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1. Introduction

T he fixed point theory is a very interesting research area in due to its wide range of applicability, to
resolve diverse problems emanating from the theory of nonlinear differential equations and integral

equations.
Wardowski [1], generalized the famous Banach theorem [2] for F−contraction on metric spaces, several

mathematicians extended this new notion for contraction on metric spaces [3–6].
The concept of a rectangular metric space was introduced by Branciari in [7]. After that, several interesting

results about the existence of fixed points in rectangular metric spaces have been obtained [8–11]. Recently,
Kari et al., [12], obtained some results for generalized θ − φ−expansive mapping in rectangular metric spaces.

In 1984, Wang et al., [13], presented some interesting work on expansion mappings in metric spaces.
Recently, Kumar et al., [14], introduced a new concept of (α, ψ)−expansive mappings and established some
fixed point theorems for such mapping in complete rectangular metric spaces.

In this paper, inspired by the idea of F−contraction introduced by Wardowski [1] in metric spaces, we
presented generalized F−expansive mapping and establish various fixed point theorems for such mappings
in complete rectangular metric spaces. Our theorems extend, generalize and improve many existing results.

2. Preliminaries

By an expansion mappings [13] on a metric space (X, d), we understand a mapping T : X → X satisfying
for all x, y ∈ X:

d(Tx, Ty) ≥ kd(x, y),

where k is a real in ]1,+∞[.
In 2000 Branciari [7] introduced the concept of rectangular metric spaces.

Definition 1. [7] Let X be a non-empty set and d : X × X → R+ be a mapping such that for all x, y ∈ X and
for all distinct points u, v ∈ X, each of them different from x and y, on has

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all distinct points x, y ∈ X;
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(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y)( the rectangular inequality).

Then (X, d) is called an rectangular metric space.

Definition 2. [15] Let T : X → X and α, η :X × X → [0,+∞[ . We say that T is a triangular (α, η)-admissible
mapping if

(T1) α (x, y) ≥ 1⇒ α (Tx, Ty) ≥ 1, x, y ∈ X;
(T2) η (x, y) ≤ 1⇒ η (Tx, Ty) ≤ 1, x, y ∈ X;

(T3)

{
α (x, y) ≥ 1
α (y, z) ≥ 1

⇒ α (x, z) ≥ 1 for all x, y, z ∈ X;

(T4)

{
η (x, y) ≤ 1
η (y, z) ≤ 1

⇒ η (x, z) ≤ 1 for all x, y, z ∈ X.

Definition 3. [15] Let (X, d) be a rectangular metric space and let α, η :X × X → [0,+∞[ be two mappings.
Then

(a) T is α−continuous mapping on (X, d) , if for given point x ∈ X and sequence {xn} in X, xn → x and
α (xn, xn+1) ≥ 1 for all n ∈ N, imply that Txn → Tx.

(b) T is η sub−continuous mapping on (X, d) , if for given point x ∈ X and sequence {xn} in X, xn → x and
η (xn, xn+1) ≤ 1 for all n ∈ N, imply that Txn → Tx.

(c) T is (α, η) −continuous mapping on (X, d) , if for given point x ∈ X and sequence {xn} in X, xn → x and
α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1 for all n ∈ N, imply that Txn → Tx.

Recently Hussain et al., gives the following definition [16]:

Definition 4. [16] Let d (X, d) be a rectangular metric space and let α, η :X × X → [0,+∞[ be two mappings.
The space X is said to be

(a) α−complete, if every Cauchy sequence {xn} in X with α (xn, xn+1) ≥ 1 for all n ∈ N, converges in X.
(b) η− sup−complete, if every Cauchy sequence {xn} in X with η (xn, xn+1) ≤ 1 for all n ∈ N, converges in

X.
(c) (α, η)−complete, if every Cauchy sequence {xn} in X with α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1 for all

n ∈ N, converges in X.

Definition 5. [16] Let (X, d) be a rectangular metric space and let α, η :X × X → [0,+∞[ be two mappings.
The space (X, d) is said to be

(a) (X, d) is α -regular, if xn → x, where α (xn, xn+1) ≥ 1 for all n ∈ N, implies α (xn, x) ≥ 1 for all n ∈ N.
(b) (X, d) is η−sub -regular, if xn → x, where η (xn, xn+1) ≤ 1 for all n ∈ N, implies η (xn, x) ≤ 1 for all

n ∈ N.
(c) (X, d) is (α, η)-regular, if xn → x, where α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1 for all n ∈ N, imply that

α (xn, x) ≥ 1 or η (xn, x) ≤ 1 for all n ∈ N.

The following definition introduced by Wardowski [1]:

Definition 6. [1] Let F be the family of all functions F : R+ → R such that

(i) F is strictly increasing;
(ii) for each sequence (xn)n∈N of positive numbers limn→∞ xn = 0, if and only if limn→∞ F (xn) = −∞;

(iii) there exists k ∈ ]0, 1[ such that limx→0 xkF (x) = 0.

Recently, Piri and Kuman [4] extended the result of Wardowski [1] by changing the condition (iii) in the
Definition 6 as follow:

Definition 7. [4] Let Γ be the family of all functions F : R+ → R such that
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(i) F is strictly increasing;
(ii) for each sequence (xn)n∈N of positive numbers limn→∞ xn = 0, if and only if limn→∞ F (xn) = −∞;

(iii) F is continuous.

3. Fixed point theorem on rectangular metric spaces

We introduce a new notion of generalized F−expansive mapping in the context of rectangular metric
spaces as follows:

Definition 8. Let (X, d) be a rectangular metric space and T : X → X be a given mapping. T is said to be
generalized F−expansive mapping if there exists F ∈ F and τ > 0 such that

M(x, y) > 0⇒ F (d (Tx, Ty))− τ ≥ F (M(x, y)) , f or all x, y ∈ X, (1)

where M(x, y) = min {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty)} .

Theorem 1. Let (X, d) be a (α − η)-complete generalized metric space, and T : X → X be a bijective, generalized
F-expansive mapping satisfying following conditions

(i) T−1 is a triangular (α, η)−admissible mapping;
(ii) there exists x0 ∈ X such that α

(
x0, T−1x0

)
≥ 1 or η

(
x0, T−1x0

)
≤ 1;

(iii) T is a (α, η)−continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α (z, u) ≥ 1 or η (z, u) ≤ 1 for all z, u ∈ Fix(T).

Proof. Let x0 ∈ X such that α
(

x0, T−1x0
)
≥ 1 or η

(
x0, T−1x0

)
≤ 1. We define the sequence {xn} in X by

xn = Txn+1, for all n ∈ N.
Since T−1 is an triangular (α, η)−admissible mapping, then

α (x0, x1) = α
(

x0, T−1x0

)
≥ 1⇒ α

(
T−1x0, T−1x1

)
= α (x1, x2) ≥ 1,

or
η (x0, x1) = η

(
x0, T−1x0

)
≤ 1⇒ η

(
T−1x0, T−1x1

)
= η (x1, x2) ≤ 1.

Continuing this process we have
α (xn−1, xn) ≥ 1,

or
η (xn−1, xn) ≤ 1,

for all n ∈ N. By (T3) and (T4) , one has.

α (xm, xn) ≥ 1 or η (xm, xn) ≤ 1, ∀m, n ∈ N, m 6= n. (2)

Suppose that there exists n0 ∈ N such that xn0 = Txn0 . Then xn0 is a fixed point of T and the prove is finished.
Hence, we assume that xn 6= Txn, i.e., d (xn−1, xn) > 0 for all n ∈ N.
Step 1: We shall prove

lim
n→+∞

d(xn, xn+1) = 0.

Applying inequality (1) with x = xn and y = xn+1, we obtain

F (d(xn−1, xn)) = F (d(Txn, Txn+1)) > F (d(Txn, Txn+1))− τ ≥ F (M (xn, xn+1)) , (3)

where

M (xn, xn+1) = min {d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1), d(xn, Txn+1)}
= min {d(xn, xn+1), d(xn, xn−1), d(xn+1, xn), d(xn, xn)}
= min {d(xn, xn+1), d(xn, xn−1)} .
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If for some n, M (xn, xn+1) = d(xn, xn−1), then the inequality (3), we get

F (d(xn−1, xn)) > F (d(Txn, Txn+1))− τ ≥ F (d (xn−1, xn)) . (4)

It is a contradiction. Hence M (xn, xn+1) = d(xn, xn+1). Therefore

F (d(Txn, Txn+1))− τ ≥ F (d (xn, xn+1)) . (5)

Thus,
F (d (xn, xn+1)) ≤ F (d(xn−1, xn))− τ for all n ∈ N. (6)

Continuing this process, we get

F (d (xn, xn+1)) ≤ F (d(xn−1, xn))− τ ≤ ... ≤ F (d(x0, x1))− nτ. (7)

Now, by (6) and the condition F3 of Definition 2, we deduce that

d (xn, xn+1) < d(xn−1, xn). (8)

Taking the limit as n→ ∞ in (7) and using the condition F2, we get

lim
n→+∞

d(xn, xn+1) = 0. (9)

Step 2: Now, we shall prove
xn 6= xm, f or all m, n ∈ N, m 6= n. (10)

On the contrary, assume that xn = xm for some n = m + k > m. Indeed, suppose that xn = xm, so we have

xn = Txn+1 = Txm+1 = xm.

Denote dn = d (xn, xn+1) . By the inequality (8), we have

dn < dn−1.

Continuing this process, we get
dm = dn < dn−1 < ... < dm. (11)

Which is a contradiction. Thus (10) hold.
Step 3: We prove shall

lim
n→+∞

d(xn, xn+2) = 0. (12)

Applying inequality (1) with x = xn, y = xn+2, we obtain

F (d(xn−1, xn+1)) = F (d(Txn, Txn+2)) > F (d(Txn, Txn+2))− τ ≥ F (M (xn, xn+2)) , (13)

where

M (xn, xn+2) = min {d(xn, xn+2), d(xn, Txn), d(xn+2, Txn+2), d(xn, Txn+2)}
= min {d(xn, xn+2), d(xn, xn−1), d(xn+2, xn+1), d(xn, xn+1)}
= min {d(xn, xn+2), d(xn+1, xn+2)} .

Take an = d (xn, xn+2) and bn = d (xn+1, xn+2) . Thus, by (13), one can write

F (an−1) = F (d (xn−1, xn+1)) = F (d (Txn, Txn+2)) > F (d (Txn, Txn+2))− τ ≥ F [M (xn, xn+2)] = F (min{an, bn}) .

Therefore,
an−1 ≥ min {an, bn} .
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Again, by (8)
bn−1 ≥ bn ≥ min {an, bn} .

Which implies that
min {an, bn} ≤ min {an−1, bn−1} , ∀n ∈ N.

Then the sequence min {an, bn}n∈N is monotone non increasing. Thus, there exists λ ≥ 0 such that

lim
n→∞

min {an, bn} = λ.

Assume that λ > 0. By (9), we have

lim
n→∞

sup an = lim
n→∞

sup min {an, bn} = lim
n→∞

min {an, bn} = λ.

Taking the lim supn → ∞ in (13), and using (F3), we obtain

F(λ) = F
(

lim
n→∞

sup{an−1}
)
≥ F

(
lim

n→∞
sup {an}

)
> F

(
lim

n→∞
sup {an}

)
− τ ≥ F

(
lim

n→∞
min {an, bn}

)
,

which implies that
F(λ) > F (λ)− τ ≥ F(λ).

Therefore,
F (λ) < F (λ) .

By (F1), we get
λ < λ.

It is a contradiction, then
lim

n→∞
d (xn,xn+2) = 0. (14)

Step 4: We shall prove that {xn} is a Cauchy sequence in (X, d), that is

lim
n,m→∞

d (xn,xm) = 0 for all n 6= m. (15)

If otherwise there exists an ε > 0 for which we can find sequence of positive integers
{

xn(k)

}
k

and
{

xm(k)

}
k

of

{xn} such that, for all positive integers k, n(k) > m(k) > k,

d
(

xm(k) , xn(k)

)
≥ ε and d

(
xm(k) , xn(k)−1

)
< ε. (16)

Now, using (9), (14), (16) and the rectangular inequality, we find

ε ≤ d
(

xm(k) , xn(k)

)
≤ d

(
xm(k) , xm(k)+1

)
+ d

(
xm(k)+1 , xm(k)−1

)
+ d

(
xm(k)−1 , xn(k)

)
< d

(
xm(k) , xm(k)+1

)
+ d

(
xm(k)+1 , xm(k)−1

)
+ ε.

Then
lim
k→∞

d
(

xm(k) , xn(k)

)
= ε. (17)

Now, by rectangular inequality, we have

d
(

xm(k)+1 , xn(k)+1

)
≤ d

(
xm(k)+1 , xm(k)

)
+ d

(
xm(k) , xn(k)

)
+ d

(
xn(k) , xn(k)+1

)
. (18)

d
(

xm(k) , xn(k)

)
≤ d

(
xm(k) , xm(k)+1

)
+ d

(
xm(k)+1 , xn(k)+1

)
+ d

(
xn(k)+1 , xn(k)

)
. (19)
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ε ≤ d
(

xm(k) , xn(k)

)
≤ d

(
xm(k) , xn(k)−1

)
+ d

(
xn(k)−1 , xn(k)+1

)
+ d

(
xn(k)+1 , xn(k)

)
. (20)

Letting k→ ∞ in the above inequalities, using (9), (16) and (17), we obtain

lim
k→∞

d
(

xm(k)+1 , xn(k)+1

)
= ε, (21)

and
lim
k→∞

d
(

xm(k) , xn(k)−1

)
= ε. (22)

On the other hand

M
(

xm(k) , xn(k)

)
= min

{
d
(

xm(k) , xn(k)

)
, d
(

xm(k) , Txm(k)

)
, d
(

xn(k) , Txn(k)

)
, d
(

xm(k) , Txn(k)

)}
= min

{
d
(

xm(k) , xn(k)

)
, d
(

xm(k) , xm(k)−1

)
, d
(

xn(k) , xn(k)−1

)
, d
(

xm(k) , xn(k)−1

)}
.

Letting k→ ∞ in the above inequalities and using (9), (17) and (22), we get that

lim
k→∞

M
(

xm(k) , xn(k)

)
= ε. (23)

By (21), let A = ε
2 > 0, from the definition of the limit, there exists n0 ∈ N such that

|d
(

xm(k)+1 , xn(k)+1

)
− ε| ≤ A ∀n ≥ n0.

This implies that
d
(

xm(k)+1 , xn(k)+1

)
≥ A > 0 ∀n ≥ n0,

and by (23), let B = ε
2 > 0, from the definition of the limit, there exists n1 ∈ N such that

M
(

xm(k) , xn(k)

)
≥ B > 0 ∀n ≥ n1.

Applying (1) with x = xm(k) and y = xn(k) , we obtain

F
(

d
(

xm(k)+1 , xn(k)+1

))
> F

(
d
(

xm(k)+1 , xn(k)+1

))
− τ ≥ F

(
M
(

d
(

xm(k) , xn(k)

)))
Letting k→ ∞ the above inequality and using (F3), we obtain

F
(

lim
k→∞

d
(

xm(k)+1 , xn(k)+1

))
> F

(
lim
k→∞

d
(

xm(k)+1 , xn(k)+1

))
− τ ≥ F

(
lim
k→∞

M
(

xm(k) , xn(k)

))
,

Therefore,
F(ε) < F(ε).

It is a contradiction. Then
lim

n,m→∞
d (xm, xn) = 0.

It follows that {xn} is a Cauchy sequence in X. Since (X, d) is (α, η)-complete and

α(xn−1, xn) ≥ 1 or η(xn−1, xn) ≤ 1,

for all n ∈ N, the there exists z ∈ X such that

lim
n→∞

d (xn, z) = 0.

Step 5: We show that d (Tz, z) = 0 arguing by contradiction, we assume that

d (Tz, z) > 0.
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By rectangular inequality we get,

d (Txn, Tz) ≤ d (Txn, xn) + d (xn, z) + d (z, Tz) , (24)

d (z, Tz) ≤ d (z, xn) + d (xn, Txn) + d (Txn, Tz) . (25)

By letting n→ ∞ in inequality (24) and (25) we obtain

d (z, Tz) ≤ lim
n→∞

d (Txn, Tz) ≤ d (z, Tz) .

Therefore,
lim

n→∞
d (Txn, Tz) = d (z, Tz) . (26)

Since T is (α, η)-continuous, then Txn → Tz i.e limn→∞ d (Txn, Tz) = 0. Hence d(Tz, z) = 0, so Tz = z.
Step 6: (Uniqueness) Now, suppose that z, u ∈ X are two fixed points of T such that u 6= z and α(z, u) ≥ 1 or
η(z, u) ≤ 1. Therefore, we have

d (Tz, Tu) = d (z, u) > 0.

Applying (1) with x = z and y = u, we have

F (d (Tu, Tz))− τ ≥ F (M (z, u)) ,

where
M (z, u) = min {d (z, u) , d (z, Tz) , d (u, Tu) , d (z, Tu)} = d (z, u) .

Therefore, we have
F (d (z, u)) > F (d (u, z))− τ ≥ F (d (z, u)) .

It is a contradiction. Therefore u = z.

Theorem 2. Let α, η : X× X → R+ be two function and let (X, d) be a (α, η)−complete rectangular metric space. Let
T : X → X be a bijective mapping satisfying the following conditions:

(i) T−1 is a triangular (α, η)-admissible mapping;
(ii) T is a generalized (α, η)− F-expansive mapping ;

(iii) α
(
z, T−1z

)
≥ 1 or η

(
z, T−1z

)
≤ 1, for all z ∈ Fix (T) .

Then T has a fixed point.

Proof. Let z ∈ Fix (Tn) for some fixed n > 1. As α
(
z, T−1z

)
≥ 1 or η

(
z, T−1z

)
≤ 1 and T−1 is a triangular

(α, η)-admissible mapping, then

α
(

T−1z, T−2z
)
≥ 1 or η

(
T−2z, T−1z

)
≤ 1.

Continuing this process, we have

α
(

T−nz, T−n−1z
)
≥ 1 or η

(
T−nz, T−n−1z

)
≤ 1,

for all n ∈ N. By (T3) and (T4) , we get

α
(
T−mz, T−nz

)
≥ 1 or η

(
T−mz, T−nz

)
≤ 1, ∀ m, n ∈ N, n 6= m.

Since T is a bijective mapping, then T−nz = z = Tnz for all n ∈ N and z ∈ Fix (T). Therefore,

α (Tmz, Tnz) ≥ 1 or η (Tmz, Tnz) ≤ 1, ∀ m, n ∈ N, n 6= m.

Assume that z /∈ Fix (T) , i.e. d (z, Tz) > 0. Then, we have

d (z, Tz) = d (Tnz, Tz) = d
(

TTn−1z, Tz
)

.



Open J. Math. Anal. 2021, 5(2), 17-30 24

Applying (1) with x = z and y = Tn−1z, we obtain

F (d (z, Tz))− τ = F
(

d
(

TTn−1z, Tz
))
− τ ≥ F

(
M
(

Tn−1z, z
))

,

where
M
(

Tn−1z, z
)
= min

{
d
(

z, Tn−1z
)

, d (z, Tz) , d
(

Tn−1z, TTn−1z
)

, d
(

Tn−1z, Tz
)}

. (27)

Letting n→ ∞ in (27), we obtain
lim

n→+∞
M
(

Tn−1z, z
)
= d (z, Tz)

Now, using (F3), we get
F (d (z, Tz))− τ ≥ F (d (z, Tz)) .

It is a contradiction. Then z ∈ Fix(T).

Example 1. Let X = [1,+∞[ and d : X× X → [0,+∞[ define by

d (x, y) = |x− y|.

Then (X, d) is a metric space and rectangular metric space. Define mapping T : X → X and α, η : X × X →
[0,+∞[ by

T(x) = x2

and
α (x, y) =

x + y
max {x, y}+ 1

,

η (x, y) =
|x− y|

max {x, y}+ 1
.

Then, T is an (α, η)−continuous triangular (α, η)−admissible mapping and T is a bijective mapping.
Let F (t) = ln(t), τ = ln(2). Evidently, (α (x, y) ≥ 1 or (x, y) ≤ 1) and

min{d (x, y) , d (x, Tx) , d (y, Ty) , d (y, Tx)} > 0 are when x 6= y 6= 1.
Now, consider the following two cases:

Case 1: (x > y > 1)
As

d(Tx, Ty) = x2 − y2, F(d(Tx, Ty)) = ln(x2 − y2) = ln(x− y) + ln(x + y).

Thus,
F(d(Tx, Ty))− τ = ln(x2 − y2)− ln(2) = ln(x− y) + ln(x + y)− ln(2).

We have
F(d(x, y)) = ln(x− y).

On the other hand

F(d(x, y))− F(d(Tx, Ty)) + τ = ln(x2 − y2) = ln(x− y)− ln(x− y)− ln(x + y) + ln(2) = ln(x− y) + ln(2).

Since x, y ∈ ]1,+∞[, then

−ln(x + y) + ln(2) ≤ 0.

Which implies that

F(d(Tx, Ty))− τ ≥ F(d(x, y)) ≥ F [min{d (x, y) , d (x, Tx) , d (y, Ty) , d (y, Ty)] .

Case 2: (y > x > 1)
As

d(Ty, Tx) = y2 − x2, F(d(Ty, Tx)) = ln(y2 − x2) = ln(y− x) + ln(y + x),
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Thus,
F(d(Ty, Tx))− τ = ln(y2 − x2)− ln(2) = ln(y− x) + ln(y + x)− ln(2).

We have
F(d(x, y)) = ln(y− x).

On the other hand

F(d(y, x))− F(d(Ty, Tx)) + τ = ln(y− x)− ln(y− x)− ln(y + x) + ln(2) = −ln(x− y) + ln(2).

Since y, x ∈ ]1,+∞[, then

ln(y− x) + ln(2) ≤ 0.

Which implies that

F(d(Ty, Tx))− τ ≥ F(d(y, x)) ≥ F [min{d (y, x) , d (y, Ty) , d (x, Tx) , d (x, Ty)] .

Hence, the condition (1) is satisfied. Therefore, T has a unique fixed point z = 1.

Theorem 3. Let α, η : X × X → R+ be two functions and let d (X, d) be a (α, η)−complete rectangular metric space.
Let T : X → X be a bijective mapping satisfying the following assertions:

(i) T−1 is triangular (α, η)−admissible;
(ii) T is a generalized (α, η)− F−expansive mapping;

(iii) there exists x0 ∈ X such that α
(

x0, T−1x0
)
≥ 1 or η

(
x0, T−1x0

)
≤ 1;

(iv) (X, d) is a (α, η)-regular rectangular metric space.

Then T has a fixed point. Moreover, T has a unique fixed point whenever α (z, u) ≥ 1 or η (z, u) ≤ 1 for all z, u ∈
Fix (T) .

Proof. Let x0 ∈ X such that α
(

x0, T−1x0
)
≥ 1 or η

(
x0, T−1x0

)
≤ 1. Similar to the proof of Theorem 1, we can

conclude that
(α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1) , and xn → z as n→ ∞,

and from inequality (26), we have
lim

n→∞
d(Txn, Tz) = d(z, Tz).

From (iv) α (xn, z) ≥ 1 or η (xn, z) ≤ 1, hold for n ∈ N.
Suppose that Tz = xn0−1 = Txn0 for some n0 ∈ N∗. From Theorem 1 we know that the members of the

sequence {xn} are distinct. Hence, we have Tz 6= Txn, i.e. d (Tz, Txn) > 0 for all n > n0. Thus, we can apply
(1) to xn and z for all n > n0 to get

F (d (Tz, Txn))− τ ≥ F (M (z, xn)) , ∀n ≥ n0,

where

M (z, xn) = min {d (z, xn) , d (z, Tz) , d (xn, Txn) , d (z, Txn)}
= min {d (z, xn) , d (z, Tz) , d (xn, xn−1) , d (z, xn−1)} .

Therefore,
F (d (Tz, Txn))− τ ≥ F (min {d (z, xn) , d (z, Tz) , d (xn, xn−1) , d (z, xn−1)}) . (28)

By letting n→ ∞ in inequality (28), we obtain

lim
n→∞

F (d (Tz, Txn)) > lim
n→∞

F (d (Tz, Txn))− τ ≥ lim
n→∞

F (min {d (z, xn) , d (z, Tz) , d (xn, xn−1) , d (z, xn−1)}) .
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Since F is continuous function and lim
n→+∞

M(z, xn) = d(z, Tz), we conclude that

F (d(z, Tz)) > F (d(z, Tz)) ,

which implies that
d(z, Tz) < d(z, Tz).

It is a contradiction. Hence Tz = z. The proof of the uniqueness is similarly to that of Theorem 1.

Corollary 1. Let α, η : X × X → [0,+∞[ be two functions, (X, d) be a (α, η)-complete rectangular metric space and
T : X → X be a bijective mapping. Suppose that for all x, y ∈ X with α(x, y) ≥ 1 or η(x, y) ≤ 1 and M(x, y) > 0 we
have

F (d (Tx, Ty))− τ ≥ F (d (x, y)) .

Then T has a fixed point, if

(i) T−1 is a triangular (α, η)−admissible mapping;
(ii) there exists x0 ∈ X such that α

(
x0, T−1x0

)
≥ 1 or η

(
x0, T−1x0

)
≤ 1;

(iii) Tis a (α, η)−continuous; or
(iv) (X, d) is an (α, η)-regular rectangular metric space.

Moreover, T has a unique fixed point when α (z, u) ≥ 1 or η (z, u) ≤ 1 for all z, u ∈ Fix(T).

4. Fixed point theorem on rectangular metric spaces endowed with a partial order

Definition 9. [16] Let (X, d,�) be an ordered rectangular metric space and T : X → X be a mapping. Then

1) (X, d) is said to be O-complete, if every Cauchy {nn} in X with xn � xn+1 for all n ∈ N or xn � xn+1 for
all n ∈ N, converges in X.

2) (X, d) is said to be O-regular, if for each sequence {nn} in X {xn} → x and xn � xn+1 for all n ∈ N or
xn � xn+1 for all n ∈ N imply that {nn} � x or {nn} � x respectively.

3) T is said to be O-continuous, if for given x ∈ X and sequence {nn} with xn � xn+1 or xn � xn+1 for all
n ∈ N, {nn} → x ⇒ Txn → Tx.

Definition 10. Let (X, d,�) be an ordered rectangular metric spaces and T : X → X be a mapping. We say
that T be an ordered F- expansive mapping, if for all x, y ∈ X with x � y or x � y such that

M(x, y) > 0⇒ F (d (Tx, Ty))− τ ≥ F (M(x, y)) ,

where M(x, y) = min {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty)}.

Theorem 4. Let (X, d,�) be an O-complete partially ordered rectangular metric space. Let T : X → X be a bijective
self mapping on X satisfying the following assertions:

(i) T−1 is monotone ;
(ii) T is an ordered F- expansive mapping;

(iii) there exists x0 ∈ X such that x0 � T−1x0 or x0 � T−1x0
(iv) either T is O-continuous; or
(v) (X, d) is O-regular.

Then T has a fixed point. Moreover, T has a unique fixed point whenever z � u or z � u for all z, u ∈ Fix (T) .

Proof. Define the mapping α : X× X → [0,+∞[ by

α(x, y) =

{
1 if x � y
0 otherwise
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and the mapping η : X× X → [0,+∞[ by

η(x, y) =

{
1 if x � y
0 otherwise

Using condition (iii) we have
x0 � T−1x0 ⇒ α(x0, T−1x0) ≥ 1,

or
x0 � T−1x0 ⇒ η(x0, T−1x0) ≤ 1.

Owing to the monotonicity of T−1, we get

α(x, y) ≥ 1⇒ x � y⇒ T−1x � T−1y⇒ α(T−1x, T−1y) ≥ 1,

or
η(x, y) ≤ 1⇒ x � y⇒ T−1x � T−1y⇒ η(T−1x, T−1y) ≤ 1.

Therefore, (T1) and (T2) hold.
On the other hand, if {

α(x, y) ≥ 1
α(x, y) ≥ 1

⇒
{

x � y
y � z

or {
η(x, y) ≤ 1
η(x, y) ≤ 1

⇒
{

x � y
y � z

Since (X, d) be an O-complete partially ordered rectangular metric space, we conclude that

x � z or x � z⇒ α(x, z) ≥ 1 or η(x, z) ≤ 1.

Thus, (T3) and (T4) hold. This shows that T−1 is a triangular (α, η)−admissible mapping then

(α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1) .

Now, if T is O-continuous, then xn � xn+1 or xn � xn+1 ⇒ α(xn, xn+1) ≥ 1 or η(xn, xn+1) ≤ 1 and xn → z as
n→ ∞ with z ∈ X =⇒ Txn → Tx. The existence and uniqueness of a fixed point follows from Theorem 1.

Now, suppose that follow (X, d,�) is O-regular. Let {xn} be a sequence such that

{nn} � x or {nn} � x,

which implies that
(α (xn, x) ≥ 1 or η (xn, x) ≤ 1) ,

for all n and xn → x as n → ∞. This shows that (X, d) is (α, η)− regular. Thus, the existence and uniqueness
of fixed point from Theorem 3.

Corollary 2. Let (X, d,�) be an O-complete partially ordered rectangular metric spaces. Further, let T : X → X be a
bijective self mapping on X be such that T−1 is a monotone mapping and there exist k ∈ ]0, 1[ such that kd(Tx, Ty) ≥
d(x, y), for all x, y ∈ X with x � y or x � y. Also, suppose that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � T−1x0 or x0 � T−1x0;
(ii) either T is O-continuous; or

(iii) X is O-regular.

Then T has a fixed point. Moreover, T has a unique fixed point whenever z � u or z � u for all z, u ∈ Fix (T) .
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Proof. Let F(t) = ln(t) for all t ∈ ]0,+∞[ and τ = 1
ln(k) . Clearly F ∈ F and τ > 0. We prove that T is a

generalized F-expansive mapping. Indeed, Since

kd(Tx, Ty) ≥ d(x, y).

We have

ln [k.d(Tx, Ty)] = ln [d(Tx, Ty)] + ln(k)

= ln (d(Tx, Ty))− 1
ln(k)

≥ ln [d(x, y)]

≥ ln [min{d(x, y), d(x, Tx), d(y, Ty), d(Tx, y)}] .

As in the proof of Theorems 1 and 4, T has a unique fixed point x ∈ X.

Corollary 3. Let (X, d,�) be an O-complete partially ordered rectangular metric spaces. Further, let T : X → X be a
bijective self mapping on X such that T−1 is a monotone mapping and there exist α ∈

]
0, 1

2

[
such that

αd(Tx, Ty) ≥ d(x, Tx) + d(y, Ty)
2

for all x, y ∈ X with x � y or x � y. Also suppose that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � T−1x0 or x0 � T−1x0;
(ii) either T is O-continuous; or

(iii) X is O-regular.

Then T has a fixed point. Moreover, T has a unique fixed point whenever z � u or z � u for all z, u ∈ Fix (T) .

Proof. Let F(t) = ln(t) for all t ∈ ]0,+∞[ and τ = 1
ln(2α)

. Clearly F ∈ F and τ > 0. We prove that T is a
generalized F-expansive mapping. Indeed, since

αd(Tx, Ty) ≥ d(x, Tx) + d(y, Ty)
2

.

We have

ln [2α.d(Tx, Ty)] = ln [d(Tx, Ty)] + ln(2α)

= ln (d(Tx, Ty))− 1
ln(2α)

≥ ln [d(x, Tx) + d(y, Ty)]

≥ ln [min{d(x, y), d(x, Tx), d(y, Ty), d(Tx, y)}] .

As in the proof of Theorems 1 and 4, T has a unique fixed point x ∈ X.

Corollary 4. Let (X, d,�) be an O-complete partially ordered rectangular metric spaces. Further, let T : X → X be a
bijective self mapping on X, such that T−1 is a monotone mapping and there exist λ ∈

]
0, 1

3

[
such that

αd(Tx, Ty) ≥ d(x, y) + d(x, Tx) + d(y, Ty)
3

for all x, y ∈ X with x � y or x � y. Also suppose that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � T−1x0 or x0 � T−1x0;
(ii) either T is O-continuous; or

(iii) X is O-regular.
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Then T has a fixed point. Moreover, T has a unique fixed point whenever z � u or z � u for all z, u ∈ Fix (T) .

Proof. Let F(t) = ln(t) for all t ∈ ]0,+∞[, and τ = 1
ln(3α)

. Clearly F ∈ F and τ > 0. We prove that T is a
F-expansive mapping. Indeed, since

λd(Tx, Ty) ≥ d(x, y) + d(x, Tx) + d(y, Ty)
3

.

We have

ln [3λ.d(Tx, Ty)] = ln [d(Tx, Ty)] + ln(3λ)

= ln (d(Tx, Ty))− 1
ln(3λ)

≥ ln [d(x, y) + d(x, Tx) + d(y, Ty)]

≥ ln [min{d(x, y), d(x, Tx), d(y, Ty), d(Tx, y)}] .

As in the proof of Theorems 1 and 4, T has a unique fixed point x ∈ X.
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