit
cycles, this completes the proof of statement (1) of Theorem 1.

(b) If m even and n even.

(b.1) n1 even et n2 even

F10(r) =
n1+1

∑
k=1
k odd

Ākrk +
n2+1

∑
k=1
k odd

B̄krk,

(b.2) n1 odd et n2 odd

F10(r) =
n1

∑
k=1
k odd

Ākrk +
n2

∑
k=1
k odd

B̄krk,

(b.3) n1 odd et n2 even

F10(r) =
n1

∑
k=1
k odd

Ākrk +
n2+1

∑
k=1
k odd

B̄krk,

(b.4) n1 even et n2 odd

F10(r) =
n1+1

∑
k=1
k odd

Ākrk +
n2

∑
k=1
k odd

B̄krk.

We have that F10 is the polynomial in the variable r2, then by Descartes Theorem F10 has most max{
[ n1

2
]

,
[ n2

2
]
}

limit cycles, this completes the proof of statement (2) of Theorem 1.
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(c) If m odd and n even.

(c.1) n1 even et n2 even

F10(r) =
n1+1

∑
k=1
k odd

Ākrk +
n2+1

∑
k=1

Bkrk,

(c.2) n1 odd et n2 odd

F10(r) =
n1

∑
k=1
k odd

Ākrk +
n2+1

∑
k=1

B̃krk,

(c.3) n1 odd et n2 even

F10(r) =
n1

∑
k=1
k odd

Ākrk +
n2+1

∑
k=1

Bkrk,

(c.4) n1 even et n2 odd

F10(r) =
n1+1

∑
k=1
k odd

Ākrk +
n2+1

∑
k=1

B̃krk.

We have that F10 is the sum of two polynomials, one in the variable r and the other in r2, then by Descartes
Theorem F10 has most max

{
n2, n2 +

[ n1
2
]
−
[ n2

2
]}

limit cycles, this completes the proof of statement (3) of
Theorem 1.

(d) If n odd and m even.

(d.1) n1 even et n2 even

F10(r) =
n1+1

∑
k=1

Akrk +
n2+1

∑
k=1
k odd

B̄krk,

(d.2) n1 odd et n2 odd

F10(r) =
n1+1

∑
k=1

Ãkrk +
n2

∑
k=1
k odd

B̄krk,

(d.3) n1 odd et n2 even

F10(r) =
n1+1

∑
k=1

Ãkrk +
n2+1

∑
k=1
k odd

B̄krk,

(d.4) n1 even et n2 odd

F10(r) =
n1+1

∑
k=1

Akrk +
n2

∑
k=1
k odd

B̄krk.

We have that F10 is the sum of two polynomials, one in the variable r and the other in r2, then by Descartes
Theorem F10 has most max

{
n1, n1 +

[ n2
2
]
−
[ n1

2
]}

limit cycles, this completes the proof of statement (4) of
Theorem 1.

4. Example

We consider the system{
ẋ = −y + ε(1 + sin2 θ)x( 1

84 x2 − 23
240 ),

ẏ = x + ε(1 + cos3 θ)y( 1
8 x2y2 − 23

18 xy2 + 1
12 y2 − 13

48 x + 1
8 ).

(8)

By doing the change of variables x = r cos θ, y = r sin θ and taking θ as a new independent variable, we get

ṙ = ε

((
1
84

r3 cos4 θ − 23
240

r cos2 θ

)(
1 + sin2 θ

)
+

(
1
8

r5 sin4 θ cos2 θ − 23
18

r4 sin4 θ cos θ

+
1

12
r3 sin4 θ − 13

48
r2 sin2 θ cos θ +

1
8

r sin2 θ

)(
1 + cos3 θ

))
,
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θ̇ = 1 + ε

((
− 1

84
r2 cos3 θ sin θ +

23
240

sin θ cos θ

)(
1 + sin2 θ

)
+

(
−23

18
r3 cos2 θ sin3 θ

+
1
12

r2 sin3 θ cos θ +
1
8

r4 cos3 θ sin3 θ − 13
48

r cos θ +
1
8

cos θ sin θ

))
.

Taking θ as the new independent variable, we get

dr
dθ

= εF(r, θ) + O(ε2),

where

F(r, θ) =

(
1
84

r3 cos4 θ − 23
240

r cos2 θ

)(
1 + sin2 θ

)
+

(
1
8

r5 sin4 θ cos2 θ − 23
18

r4 sin4 θ cos θ

+
1

12
r3 sin4 θ − 13

48
r2 sin2 θ cos θ +

1
8

r sin2 θ

)
(1 + cos3 θ

)
.

The function of averaging theory of first order is

F10 =
1

768
r
(

6r4 − 23r3 + 28r2 − 13r + 2
)

,

that has exactly four positive zeros which are r1 =
1
3

, r2 =
1
2

, r3 = 1, and r4 = 2. Which satisfy

dF10(r)
dr

|r=r1
= − 5

10368
6= 0,

dF10(r)
dr

|r=r2
=

1
2048

6= 0,

dF10(r)
dr

|r=r3
= − 1

384
6= 0,

dF10(r)
dr

|r=r4
=

5
128
6= 0,

then we conclude that the system (8) has two stable limit cycles for r1 =
1
3

and r3 = 1, and two unstable limit

cycles for r2 =
1
2

and r4 = 2 (see Figure 1).

Figure 1. Four limit cycles for ε = 10−3
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5. Conclusion

In the present paper, by using the averaging theory of the first order we show that the maximum number
of the limit cycles bifurcating from linear center ẋ = −y, ẏ = x, for a generalized planar differential system.
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