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Abstract: The Simpson’s inequality cannot be applied to a function that is twice differentiable but not four
times differentiable or have a bounded fourth derivative in the interval under consideration. Loads of articles
are bound for twice differentiable convex functions but nothing, to the best of our knowledge, is known yet
for twice differentiable exponentially convex and quasi-convex functions. In this paper, we aim to do justice to
this query. For this, we prove several Simpson’s type inequalities for exponentially convex and exponentially
quasi-convex functions. Our findings refine, generalize and complement existing results in the literature. We
regain previously known results by taking a = 0. In addition, we also show the importance of our results
by applying them to some special means of positive real numbers and to the Simpson’s quadrature rule. The
obtained results can be extended for different kinds of convex functions.
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1. Introduction

S uppose g : [a1,a2] — R is a four times continuously differentiable mapping on (a1,a3) and ||g®||es =
sup | (x)| < co. Then the following inequality

x€(ay,a2)

1r8(am) +g(a2) mtap\y 1 L@ )
5 2 (P57 - o [ s < g lIsWlls(ar — )

holds, and it is well known in the literature as Simpson’s inequality, named after the English mathematician
Thomas Simpson. If the mapping g is neither four times differentiable nor is the fourth derivative g(*) bounded
on (ay,a;), then we cannot apply the classical Simpson quadrature formula. In [1] Dragomir et al., proved
some recent developments on Simpson’s inequality for which the remainder is expressed in terms of lower
derivatives than the fourth. For recent refinements, counterparts, generalizations and new Simpson’s type
inequalities, see [1-4].

The classical convexity of functions is a fundamental notions in mathematics, they have widely
applications in many branches of mathematics and physics. A function g : I C R — R is said to be a convex
in the classical sense, if

g(tay + (1 —t)ay) < tg(az) + (1 —t)g(ar)

forall aj,ap, € ITand t € [O, 1]. We call g concave if the inequality is reversed. A somewhat generalization of
the above definition is given by Awan et al., [5] as follows:
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Definition 1 ([5]). A function g: I C R — R is called exponentially convex, if

a ay
gltay + (1 - Hay) < tge(wz) +(1- t)ge(lml) (1)
forall ay,ay € I, t € [0,1], and & € R. If (1) holds in the reversed sense, then g is said to be exponentially
concave.

2 js a concave function, thus this function is

For example, the function g : R — R, defined by g(x) = —x
exponentially convex for all # < 0. An exponentially convex function on a closed interval is bounded, it also
satisfies the Lipschitzian condition on any closed interval [ay, 5] C [ (mtenor of I). Therefore an exponentially
convex function is absolutely continuous on [ay,a,] C [ and continuous on I.

Recently, Nie et al., [6] introduced the notion of exponentially quasi-convex as thus:

Definition 2 ([6]). Let « € R. Then a mapping g : I C R — Ris said to be exponentially quasi-convex if

g(a2) g(ﬂl)}

ety 7 oty

g(tag + (1 —t)ap) < max {
forallay,ap € I,and t € [0,1].

Remark 1. Note that if « = 0, then the classes of exponentially convex and quasi-convex functions reduce to
the classes of classical convex and quasi-convex function.

Inspired by the work of Sarikaya et al., [7] and Vivas et al., [8], we aim to establish new Simpson’s type
results for the class of functions whose derivatives in absolute value at certain powers are exponentially
convex and exponentially quasi-convex. By taking & = 0, we recapture some already established results in
the literature. The main results are framed and justified in §2, followed by applications of our results to some
special means in §3, and Simpson’s quadrature in §4.

2. Main results
For the proof of our main results, the following lemma will be useful.

Lemma 1 ([7]). Let g: [ C R — R be a twice differentiable mapping on 1° such that §" € Lq[ay, az], where ay,a; € 1
with a1 < ay. Then the following equality holds:

a] +ap

é[g(al)—i-ﬁlg( 5 )+8(az)}— ! /ﬂjzg(x)dx

ap —ay

1
= (ay— al)Z/ k()g" (tay + (1 — t)ay) dt,
0
where
((1-0) 7 reoy
k(t) = t_ 1 ; 1
-0 (4-1) i telba].
2.1. Simpson’s inequality for exponentially convex

We now give a new refinement of Simpson’s inequality for twice differentiable functions:

Theorem 1. Let ¢ : I C R — R be a twice differentiable mapping on I° such that ¢ € Lq[ay, ap], where ay,a, € 1
with ay < ay. If |§"| is exponentially convex on [ay, az], then the following inequality holds:

1 %2 (a2 —a1)* [18"(a2)| | |&"(a1)]
)+g(a2)] Cm-m /al g(0dx| < =5 o T am

ay+ax

‘i[g( 1) +4g ("
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Proof. Using Lemma 1 and since |¢”| is exponentially convex, we have
1 o2

- a — a1 /ﬂl g(x)dx’

1
(az—a)? [ k(D) [g" (taz + (1= Dyay)| s

1

2 (2]t (1 18" (a2)] 18" (a1)]
<(ag —aq) /0 > <3 — t> ’ (t e (1—1) o )dt
7 1
+(112—111)2/1 (t‘g (a2)|+(1—t) ‘g (al)‘)dt

1 t 1
1 1=t (2 a 3) er2 eri
=(ay —a)*(I; + ),

| [stn) +4g (P52 + sa0)]

where
/!
( f)!( 0 >lg§al>l)dt
Ig t (1 18" (a1)|
em 5 (5- tar + 18 eml / —t) @ -pyar
_ 9 @) | 133 [g"(m)
© 31104 ena2 31104 etm 7
and

(1-1) (; ;)‘ (LA AP

eaﬂz

1 8" (a1)] [ t 1
( 3) tdt + o /% (1—1) 373 (1—t)dt
_ 133 Ig”(az)l 59 [8"(a1)]
31104 ena2 31104 erm

1
12:/1

eaaz

4

which completes the proof. [

Corollary 1. Let g : I C R — R be a twice differentiable mapping on I° such that ¢"" € Lq[ay, az], where ay,ap € 1
withay < ap. If g(ay) = g(“1+“2) = g(ap) and |g"| is exponentially convex on [ay, ay), then the following inequality
holds:

sy st 5(2572) | < (2P [ )

a, —aq 2 - 162 ern2 et
Remark 2. In Theorem 1, by letting « = 0 we get [7, Theorem 2.2].

Theorem 2. Let ¢ : I C R — R be a twice differentiable mapping on I° such that ¢ € Ly[ay, ay], where ay,a, € 1
with ay < ay. If |7 is exponentially convex on (a1, az] and q > 1, then the following inequality holds:

1 1+ o
st ag( ) o) - L [T g
<(a—m)? = " 59 [¢"(a2)|' , 133 |g"(a) |7\
=270 162 31104 | vz 31104 | et
N 133 |¢"(a2)|" 59 |¢"(ap) | 7
31104 | e 31104 | erm :

Proof. Suppose that ¢ > 1. From Lemma 1, we have
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ap +ax

]% [g(al) +4g( > ) +f(az)] -

/az g(x)dx’

a2 - {11 ay

1
< (ay— a1)2/0 k(t)] |8 (tay + (1 — t)ay)| dt

= (a2 —011)2/07
+(a2_a1)2/;

2
Using the Holder’s inequality for functions

t

5 (; - t)‘ 8" (tay + (1 — t)ay)| dt
(1—1) (; - ;)‘ 18" (ka2 + (1 — B)ay)| dt.

and

7

for the first integral, and the functions

and

for the second integral, from the above relation we get the inequality:

olston +as(52) + o] - o=

(-9
% (; - t> ' |§" (taz + (1 — t)a1)|‘7dt> %

(1-1t) (; - é)‘ dt)l_%

(1—1t) <; - ;) ‘ 18" (tay + (1 — t)a1)|th)%.

1 1
O0<23>PL‘MQ

/azg(x)dx’

m
1

< (a2_a1)2(/02
X<Az
+ (a2,a1)2(/;
XQE

KlaG)e= 4

2
and the exponentially convexity of |g"’|7, we have

1
/2
0

Using the fact that

5 (3-1) I8 ma e (= )7

+(1—1t)

1
(1)

7133 |¢"(m)
31104 | e*m

. 2)
8" (a1)

elxﬂl

q

q/§
0

59
T 31104

8" (a2)

eaaz
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and ) .
t
/% (1—1t) (2—3>‘|g”(ta2+(1—t)a1)|th
! t 1 " (az) | g (ay) |
< [a-o (- D) [ s - 8]
@) [l E1[L [ = )
= % /é(l—t)<2—3>’tdt+ o, /%(1_t)(2_3)‘(1_t>dt
_ 133 [gM(a) [T 59 [g"(a)|"
31104 | erm 31104 | eam
From (2) and (3), we have

[ [san) + a5 (M5 + ()] - L [T g

ax — a1 Jm

1 1 7
- -4 (59 |¢"(a) |7 133 |g"(a1)|T\"
< B 5 2|t /1 q 8 \a2 1
oo () (e e
1
1 £l =5 (133 |g"(a)|T | 59 |g"(a1)|T\7
B 5 B 1 q g 2 8 1
+ (a2 —a) ( /; (1= <2 3)“#) (31104 ona2 31104 | e )
1
P 59 (g @) [T, 133 | (an) [T\
270162 31104 | e 31104 | enar

59
31104

g"(a)

eaal

" (a2)

eaﬂz

n 133
31104

q> 3,]
This completes the proof. [

Corollary 2. Let ¢ : I C R — R be a twice differentiable mapping on I° such that " € Ly[ay, az], where ay,a, € I
withay < ap. If g(ay) = g(@) = g(ay) and |g" |7 is exponentially convex on [a1,az| and g > 1, then the following

inequality holds:
1 a2 a1+ ap
‘ ap; —aq /al g(x)dx g( 2 ) ’

1
1\'7 59
<(ap—a1)? | —
< (a2 =) (162) {(31104 31104
1
N 133 Y
31104 '

Remark 3. By setting « = 0 in Theorem 2, we recapture [7, Theorem 2.5].

g"(a1)

eaul

8" (a2)

eaﬂz

1 133
+_

1
q)q

q%_ 59
31104

8" (a1)

eaﬂ]

8" (a2)

eaaz

Corollary 3. Let ¢ : I C R — R be a twice differentiable mapping on I° such that §'" € Ly[ay,az], where ay,a, € I
withay < ap. If g(a1) = 8 (@) = ¢(ap) and |"|? is exponentially convex on [ay, ay], then the following inequality

holds: . .
2 a) +ap
ap — a1 /al g<x) dx g( 2 ) ‘

1
(1 2 59 |¢"(ax)[* . 133 | (ay)[*)?
<(m-m) |15 aa aa
162 31104 | etz 31104 | e*m
2 2\ 2
EREE g"(az) 59 |¢"(a1)|7\"
31104 | et 31104 | e*m '
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2.2. Simpson’s inequality for exponentially quasi-convex

Theorem 3. Let ¢ : I C R — R be a twice differentiable mapping on I° such that §" € Lq[ay, ap], where ay,a, € 1
with ay < ay. If |§"| is exponentially quasi-convex on [ay, ay)|, then the following inequality holds:
a; +ap

‘é{g(a1)+4g( 5 )+g(a2)} _azial /:g(x)dx
<z—1>2m{ 8" (@2)] 18" (a1)] } |

IN

81 exaz 7 etm
Proof. From Lemma 1 and by using the exponentially quasi-convexity of |g”|, we get

[t +4g (M F2) + 5(a)] -

[ g(x)dx]

a — a1 Jm

1
< (ay— a1)2/0 k(8)] |8 (taz + (1 — t)ay)| dt
3 " "
(L) L, 001,
2\3 exaz eay

< (a2 —111)2/02
+(ﬂ2—ﬂ1)2/; a-n (;_;>|max{'g';§fj>', |g:§gll)|}df
= (1 —a1)* (L + ),

2

where )
1 " "
- f(l_t)‘max{lg (a2)] g w}dt
0 2 3 exar eray
_ 8" (a2)| 18"(a1)|\ 2t (1
—max{ ol ’ o1 ‘/0 E g—t dt
_ 1 18" (a2)] 18" (a1)]
and

1
12:/l

/" "
-0 (4 1) [max {15210 0011
7 2 3 exaz ey

:max{lg;giz)ll g’e’izl)}/; 1o <;_;>‘dt
R S { 18"(a2)] |g" (@) }

162 exaz 7 erm

which completes the proof. [

Corollary 4. Let g : I C R — R be a twice differentiable mapping on I° such that " € Ly[ay,az], where ay,a, € I
with ay < a. If g(a1) = g(@) = g(ap) and |g"| is exponentially quasi-convex on (a1, az], then the following
inequality holds:

— 81 e 4 enal

<lnonf I e I8 el

1 a2 a1+ ap
ay — aq /gl g(x)dx—g( 2 )

Theorem 4. Let ¢ : I C R — R be a twice differentiable mapping on I° such that ¢ € Ly[ay, ap], where ay,a, € 1
with ay < ay. If |g"|9 is exponentially quasi-convex on [aq,a) and g > 1, then the following inequality holds:

1 ay +ap a

st ag(U ) o) - L [T g
1

< 7012 7a1)2 max g//(az) I g/,(al) i i

- 81 ek e ’
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Proof. Suppose that 4 > 1. From Lemma 1, we have

s [stan +ag( ) gt - L [ st

1
< (a2 —m)? [ k(O] [ (ta2 + (1 = ) a

= (az—al)z/(f

1
+ (a2 — 01)2/1
2

é (; - t) ‘ 8" (taz + (1 — t)ay) | dt

Using the Holder’s inequality for functions

and

for the first integral and the functions

and

for the second integral, from the above relation we get the inequalities:

‘i [g(al) —0—4g(111 —;@) +g(a2)} - 1 - /'12 g(x)dx

()
s (3-0)|18te + (0 = e ar)’
a-0(5-5)| )"
(1-1) (; _ ;)’ 1" (taz + (1 — Day)[? dt)%.

Since |¢”|7 is exponentially quasi-convex, therefore we have

1

< (e —mp( [°
(/O
‘F(ﬂz—m)z(/l1
x(/j

2

1
/2
0

t

1
5 (3 — t) ‘ |¢" (tay + (1 —t)ay)|" dt

1

</z COL ) max g"(a)|" 8" (@)’ dt
—Jo 2\3 ena 4 ey

_ 8" (a2) | |g"(a) |\ 2|t (1
e [T Y 810
_ 1 8" (a2) " |g"(a1) |

- 162max{ ol oty }

(1—1t) <; - ;)‘ |§" (taz + (1 — t)aq)| dt.

4)
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and

/11

(1—1t) (2—)‘|g” (tay + (1 —t)ay) |7 dt

33 o2

8" (a1)

eaal

eaaz

q
b

©)

" q q 1

:max{ g"(2) g"(a1) }/ (1—1) <t_1>’dt
okar oiay % 2 3

_ 1 §"(a2)|" |&" (a1) |’

- 1o max { v I ey .

From (4) and (5), we have

a, —ay

- (ﬂz—al)z(/j ;(;—t)‘dtf; (1162max{ 8/;5;122) ‘7, gzogfll) q})%
+(a2—a1)2(/; 1 (;_;)‘dt)l'; <1ézmax{ 8/;5:22) ’4/ gzlgiﬁ q})%

sy <112>1—$ <122)37 (max{ g;(jf) " g’;o(‘fll) q})%

q

8"(a2) | |g"(a1)

q})é,

_ (o wp (1max {

where we used the fact that

The proof is complete. [

Corollary 5. Let ¢ : I C R — R be a twice differentiable mapping on I° such that " € Ly[ay,az], where ay,ap € I

with 4y < a. If g(aq) = g<”1+”2 = g(ap) and |g" |7 is exponentially quasi-convex on (a1, az| and q > 1, then the
following inequality holds:

1
1 a ay +ap (a2 — a1)2 q q
a) —aq /al g(x)dx g( 2 ) ‘ - 81 max

Corollary 6. Let ¢ : I C R — R be a twice differentiable mapping on I° such that " € Ly[ay, az], where ay,a, € 1
with a; < ap. If g(a1) = g(“1+“2) = g¢(ap) and |g"|* is exponentially quasi-convex on [ay,ay)|, then the following

inequality holds:
2 2 %
1 “2 a1 +ap (a2 — )
— < .
‘aQ —m /a1 g(x)dx g( 2 )‘ - 81 max

3. Applications to special means

18" (a1)

eaal

8" (a2)

eﬁcﬂg

7

2 g (m)

eaal

8" (a2)

eaﬂz

7

We now consider the following special means for positive real numbers a1 and a;.

1. The arithmetic mean: A = A(ay,ap) = 152,

2. The harmonic mean:
2ﬂ1ﬂz

H - H(ﬂl,az) = m
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3. The logarithmic mean:
a if a1=a
L=L(ar,a2) =
% if ay #ap.
4. The p-logarithmic mean:
|: a§+l _aiﬂrl
(

1
P .
7p+1)(a27m} if a1 #

Ly = Ly(ar,a) = , peR\{-1,0}.

ai if a = ap

It is well know that £, is monotonic nondecreasing over p € R with £_; = L. In particular, we have the
following inequalities

HSL<SA

Some new inequalities are derived for the above means.

Proposition 1. Let aj,a; € R, 0 < ay < ap. Then, we have

1 2(ay —ay)? | a5 a2
3A(ﬂ1'ﬂz)+ 2 A (ar,12) — L3(a1,02) S TR

Proof. The assertion follows from Theorem 1 and a simple computation applied to g(x) = ’1‘—4, x € [aq,az],

where |¢”| is exponentially convex mapping. [

Proposition 2. Let aj,a; € R, 0 < ay < ap. Then, we have

1 r(r+1)(a2_a1)2 ar 1 a}’ 1
;A a4 A7+1(a1,a2) L (ay,a2)| < o1 max ;xaz eical .

Proof. This time we use Theorem 3 and a simple computation applied to ¢(x) = LH, r>1, x € |ay,a].
P p PP g )
Here, the function |¢” (x)| = rx"~! is increasing and exponentially quasi-convex. []

4. Applications to Simpson’s formula

Let g : [a1,a2] — R and P be a partition of the interval [aq,a;]; i.e

B = (sit1 —si)

Piai=sp<s1 < - <8y_1 <5y, =ap; 5

Now, for the given Simpson’s quadrature:

28 ) +48 Sz+h)+8(5i+1)h,
3 17

it is well known that if g is differentiable such that ¢(*) (x) exist on (a1,4) and K = rr[lax | 1§ (x)] < oo, then
xe|ay,az

1= ["g(s)ds = S(g,P) + Eulg,P), ®)

where the approximation error Es(g, P) of the integral I by Simpson’s formula S(g, P) satisfies

n—1

|Es(g,P)| < % Y (si01 —si)°. )

i=0
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It is clear that if the function g is not four times differentiable or the fourth derivative is not bounded on (a1, a3),
then (7) cannot be applied.

Theorem 5. Let g: I C [0,00) — R be a twice differentiable mapping on I° such that §"" € Ly[ay, ay], where ay, ay € 1
with ay < ay. If |g"| is exponentially convex on [ay, az], then in (6) for every division P of [ay, ay], the following holds:

n—1 " S " S;
|Es(g,P)| < 162 Z(Si+l —s;)® [|ge£s:11)| + |ge£5i )q )

Proof. Applying Theorem 1 on the subintervals [s;,s;11], (i =0,1,2,---,n — 1) of the division P, we get

Eit = o(s) 4 (17 )+ gloien)] = [ stoas
< a0 g, 8001)

- 162 e*Si+1 ensi

Adding over i for 0 to n — 1 and taking into account that |g”| is exponentially convex, we have:

a " (sip —5i)® 18" (sin)| | 18" (si)]
‘S<g’ P) _/ g(S)dS S I_ZO 162 |: eXSi+1 + eusi :| ’

|
which completes the proof. [J

Corollary 7. If « = 0, we get

|E(g, P gsm P [8" (1) + 8" (s141)]

Theorem 6. Let g : I C [0,00) — R be a twice differentiable mapping on I° such that §"" € Ly[ay, az], where ay,ay € 1
with ay < ay. If |¢"'| is exponentially quasi-convex on [ay, az|, then in (6) for every division P of [aq,ay|, the following
holds:

17E s
Es(&/P)| < g7 ; Sit1 = Si) max{ 8™ )], ‘geis, )|}.

eXSi+1
Proof. Applying Theorem 3 and proceeding as in the proof of Theorem 5, we obtain the desired result. O

Proposition 3. Let g : I C [0,00) — R be a twice differentiable mapping on I1° such that "' € Li|ay,ap], where
ay,ay € Twithay < ay. If |g"|7 is exponentially convex on [ay,az) and q > 1, the following holds:

E@PI < (1) L s 0 [MIG 60,87 )]

where
1
59 |8 (siv) |7, 133 |g"(si)|T\7
M (8"(s0),8" (si41)) = <31104‘ s | T att0a | e
1
L 183 |8 G |T 59 |87 (s) [T
31104 | it 31104 | ensi '

Proof. The proof is immediate by using Theorem 2. [
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Proposition 4. Let ¢ : I C [0,00) — R be a twice differentiable mapping on 1° such that ¢" € Ly|ay,az], where
ay,ap € Twith ay < ay. If || is exponentially quasi-convex on [aq,az) and g > 1, the following holds:

).

8" (sit1) i

exSi+1

1 n-
|Es(g, P 8— Z Sit1 —Si) (max{

Proof. The proof follows by applying Theorem 4. O

5. Conclusion

Several inequalities of the Simpson’s type for exponentially convex and exponentially quasi-convex
functions are hereby established. For « = 0, we recapture results in [7]. Furthermore, we presented some
applications to special means and to Simpson’s formula. We look forward to further investigation in this
direction.
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