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1. Introduction

I n this paper, we use standard notations from the value distribution theory of meromorphic functions (see
[1–3]). We suppose that f is a meromorphic function in whole complex plane C. In addition, we denote

the order of growth of f by ρ( f ), and use the notation ρ2( f ) to denote the hyper-order of f , defined by

ρ2( f ) = lim sup
r→+∞

log log T(r, f )
log r

,

where T(r, f ) is the Nevanlinna characteristic function of f .
To give the precise estimate of fixed points, we denote the exponent of convergence of fixed points by

τ( f ), which is defined by

τ( f ) = λ( f − z) = lim sup
r→+∞

log N
(

r, 1
f−z

)
log r

and the hyper-exponent of convergence of fixed points and distinct fixed points are denoted by τ2( f ) and τ2( f )
and are defined by

τ2( f ) = λ2( f − z) = lim sup
r→+∞

log log N
(

r, 1
f−z

)
log r

,

and

τ2( f ) = λ2( f − z) = lim sup
r→+∞

log log N
(

r, 1
f−z

)
log r

,

respectively, where N
(

r, 1
f−z

)
and N

(
r, 1

f−z

)
are respectively the integrated counting function of fixed points

and distinct fixed points of f . We denote the exponent of convergence of zeros (distinct zeros) of f by λ( f )
(λ( f )) and the hyper-exponent of convergence of zeros (distinct zeros) of f by λ2( f ) (λ2( f )).

Consider the second-order homogeneous linear differential equation

f ′′ + P(ez) f ′ + Q(ez) f = 0, (1)
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where P(w) and Q(w) are not constants polynomials in w = ez (z ∈ C). It’s well-known that every solution of
Equation (1) is entire.

Suppose f 6≡ 0 is a solution of (1). If f satisfies the condition

lim sup
r→+∞

log T(r, f )
r

= 0,

then we say that f is a nontrivial subnormal solution of (1), and if f satisfies the condition [4],

lim sup
r→+∞

log T(r, f )
rn = 0,

then we say that f is a nontrivial n-subnormal solution of (1). In [5], Wittich investigated the subnormal
solution of (1), and obtained the form of all subnormal solutions in the following theorem:

Theorem 1. [5] If f 6≡ 0 is a subnormal solution of (1), then f must have the form

f (z) = ecz(a0 + a1ez + · · ·+ amemz),

where m ≥ 0 is an integer and c, a0, a1,...,am are constants with a0am 6= 0.

Gundersen and Steinbert [6] refined Theorem 1 and got the following theorem:

Theorem 2. [6] Under the assumption of Theorem 1, the following statements hold:

(i) If deg P > deg Q and Q 6≡ 0, then any subnormal solution f 6≡ 0 of (7) must have the form

f (z) =
m

∑
k=0

hke−kz,

where m ≥ 1 is an integer and h0, h1, ..., hm are constants with h0 6= 0 and hm 6= 0.
(ii) If deg P ≥ 1 and Q ≡ 0, then any subnormal solution of Equation (7) must be constant.

(iii) If deg P < deg Q, then the only subnormal solution of (7) is f ≡ 0.

Chen and Shon [7] investigated more general equation than (7), and got the following theorem: Set

aj(z) = ajdj
zdj + aj(dj−1)zdj−1 + · · ·+ aj1z + aj0, (j = 0, · · · , n), (2)

bk(z) = bkmk
zmk + bk(mk−1)z

mk−1 + · · ·+ bk1z + bk0, (k = 0, · · · , s), (3)

where dj ≥ 0 (j = 0, · · · , n), mk ≥ 0 (k = 0, · · · , s) are integers, ajdj
, ..., aj0; bkmk

, ..., bk0 are complex constants
such that ajdj

6= 0, bkmk
6= 0.

Theorem 3. [7] Let an(z), ..., a1(z), a0 (z) , bs(z), ..., b1(z), b0 (z) be polynomials and satisfy (2) and (3), and
an(z)bs(z) 6= 0. Suppose that P∗(ez) = an(z)enz + · · ·+ a1(z)ez + a0(z), Q∗(ez) = bs(z)esz + · · ·+ b1(z)ez + b0(z).
If n < s, then every solution f ( 6≡ 0) of equation

f ′′ + P∗(ez) f ′ + Q∗(ez) f = 0

satisfies ρ2( f ) = 1.

Many authors investigated the growth of solutions and the existence of subnormal solutions for some
class of higher order linear differential equations (see [4,7–13]). For the higher-order linear homogeneous
differential equation

f (k) + Pk−1(ez) f (k−1) + · · ·+ P0(ez) f = 0, (4)
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where Pj(ez) (j = 0, · · · , k− 1) are polynomials in z, Yang and Li [11] generalized the result of Theorem 2 to
the higher order and obtained the following results: Set

ajmj(z) = ajmjdjmj
z

djmj + ajmj(djmj
−1)z

djmj
−1

+ · · ·+ ajmj1z + ajmj0, (5)

where djmj ≥ 0 (j = 0, · · · , k− 1) are integers, ajmjdjmj
, ..., ajmj0 are complex constants, ajmjdjmj

6= 0.

Theorem 4. [11] Let ajmj (z) be polynomials and satisfy (5). Suppose that

Pj(ez) = ajmj (z) emjz + · · ·+ aj1 (z) ez,

where ajmj (z) 6≡ 0. If there exists an integer s (s ∈ {0, · · · , k− 1}) satisfying

ms > max
{

mj : j = 0, · · · , s− 1, s + 1, · · · , k− 1
}
= m,

then every solution f 6≡ 0 of Equation (4) satisfies ρ2 ( f ) = 1 if one of the following condition holds:

(i) s = 0 or 1.
(ii) s ≥ 2 and deg a0j (z) > deg aij (z) (i 6= 0).

Theorem 5. [11] Under the assumption of Theorem 4, if zP0(ez) + P1(ez) 6≡ 0, then we have every solution f 6≡ 0 of
Equation (4) satisfies

τ2( f ) = τ2( f ) = ρ2 ( f ) = 1.

In particular, they also investigated the exponents of convergence of the fixed points of solutions and their
first derivatives for a second order Equation (1) and obtained the following theorem:

Theorem 6. [11] Let an(z),..., a1(z), bs(z),..., b1(z) be polynomials and satisfy (2) and (3), and an(z)bs(z) 6= 0.
Suppose that P(ez) = an(z)enz + · · ·+ a1(z)ez, Q(ez) = bs(z)esz + · · ·+ b1(z)ez. If n 6= s, then every solution f
( 6≡ 0) of Equation (1) satisfy λ( f − z) = λ( f ′ − z) = ρ ( f ) = ∞ and λ2( f − z) = λ2( f ′ − z) = ρ2 ( f ) = 1.

Thus, it is natural to ask what will happen if we change exp{z} in the coefficients of (4) into exp{A(z)}?
In this paper, we consider the above problem to Theorems 3, 4, 5 and 6, we obtain the following results: We set

A(z) = cnzn + cn−1zn−1 + · · ·+ c1z + c0,

where n ≥ 1 is an integer and c0, ..., cn are complex constants such that Recn > 0, throughout the rest of this
paper.

Theorem 7. Let ajmj (z) be polynomials and satisfy (5). Suppose that

Pj(eA(z)) = ajmj (z) emj A(z) + · · ·+ aj1 (z) eA(z), (6)

where ajmj (z) 6≡ 0. If there exists an integer s (s ∈ {0, · · · , k− 1}) satisfying

ms > max
{

mj : j = 0, · · · , s− 1, s + 1, · · · , k− 1
}
= m,

then every solution f 6≡ 0 of equation

f (k) + Pk−1(eA(z)) f (k−1) + · · ·+ P0(eA(z)) f = 0 (7)

satisfies ρ ( f ) = ∞ and ρ2 ( f ) = n if one of the following condition holds:

(i) s = 0 or 1.
(ii) s ≥ 2 and deg a0j (z) > deg aij (z) (i 6= 0).
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Example 1. Let f = eez2
be a solution of the equation

f (4) − 2zez2
f (3) − 12z2ez2

f ′′ − 24z3ez2
f ′ − [24z2e3z2

+ (96z2 + 12)e2z2
+ (16z4 + 48z2 + 12)ez2

] f = 0.

Set

P3(eA(z)) = a3,1(z)eA(z) = −2zez2
,

P2(eA(z)) = a2,1(z)eA(z) = −12z2ez2
,

P1(eA(z)) = a1,1(z)eA(z) = −24z3ez2
,

P0(eA(z)) = a0,3(z)e3A(z) + a0,2(z)e2A(z) + a0,1(z)eA(z) = −24z2e3z2 − (96z2 + 12)e2z2 − (16z4 + 48z2 + 12)ez2
.

We remark that s = 0 and m0 = 3 > max
{

mj : j = 1, 2, 3
}
= m = 1. Obviously, the conditions of Theorem 7

are satisfied, we see that ρ ( f ) = ∞ and ρ2 ( f ) = n = 2.

Remark 1. Very recently, Li et al., [4] have investigated n subnormal solutions of the Equation (7) with

Pj(eA(z)) = ajmj e
mj A(z) + · · ·+ aj1eA(z) (j = 0, ..., k− 1) ,

where ajmj , · · · , aj1 (j = 0, ..., k− 1) are complex constants instead of polynomials and obtained some results
concerning their growth.

Corollary 1. Under the assumption of Theorem 7, if zP0(eA(z)) + P1(eA(z)) 6≡ 0, then we have every solution f 6≡ 0 of
Equation (4) satisfies

τ( f ) = τ( f ) = ρ ( f ) = ∞ and τ2( f ) = τ2( f ) = ρ2 ( f ) = n.

In particular, we also investigate the exponents of convergence of the fixed points of solutions and their
first derivatives for a second order equation

f ′′ + P(eA(z)) f ′ + Q(eA(z)) f = 0, (8)

and we obtain the following theorems:

Theorem 8. Let ap(z),..., a1(z), bs(z),..., b1(z) be polynomials and satisfy (2) and (3), and ap(z)bs(z) 6= 0. Suppose
that P(eA(z)) = ap(z)epA(z) + · · · + a1(z)eA(z), Q(eA(z)) = bs(z)esA(z) + · · · + b1(z)eA(z). If p 6= s, then every
solution f ( 6≡ 0) of Equation (8) satisfies λ( f − z) = λ( f ′− z) = ρ ( f ) = ∞ and λ2( f − z) = λ2( f ′− z) = ρ2 ( f ) =
n.

Example 2. Let f = eez2
be a solution of the equation

f ′′ − 3zez2
f ′ + [2z2e2z2 − (4z2 + 2)ez2

] f = 0.

Set

P(eA(z)) = a1(z)eA(z) = −3zez2
,

Q(eA(z)) = b2(z)e2A(z) + b1(z)eA(z) = 2z2e2z2 − (4z2 + 2)ez2
.

It is clear that the conditions of Theorem 8 are satisfied with p = 1 6= s = 2, we see that λ(eez2
− z) =

λ(2zez2
eez2
− z) = ρ ( f ) = ∞ and λ2(eez2

− z) = λ2(2zez2
eez2
− z) = ρ2 ( f ) = n = 2.
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Remark 2. If p = s, then the conclusions of Theorem 8 does not hold. For instance, consider the following
equation

f ′′+
((

z4 + 2iz
)

e2(1+5i)z3+2z +
(
−z2 + (2− i) z

)
e(1+5i)z3+z

)
f ′

−
((

z3 + 2i
)

e2(1+5i)z3+2z + (−z + 2− i) e(1+5i)z3+z
)

f = 0. (9)

We can easily see that (9) has solution f (z) = z which satisfies ρ ( f ) = 0 6= ∞ and ρ2 ( f ) = 0 6= n = 3.
In this example, we have p = s = 2, A(z) = (1 + 5i) z3 + z, a2(z) = z4 + 2iz, a1(z) = −z2 + (2− i) z,
b2(z) = −

(
z3 + 2i

)
and b1(z) = − (−z + 2− i) .

Theorem 9. Let ap(z), ..., a1(z), a0 (z) , bs(z), ..., b1(z), b0 (z) be polynomials and satisfy (2) and (3), and ap(z)bs(z) 6=
0. Suppose that

P∗(eA(z)) = ap(z)epA(z) + · · ·+ a1(z)eA(z) + a0(z),

Q∗(eA(z)) = bs(z)esA(z) + · · ·+ b1(z)eA(z) + b0(z).

If p < s, then every solution f ( 6≡ 0) of equation

f ′′ + P∗(eA(z)) f ′ + Q∗(eA(z)) f = 0 (10)

satisfies ρ ( f ) = ∞ and ρ2 ( f ) = n.

Example 3. Let f = ezeez
be a solution of the equation

f ′′ + (ez+1 − 3) f ′ + [(−e−2 − e−1)e2(z+1) − ez+1 + 2] f = 0.

Set

P∗(eA(z)) = a1(z)eA(z) + a0(z) = ez+1 − 3,

Q∗(eA(z)) = b2(z)e2A(z) + b1(z)eA(z) + b0(z) = (−e−2 − e−1)e2(z+1) − ez+1 + 2.

It is clear that the conditions of Theorem 9 are satisfied with p = 1 < s = 2, here we have ρ ( f ) = ∞ and
ρ2 ( f ) = n = 1.

Remark 3. If p ≥ s, then the conclusions of Theorem 9 does not hold. For instance, consider the following
equation

f ′′−
((

2z2 + 3z
)

e(1−i)z2+2z+i + iz3 − z2 + (1 + i) z
)

f ′

+
(
(2z + 3) e(1−i)z2+2z+i + iz2 − z + 1 + i

)
f = 0. (11)

It is easy to see that (11) has solution f (z) = z which satisfies ρ ( f ) = 0 6= ∞ and ρ2 ( f ) = 0 6= n = 2. In this
example, we have p = s = 1, A(z) = (1− i) z2 + 2z + i, a1(z) = −

(
2z2 + 3z

)
, a0(z) = −

(
iz3 − z2 + (1 + i) z

)
,

b1(z) = 2z + 3 and b0(z) = iz2 − z + 1 + i.

Remark 4. Setting cn = 1, cn−1 = · · · = c0 = 0 and n = 1, in Theorem 7, Corollary 1, Theorem 8 and Theorem
9, we obtain Theorem 4, Theorem 5, Theorem 6 and Theorem 3 respectively.

2. Auxiliary Lemmas

Recall that
A(z) = cnzn + cn−1zn−1 + · · ·+ c0, , cl = αleiθl , z = reiθ , Recn > 0,
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we set δl(A, θ) = Re(cl(eiθ)l) = αl cos(θl + lθ), and Hl,0 = {θ ∈ [0, 2π) : δl(A, θ) = 0}, Hl,+ = {θ ∈ [0, 2π) :
δl(A, θ) > 0}, Hl,− = {θ ∈ [0, 2π) : δl(A, θ) < 0}, for l = 1, · · · , n, throughout the rest of this paper. Obviously,
if δn(A, θ) 6= 0, as r → +∞, we get

|eA(z)| = eδn(A,θ)rn+···+δ1(A,θ)r+Rec0 = eδn(A,θ)rn(1+o(1)). (12)

Lemma 1. [3] Let f j(z) (j = 1, · · · , n) (n ≥ 2) be meromorphic functions, gj(z) (j = 1, · · · , n) be entire functions,
and satisfy

(i) ∑n
j=1 egj(z) ≡ 0;

(ii) when 1 ≤ j ≤ k ≤ n, then gi(z)− gk(z) is not a constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h ≤ k ≤ n,

then
T(r, f j) = o{T(r, egh−gk )} (r → +∞, r 6∈ E),

where E ⊂ (1, ∞) is of finite linear measure or logarithmic measure. Also, f j(z) ≡ 0 (j = 1, · · · , n).

Lemma 2. Let A(z), Pj(eA(z)), mj, ms, m and aij(z) satisfy the hypotheses of Theorem 7, then Equation (7) has no
constant polynomial solution.

Proof. Suppose that f0 (z) = blzl + · · ·+ b1z + b0 (l ≥ 1) is a nonconstant polynomial solution of (7), where
bl 6= 0, · · · , b0 are complex constants.

If l ≥ s, then f (s) 6≡ 0. Taking z = r, we have

|eA(z)| =
∣∣∣eA(r)

∣∣∣ = ∣∣∣ecnrn+cn−1rn−1+···+c0
∣∣∣ = eRecnrn+Recn−1rn−1+···+Rec0 = eRecnrn(1+o(1)). (13)

Substituting f0 into (7) and using (13), we conclude that

|asmsdsms r
dsms emsRecnrn(1+o(1))|bl l(l − 1) · · · (l − s + 1)|rl−s(1 + o(1)) ≤ | − Ps(eA(r)) f (s)0 (r)|

≤ | f (k)(r)|+ |Pk−1(eA(r)) f (k−1)
0 (r)|+ · · ·+ |Ps+1(eA(r)) f (s+1)

0 (r)|+ |Ps−1(eA(r)) f (s−1)
0 (r)|+ · · ·+ |P0(eA(r)) f0(r)|

≤ M0rdemRecnrn(1+o(1))(1 + o(1)), (14)

where d = max{djmj : j = 0, · · · , s − 1, s + 1, · · · , k − 1} and M0 > 0 is some constant. Since ms > m, we
see that (3) is a contradiction. Obviously, when s = 0 or 1, we can get that the Equation (7) has nonconstant
polynomial solution from the above process. If l < s, then

Pl(eA(z)) f (l)0 (z) + · · ·+ P0(eA(z)) f0(z) = 0. (15)

Set max{mj : j = 0, · · · , l} = h. If mj < h, then we can rewrite

Pj(eA(z)) = ajh (z) ehA(z) + · · ·+ aj(mj+1) (z) e(mj+1)A(z) + ajmj (z) emj A(z) + · · ·+ aj1 (z) eA(z)

for j = 0, · · · , l, where ajh (z) = · · · = aj(mj+1) (z) = 0. Thus, we conclude by (15) that

[alh (z) f (l)0 + a(l−1)h (z) f (l−1)
0 + · · ·+ a0h (z) f0]ehA(z) + · · ·+ [al j (z) f (l)0 + a(l−1)j (z) f (l−1)

0

+ · · ·+ a0j (z) f0]ejA(z) + · · ·+ [al1 (z) f (l)0 + a(l−1)1 (z) f (l−1)
0 + · · ·+ a01 (z) f0]eA(z) = 0. (16)

Set
Qj(z) = al j(z) f (l)0 + a(l−1)j(z) f (l−1)

0 + · · ·+ a0j f0 (j = 1, · · · , h). (17)

Since f0 and aij(z) are polynomials, we see that

m(r, Qj) = o{m(r, e(α−β)A(z))}, (1 ≤ β < α ≤ h). (18)
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By Lemma 1 and (16) -(18), we conclude that

Q1(z) ≡ Q2(z) ≡ · · · ≡ Qh(z) ≡ 0. (19)

Since deg f0 > deg f ′0 > · · · > deg f (l)0 and deg a0j(z) > deg aij(z) (i 6= 0), so by (16) and (19), we get a
contradiction.

Lemma 3. [14,15] Let f (z) be an entire function and suppose that | f (k)(z)| is unbounded on some ray arg z = θ. Then,
there exists an infinite sequence of points zm = rmeiθ (m = 1, 2, · · · ), where rm → +∞ such that f (k)(zm)→ ∞ and∣∣∣∣∣ f (j) (zm)

f (k) (zm)

∣∣∣∣∣ ≤ |zm|k−j (1 + o(1)) (j = 0, · · · , k− 1) .

Lemma 4. [16] Let f (z) be a transcendental meromorphic function of finite order ρ. Let Γ =

{(k1, j1) , (k2, j2) , · · · , (km, jm)} denote a set of distinct pairs of integers satisfying ki > ji ≥ 0 (i = 1, 2, · · · , m)

and let ε > 0 be a given constant. Then, there exists a set E1 ⊂ [0, 2π) that has linear measure zero such that if
θ ∈ [0, 2π)�E1, then there is a constant R1 = R1 (θ) > 1 such that for all z satisfying arg z = θ and |z| ≥ R1 and for
all (k, j) ∈ Γ, we have ∣∣∣∣∣ f (k) (z)

f (j) (z)

∣∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε) .

Lemma 5. [17] Let f (z) be an entire function with ρ ( f ) = ρ < ∞. Suppose that there exists a set E2 ⊂ [0, 2π) that
has linear measure zero, such that for any ray arg z = θ0 ∈ [0, 2π)�E2, | f (reiθ0)| ≤ Mrk (M = M(θ0) > 0 is a
constant and k > 0 is a constant independent of θ0). Then f (z) is a polynomial with deg f ≤ k.

Lemma 6. [16] Let f be a transcendental meromorphic function, and α > 1 be a given constant. Then, there exists a set
E3 ⊂ (1, ∞) with finite logarithmic measure and a constant C > 0 that depends only on α and i, j (i, j ∈ N), such that
for all z satisfying |z| = r 6∈ E3 ∪ [0, 1],∣∣∣∣∣ f (j) (z)

f (i) (z)

∣∣∣∣∣ ≤ C
(

T(αr, f )
r

(logα r) log T(αr, f )
)j−i

. (20)

Remark 5. From the proof of Lemma 6 ([16, Theorem 3]), we can see that the exceptional set E4 equals {|z| :
z ∈ (∪+∞

n=1O(an))}, where an(n = 1, 2, · · · ) denote all zeros and poles of f (i), and O(an) denote sufficiently
small neighborhoods of an. Hence, if f (z) is a transcendental entire function and z is a point that satisfies
| f (z)| to be sufficiently large, then the point z 6∈ E4 satisfies (20). For details, see , [9, Remark 2.10].

Lemma 7. [10,18] Let A0, · · · , Ak−1 be entire functions of finite order. If f (z) is a solution of equation

f (k) + Ak−1 f (k−1) + · · ·+ A0 f = 0,

then ρ2 ( f ) ≤ max{ρ(Aj) : j = 0, · · · , k− 1}.

Lemma 8. [19] Let g(z) be an entire function of infinite order with the hyper-order ρ2(g) = ρ, and let ν(r) be the
central index of g. Then,

lim sup
r→+∞

log log ν(r)
log r

= ρ2(g) = ρ.

Lemma 9. [7] Let f (z) be an entire function that satisfies ρ ( f ) = ρ(n < ρ < ∞); or ρ ( f ) = ∞ and ρ2 = 0; or
ρ2 = α(0 < α < ∞), and a set E5 ⊂ [1, ∞) has a finite logarithmic measure. Then, there exists a sequence {zk = rkeiθk}
such that | f (zk)| = M(rk, f ), θk ∈ [0, 2π), limk→∞ θk = θ0 ∈ [0, 2π), rk 6∈ E5, and rk → ∞, such that

(i) if ρ ( f ) = ρ (n < ρ < ∞), then for any given ε1(0 < ε1 < ρ−n
2 ),

rk
ρ−ε1 < ν(rk) < rk

ρ+ε1 ;
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(ii) if ρ ( f ) = ∞ and ρ2 ( f ) = 0, then for any given ε2(0 < ε2 < 1
2 ), and for any large M (> 0), we have, as rk is

sufficiently large,
rk

M < ν(rk) < exp{rk
ε2};

(iii) if ρ2 ( f ) = α(0 < α < ∞), then for any given ε3(0 < ε3 < α),

exp{rk
α−ε3} < ν(rk) < exp{rk

α+ε3}.

Lemma 10. [20] Let g be a non-constant entire function, and let 0 < δ < 1. There exists a set E6 ⊂ [1, ∞) of finite
logarithmic measure with the following property. For r ∈ [1, ∞)�E6, the central index ν(r) of g satisfies

ν(r) ≤ (log M(r, g))1+δ.

Lemma 11. [21,22] Let A0, ..., Ak−1, F 6≡ 0 be finite order meromorphic functions. If f is a meromorphic solution of
the equation

f (k) + Ak−1 f (k−1) + · · ·+ A0 f = F,

with ρ ( f ) = +∞ and ρ2 ( f ) = ρ, then f satisfies λ( f ) = λ( f ) = ρ ( f ) = ∞ and λ2( f ) = λ2( f ) = ρ2 ( f ) = ρ.

Lemma 12. [14] Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone non-decreasing functions such that
ϕ (r) ≤ ψ (r) for all r /∈ E7 ∪ [0, 1], where E7 ⊂ (1,+∞) is a set of finite logarithmic measure. Let γ > 1 be a given
constant. Then there exists a r1 = r1 (γ) > 0 such that ϕ (r) ≤ ψ (γr) for all r > r1.

3. Proofs of the results

Proof of Theorem 7. Suppose that f 6≡ 0 is a solution of (7), then f is an entire function. By Lemma 2, we see
that f is transcendental.
First step. We prove that ρ( f ) = ∞.

Suppose, to the contrary, that ρ( f ) = ρ < ∞. By Lemma 4, for any given ε > 0, there exists a set
E1 ⊂ [0, 2π) with linear measure zero, such that if θ ∈ [0, 2π)�E1, then there exists a constant R1 = R1(θ) > 1,
such that for all z satisfying arg z = θ and |z| = r > R1, we have∣∣∣∣∣ f (j)(z)

f (s)(z)

∣∣∣∣∣ ≤ r(ρ−1+ε)(j−s) j = s + 1, · · · , k. (21)

Case 1. Take a ray arg z = θ ∈ Hn,+�E1, then δn(A, θ) > 0. We assume that | f (s)(reiθ)| is bounded on the
ray arg z = θ. If | f (s)(reiθ)| is unbounded on the ray arg z = θ, then by Lemma 3, there exists a sequence
{zt = rteiθ} such that as rt → +∞, f (s)(zt)→ ∞ and∣∣∣∣∣ f (i)(zt)

f (s)(zt)

∣∣∣∣∣ ≤ rt
s−i(1 + o(1)) ≤ 2rt

s, i = 0, · · · , s− 1. (22)

By (7), we get

|Ps(eA(zt))| ≤
∣∣∣∣∣ f (k)(zt)

f (s)(zt)

∣∣∣∣∣+ k−1

∑
j=0j 6=s

|Pj(eA(zt))|
∣∣∣∣∣ f (j)(z)

f (s)(z)

∣∣∣∣∣ . (23)

For rt → +∞, we have∣∣∣Ps(eA(zt))
∣∣∣ = |asms(zt)ems A(zt) + · · ·+ as1(zt)eA(zt)|

≥ |asms(zt)ems A(zt)| −
∣∣∣as(ms−1)(zt)ems−1 A(zt) + · · ·+ as1(zt)eA(zt)

∣∣∣
≥ |asms(zt)ems A(zt)| −

[∣∣∣as(ms−1)(zt)ems−1 A(zt)
∣∣∣+ · · ·+ ∣∣∣as1(zt)eA(zt)

∣∣∣]
= |asmsdsms

|rdsms
t emsδn(A,θ)rn

t (1+o(1))(1 + o(1))− [|as(ms−1)ds(ms−1)
|rds(ms−1)

t e(ms−1)δn(A,θ)rn
t (1+o(1))(1 + o(1))

+ · · ·+ |as1ds1 |r
ds1
t eδn(A,θ)rn

t (1+o(1))(1 + o(1))]
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≥ 1
2
|asmsdsms

|rdsms
t emsδn(A,θ)rn

t (1+o(1))(1 + o(1)), (24)

and ∣∣∣Pj(eA(zt))
∣∣∣ = |ajmj(zt)emj A(zt) + · · ·+ aj1(zt)eA(zt)|

≤ |ajmjdjmj
|r

djmj
t emjδn(A,θ)rn

t (1+o(1))(1 + o(1)) + · · ·+ |ajmj1|r
dj1
t eδn(A,θ)rn

t (1+o(1))(1 + o(1))

≤ 2|ajmjdjmj
|rd

t emδn(A,θ)rn
t (1+o(1))(1 + o(1)), (j 6= s) , (25)

where d = max{djmj : j = 0, · · · , s− 1, s + 1, · · · , k− 1}. Substituting (21), (22), (24), (25) into (23), we obtain
that for sufficiently large rt

1
2
|asmsdsms

|rt
dsms emsδn(A,θ)rn

t (1+o(1))(1 + o(1)) ≤ C0rd+kρ
t emδn(A,θ)(1+o(1))rt

n
(1 + o(1)), (26)

where C0 > 0 is a constant. From (26), we can get a contradiction by ms > m and δn(A, θ) > 0, so

| f (reiθ)| ≤ Mrs ≤ M1rk, M1 > 0, (27)

on the ray arg z = θ ∈ Hn,+�E1.
Case 2. Now, we take a ray arg z = θ ∈ Hn,−, then δn(A, θ) < 0. If | f (k)(reiθ)| is unbounded on the ray
arg z = θ, then by Lemma 3, there exists a sequence {zt = rteiθ} such that as rt → +∞, f (s)(zt)→ ∞ and∣∣∣∣∣ f (i)(zt)

f (k)(zt)

∣∣∣∣∣ ≤ rt
k−i(1 + o(1)) ≤ 2rt

k, i = 0, · · · , k− 1. (28)

By (7), we get

− 1 = Pk−1(eA(zt))
f (k−1)(zt)

f (k)(zt)
+ · · ·+ P0(eA(zt))

f (zt)

f (k)(zt)
. (29)

For rt → +∞, we have∣∣∣Pj(eA(zt))
∣∣∣ = |ajmj(zt)emj A(zt) + · · ·+ aj1(zt)eA(zt)|

≤ |ajmjdjmj
|rdjmj emjδn(A,θ)rn

t (1+o(1))(1 + o(1)) + · · ·+ |ajmj1|r
dj1 eδn(A,θ)rn

t (1+o(1))(1 + o(1))

≤ 2|ajmj1|r
deδn(A,θ)rn

t (1+o(1))(1 + o(1)) (j = 0, ..., k− 1) . (30)

Substituting (28) and (30) into (29), we obtain that for sufficiently large rt

1 ≤ C1rt
k+deδn(A,θ)rt

n(1+o(1))(1 + o(1)), C1 > 0. (31)

Since δn(A, θ) < 0, when rt → +∞, by (31), we get 1 ≤ 0, this is a contradiction. Hence

| f (reiθ)| ≤ M2rk, M2 > 0, (32)

on the ray arg z = θ ∈ Hn,−�E1. From Lemma 5, (27) and (32), we know that f (z) is a polynomial, which
contradicts the assertion that f (z) is transcendental. Therefore, ρ( f ) = ∞.
Step 2. We prove that ρ2( f ) = n. By Lemma 7 and ρ(Pj(eA(z))) = n (j = 0, · · · , k− 1), we see that ρ2( f ) ≤
max{ρ(Pj(eA(z)))} = n.

Now, we suppose that there exists a solution f0 satisfies ρ2( f0) = α < n. Then we have

lim sup
r→+∞

log T(r, f0)

rn = 0. (33)
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By Lemma 6, we see that there exists a subset E3 ⊂ (1, ∞) having finite logarithmic measure such that for all z
satisfying |z| = r 6∈ E3 ∪ [0, 1], ∣∣∣∣∣ f0

(j)(z)
f0(z)

∣∣∣∣∣ ≤ C[T(2r, f0)]
k+1, j = 1, · · · , k, (34)

where C(> 0) is some constant. From the Wiman-Valiron theory, there is a set E8 ⊂ (1, ∞) having finite
logarithmic measure, such that we can choose a z satisfying |z| = r 6∈ [0, 1] ∪ E8 and | f0(z)| = M(r, f0), then
we get

f0
(j)(z)

f0(z)
=

(
ν(r)

z

)j
(1 + o(1)), j = 1, · · · , k− 1, (35)

where ν(r) is the central index of f0(z). By Lemma 9, we see that there exists a sequence {zt = rteiθt} such that
| f0(zt)| = M(rt, f0), θt ∈ [0, 2π), with rt 6∈ [0, 1]∪ E5 ∪ E8, rt → +∞ and for any sufficiently large M3(> 2k+ 3)

ν(rt) > rt
M3 > rt. (36)

Case 1. Suppose θ0 ∈ Hn,+. Since δn(A, θ) = αn cos(θn + nθ) is a continuous function of θ, by θt → θ0 we get
limt→∞ δn(A, θt) = δn(A, θ0) > 0. Therefore, there exists a constant N(> 0) such that as t > N,

δn(A, θt) ≥
1
2

δn(A, θ0) > 0.

By (33), for any given ε1(0 < ε1 < 1
2n+1(k+1) δn(A, θ0)), and t > N,

[T(2rt, f0)]
k+1 ≤ eε1(k+1)(2rt)

n ≤ e
1
2 δn(A,θt)rt

n
. (37)

By (34), (35) and (37), we have

(
ν(rt)

rt

)k−s
(1 + o(1)) =

∣∣∣∣∣ f (k−s)
0 (zt)

f0(zt)

∣∣∣∣∣ ≤ C[T(2rt, f0)]
k+1 ≤ Ce

1
2 δn(A,θ0)rt

n
. (38)

By (7), we get

−
f (s)0 (zt)

f0(zt)
Ps(eA(zt)) =

f (k)0 (zt)

f0(zt)
+

k−1

∑
j=0,j 6=s

Pj(eA(zt))
f (j)
0 (zt)

f0(zt)
. (39)

Substituting (24), (25) and (35) into (39), we get for sufficiently large rt,(
ν(rt)

rt

)s 1
2
|asmsdsms

|rt
dsms emsδn(A,θt)rt

n(1+o(1))(1 + o(1))

≤
(

ν(rt)

rt

)k
(1 + o(1)) +

k−1

∑
j=0,j 6=s

2|ajmjdjmj
|rd

t emδn(A,θ)rn
t (1+o(1))

(
ν(rt)

rt

)j
(1 + o(1)). (40)

By (36), (38) and (40), we get

|asmsdsms
|rt

dsms emsδn(A,θt)rt
n(1+o(1))(1 + o(1))

≤ 2
(

ν(rt)

rt

)k−s
(1 + o(1)) +

k−1

∑
j=0,j 6=s

4|ajmjdjmj
|rd

t emδn(A,θ)rn
t (1+o(1))

(
ν(rt)

rt

)j−s
(1 + o(1))

≤ 2
(

ν(rt)

rt

)k−s
(1 + o(1)) +

s−1

∑
j=0

4|ajmjdjmj
|rd

t emδn(A,θ)rn
t (1+o(1))

(
ν(rt)

rt

)j−s
(1 + o(1))

+
k−1

∑
j=s+1

4|ajmjdjmj
|rd

t emδn(A,θ)rn
t (1+o(1))

(
ν(rt)

rt

)j−s
(1 + o(1))
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≤ C2rt
demδn(A,θ)rn

t (1+o(1))
(

ν(rt)

rt

)k−s
(1 + o(1)),

where C2 > 0 is a constant. From this inequality and (38), it follows that

|asmsdsms
|rt

dsms e(ms−m)δn(A,θt)rt
n(1+o(1))(1 + o(1)) ≤ C2rt

d
(

ν(rt)

rt

)k−s
(1 + o(1)) ≤ CC2|ajmjdjmj

|rt
de

1
2 δn(A,θ0)rt

n
.

(41)

Since ms −m ≥ 1 > 1
2 and δ(A, θt) ≥ 1

2 δn(A, θ0) > 0, we see that (41) is a contradiction.
Case 2. Suppose θ0 ∈ Hn,−. Since δn(A, θ) is a continuous function of θ, by θt → θ0 we get limt→∞ δn(A, θt) =

δn(A, θ0) < 0. Therefore, there exists a constant N(> 0) such that as t > N,

δn(A, θt) ≤
1
2

δn(A, θ0) < 0.

By (7), we can write

e−ms A(zt) f0
(k)(zt)

f0(zt)
= e−ms A(zt)Pk−1(eA(zt))

f (k−1)(zt)

f0(zt)
+ · · ·+ e−ms A(zt)P0(eA(zt)). (42)

From (6) and δn(A, θt) < 0, we get

|e−ms A(zt)Pj(eA(zt))| =
∣∣∣e−ms A(zt)

(
ajmj(zt)emj A(zt) + · · ·+ aj1(zt)eA(zt)

)∣∣∣
=
∣∣∣ajmj(zt)e−(ms−mj)A(zt) + · · ·+ aj1(zt)e−(ms−1)A(zt)

∣∣∣
≤ C3rt

dj1 e−(ms−1)δ(A,θt)rt
n(1+o(1))(1 + o(1)), (43)

where C3 > 0 is a constant. Substituting (35) and (43) into (42), we get

e−msδ(A,θt)rt
n(1+o(1))ν(rt) ≤ C4rt

d+ke−(ms−1)δ(A,θt)rt
n(1+o(1))(1 + o(1)), (44)

where C4 > 0 is a constant. By substituting (36) into (44), we have

rt
M3 e−msδ(A,θt)rt

n(1+o(1)) ≤ C4rt
d+ke−(ms−1)δ(A,θt)rt

n(1+o(1))(1 + o(1)). (45)

Since δ(A, θt) ≤ 1
2 δn(A, θ0) < 0, we see (45) is also a contradiction.

Case 3. Suppose θ0 ∈ Hn,0. Since θt → θ0, for any given ε2 (0 < ε2 < 1
10n ), there exists as integer N (> 0), such

that as t > N, θt ∈ [θ0 − ε2, θ0 + ε2], and

zt = rteiθt ∈ Ω = {z : θ0 − ε2 ≤ arg z ≤ θ0 + ε2}.

By Lemma 6, we se that there exist a subset E3 ⊂ (1, ∞) having logarithmic measure lmE3 < ∞, and a constant
C > 0 such that for all z satisfying |z| = r 6∈ E3 ∪ [0, 1],∣∣∣∣∣ f0

(i)(z)

f0
(s)(z)

∣∣∣∣∣ ≤ C[T(2r, f0
(s))]k−s+1, i = s + 1, · · · , k, (46)

Now, we consider the growth of f0(reiθ) on a ray arg z = θ ∈ Ω�{θ0}. By the properties of cosine function, we
suppose without loss of generality that δn(A, θ) > 0 for θ ∈ [θ0 − ε2, θ0) and δn(A, θ) < 0 for θ ∈ (θ0, θ0 + ε2].
Subcase 3.1 For a fixed θ ∈ [θ0 − ε2, θ0), we have δn(A, θ) > 0. Since ρ2( f0) < n, we get that f0 satisfies
(33). From T(r, f0

(s)) < (s + 1)T(r, f0) + S(r, f0), where S(r, f ) = o(T(r, f )), as r → +∞ outside of a possible
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exceptional set of finite logarithmic measure, we get that f0
(s) also satisfies (33). So for any given ε2 satisfying

0 < ε2 < 1
2n+1(k−s+1) δn(A, θ), we have

[T(2rt, f (s)0 )]k−s+1 ≤ eε2(k−s+1)(2rt)
n ≤ e

1
2 δn(A,θ0)rt

n
. (47)

We assert that | f (s)0 (reiθ)| is bounded on the ray arg z = θ ∈ [θ0 − ε2, θ0). If | f (s)(reiθ)| is unbounded on the ray

arg z = θ, then, by Lemma 3, there exists a sequence {yj = Rjeiθ} such that as Rj → ∞, f (s)0 (yj)→ ∞ and∣∣∣∣∣∣ f (i)0 (yj)

f (s)0 (yj)

∣∣∣∣∣∣ ≤ Rj
s−i(1 + o(1)) ≤ 2Rj

s, i = 0, · · · , s− 1. (48)

By Remark 5 and f (s)0 (yj)→ ∞, we know that |yj| = Rj 6∈ E4. By (46) and (47), we have for sufficiently large j,∣∣∣∣∣∣ f (j)
0 (yj)

f (s)0 (yj)

∣∣∣∣∣∣ ≤ C[T(2Rj, f (s)0 )]k−s+1 ≤ Ce
1
2 δn(A,θ0)Rn

j , j = s + 1, · · · , k. (49)

Substituting (24), (25), (48) and (49) into (23)

1
2
|asmsdsms

|Rj
dsms emsδn(A,θ)Rn

j (1+o(1))
(1 + o(1))

=|Ps(eA(yj))|

≤
∣∣∣∣∣ f (k)(yj)

f (s)(yj)

∣∣∣∣∣+ k−1

∑
j=0j 6=s

|Pj(e
A(yj))|

∣∣∣∣∣ f (j)(yj)

f (s)(yj)

∣∣∣∣∣
=

∣∣∣∣∣ f (k)(yj)

f (s)(yj)

∣∣∣∣∣+ s−1

∑
j=0
|Pj(e

A(yj))|
∣∣∣∣∣ f (j)(yj)

f (s)(yj)

∣∣∣∣∣+ k−1

∑
j=s+1

|Pj(e
A(yj))|

∣∣∣∣∣ f (j)(yj)

f (s)(yj)

∣∣∣∣∣
≤Ce

1
2 δn(A,θ0)Rn

j +
s−1

∑
j=0

4|ajmjdjmj
|Rd

j emδn(A,θ)Rn
j (1+o(1))Rj

s(1 + o(1))

+
k−1

∑
j=s+1

2|ajmjdjmj
|Rd

j emδn(A,θ)Rn
j (1+o(1))Ce

1
2 δn(A,θ0)Rn

j

≤ C5Rd
j e(

1
2+m)δn(A,θ)Rj

n
, (50)

where C5 > 0 is a constant, which yields a contradiction by ms − m ≥ 1 > 1
2 and δn(A, θ) > 0. Hence

| f (s)0 (reiθ)| is bounded on the ray arg z = θ, so

| f0(reiθ)| ≤ M4rs, M4 > 0, (51)

on the ray arg z = θ ∈ [θ0 − ε4, θ0).
Subcase 3.2 For a fixed θ ∈ (θ0, θ0 + ε2], we have δn(A, θ) < 0. Using a reasoning similar to that in Subcase 3.1,
we obtain

| f0(reiθ)| ≤ M5rk, M5 > 0, (52)

on the ray arg z = θ ∈ (θ0, θ0 + ε4]. By (51) and (52), we see that on the ray arg z = θ ∈ Ω�{θ0},

| f0(reiθ)| ≤ M5rk, M5 > 0. (53)

But since ρ( f0(reiθ)) = ∞ and {zt = rteiθt} satisfies | f0(zt)| = M(rt, f0), we see that, for any large M6(> k), as
t is sufficiently large,

| f0(zt)| = | f0(zt)| = | f0(zt)| = | f0(rteiθt)| ≥ exp{rM6
t }. (54)
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Since zt ∈ Ω, by (53) and (54), we see that θt = θ0 as t → ∞. Therefore, δn(A, θt) = 0 as t → ∞. Thus, for
sufficiently large t,

|Pj(ezt)| = |ajmj(zt)emj A(zt) + ajmj−1(zt)emj−1 A(zt) + · · ·+ aj1(zt)eA(zt)|

≤ |ajmj(zt)|+ |ajmj−1(zt)|+ · · ·+ |aj1(zt)| ≤ C6rd, (55)

where j = 0, · · · , k− 1 and C6 > 0 is a constant. By (7), (35) and (55), we get that

| − (
ν(rt)

zt
)k(1 + o(1))| = | −

f (k)0 (zt)

f0(zt)
| ≤ C7rd(

ν(rt)

zt
)k−1(1 + o(1)),

i.e.,
ν(rt)(1 + o(1)) ≤ C7rd+1(1 + o(1)), (56)

where C7 > 0 is a constant. Substituting (36) into (56), we obtain also a contradiction. So we have ρ2( f ) =

n.

Proof of Corollary 1. From Theorem 7, we get ρ( f ) = ∞ and ρ2( f ) = n. Let g = f − z, then f = g + z.
Substituting it into (7), we have

g(k) + Pk−1(eA(z))g(k−1) + · · ·+ P0(eA(z))g = −zP0(eA(z))− P1(eA(z)).

Since −zP0(eA(z)) − P1(eA(z)) 6≡ 0, from Lemma 11, ρ(g) = ∞ and ρ2(g) = n we conclude λ(g) = λ(g) =

ρ(g) = ∞ and λ2(g) = λ2(g) = ρ2(g) = n. So τ( f ) = τ( f ) = ρ( f ) = ∞ and τ2( f ) = τ2( f ) = ρ2( f ) = n.

Proof of Theorem 8. From Theorem 7, we get ρ( f ) = ∞ and ρ2( f ) = n.

(i) Let g = f − z, then f = g + z. Substituting it into (8), we have

g′′ + P(eA(z))g′ + Q(eA(z))g = −P(eA(z))− zQ(eA(z)).

Since p 6= s, we get −P(eA(z))− Q(eA(z))z 6≡ 0. From Lemma 11, we obtain λ(g) = ρ(g) = ρ( f ) = ∞
and λ2(g) = ρ2(g) = ρ2( f ) = n. So λ( f − z) = ∞ and λ2( f − z) = n.

(ii) Differentiating both sides of (8), we get that

f ′′′ + P(eA(z)) f ′′ + [(P(eA(z)))′ + Q(eA(z))] f ′ + (Q(eA(z)))′ f = 0. (57)

By (8), we have

f = − f ′′ + P(eA(z)) f ′

Q(eA(z))
. (58)

Substituting (58) into (57), we get

f ′′′ + [(P(eA(z)))′ − (Q(eA(z)))′

Q(eA(z))
] f ′′ + [(P(eA(z)))′ + Q(eA(z))− (Q(eA(z)))′

Q(eA(z))
P(eA(z))] f ′ = 0. (59)

Let g = f ′ − z, then f ′ = g + z, f ′′ = g′ + 1, f ′′′ = g′′. Substituting these into (59), we get that

g′′ + [(P(eA(z)))′ − (Q(eA(z)))′

Q(eA(z))
]g′ + [(P(eA(z)))′ + Q(eA(z))− (Q(eA(z)))′

Q(eA(z))
P(eA(z))]g

= −P(eA(z)) +
(Q(eA(z)))′

Q(eA(z))
− [(P(eA(z)))′ + Q(eA(z))− (Q(eA(z)))′

Q(eA(z))
P(eA(z))]z

= h(z). (60)
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Next, we prove that h(z) 6≡ 0. If h(z) ≡ 0, then

−P(eA(z)) +
(Q(eA(z)))′

Q(eA(z))
≡ [(P(eA(z)))′ + Q(eA(z))− (Q(eA(z)))′

Q(eA(z))
P(eA(z))]z.

Since Q(z) 6≡ 0, we have

(Q(eA(z)))′ − (Q(eA(z)))2z ≡ P(eA(z))Q(eA(z)) + [(P(eA(z)))′Q(eA(z))− (Q(eA(z)))′P(eA(z))]z. (61)

Suppose p > s. By taking z = r, we have

P(eA(r)) = ap(r)epA(r) + · · ·+ a1(r)eA(r), and Q(eA(r)) = bs(r)esA(r) + · · ·+ b1(r)eA(r).

We get

(P(eA(r)))′ =
p

∑
j=1

(a′j(r) + jA′(r)aj(r))ejA(r)

= (a′p(r) + pA′(r)ap(r))epA(r) + · · ·+ (a′1(r) + A′(r)a1(r))eA(r)

and

(Q(eA(r)))′ =
s

∑
j=1

(b′j(r) + jA′(r)bj(r))ejA(r)

= (b′s(r) + sA′(r)bs(r))esA(r) + · · ·+ (b′1(r) + A′(r)b1(r))eA(r).

So, we obtain

|P(eA(r))Q(eA(r)) + (P(eA(r)))′Q(eA(r))r− (Q(eA(r)))
′
P(eA(r))r|

= |ap(r)bs(r) + (p− s)rA′(r)ap(r)bs(r) + (a′p(r)bs(r)− ap(r)b′s(r))r|e(p+s)Recnrn(1+o(1))(1 + o(1)).

Since ap(r), bs(r) and A(r) are polynomials and p > s, we get

deg((p− s)rA′(r)ap(r)bs(r)) > deg[ap(r)bs(r) + (a′p(r)bs(r)− ap(r)b′s(r))r].

So, we have

|(p− s)rA′(r)ap(r)bs(r) + ap(r)bs(r) + (a′p(r)bs(r)− ap(r)b′s(r))r| = Mrd1(1 + o(1)) 6≡ 0,

where M > 0 and d1 > 0 are some constants. It follows that

|P(eA(r))Q(eA(r)) + (P(eA(r)))′Q(eA(r))r− (Q(eA(r)))
′
P(eA(r))r| = Mrd1 e(p+s)Recnrn(1+o(1))(1 + o(1)).

From (61), we have

Mrd1 e(p+s)Recnrn(1+o(1))(1 + o(1)) = |P(eA(r))Q(eA(r)) + (P(eA(r)))
′
Q(eA(r))r− (Q(eA(r)))

′
P(eA(r))r|

= |(Q(eA(r)))
′ − (Q(eA(r)))2r| ≤ M1rd2 e2sRecnrn(1+o(1))(1 + o(1)),

where M1 > 0 and d2 > 0 are some constants, which is a contradiction. So we have h(z) 6≡ 0. If p < s, by
(61) for z = r we have

M2rd3 e2sRecnrn(1+o(1))(1 + o(1)) = [(Q(eA(r)))2 + (P(eA(r)))′Q(eA(r))− (Q(eA(r)))′P(eA(r))]r

=
∣∣∣(Q(eA(r)))′ − P(eA(r))Q(eA(r))

∣∣∣
≤ M3rd4 e(p+s)Recnrn(1+o(1))(1 + o(1)),
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where M2 > 0, d3 > 0, M3 > 0 and d4 > 0 are some constants.This is a contradiction. So, we obtain
h(z) 6≡ 0. Hence, if p 6= s we have h(z) 6≡ 0. From Lemma 11, we get λ(g) = ρ(g) = ρ( f ′− z) = ρ( f ) = ∞
and λ2(g) = ρ2(g) = ρ2( f ′ − z) = ρ2( f ) = n.

Proof of Theorem 9. Suppose that f 6≡ 0 is a solution of (10). Since ρ(P∗) = ρ(Q∗) = n, then by Lemma 7, we
see that

ρ2( f ) ≤ max {ρ(P∗), ρ(Q∗)} = n. (62)

By Lemma 6, we se that there exist a subset E3 ⊂ (1, ∞) having logarithmic measure lmE3 < ∞, and a constant
C > 0 such that for all z satisfying |z| = r 6∈ E3 ∪ [0, 1],∣∣∣∣∣ f (j)(z)

f (z)

∣∣∣∣∣ ≤ C[T(2r, f )]j+1, j = 1, 2. (63)

Taking z = r, in (2) and (3), we obtain that for sufficiently large r∣∣∣P∗ (eA(r)
)∣∣∣ = ∣∣∣ap(r)epA(r) + · · ·+ a1(r)eA(r) + a0(r)

∣∣∣
≤ 2

∣∣∣apdp

∣∣∣ rdp epRecnrn(1+o(1))(1 + o(1)), (64)

and ∣∣∣Q∗ (eA(r)
)∣∣∣ = ∣∣∣bs(r)esA(r) + · · ·+ b1(r)eA(r) + b0(r)

∣∣∣
≥ 1

2
|bsms | rms esRecnrn(1+o(1))(1 + o(1)). (65)

Substituting (63)–(65) into (10), we deduce that for all z satisfying |z| = r 6∈ E3 ∪ [0, 1]

1
2
|bsms | rms esRecnrn(1+o(1))(1 + o(1)) ≤

∣∣∣∣ f ′′(z)
f (z)

+ P∗
(

eA(z)
) f ′(z)

f (z)

∣∣∣∣
≤
∣∣∣∣ f ′′(z)

f (z)

∣∣∣∣+ ∣∣∣P∗ (eA(z)
)∣∣∣ ∣∣∣∣ f ′(z)

f (z)

∣∣∣∣
≤ C[T(2r, f )]3 + 2

∣∣∣apdp

∣∣∣ rdp epRecnrn(1+o(1))C[T(2r, f )]2(1 + o(1))

≤ 3C
∣∣∣apdp

∣∣∣ rdp epRecnrn(1+o(1))[T(2r, f )]3(1 + o(1)). (66)

By (66), we deduce that for all z satisfying |z| = r 6∈ E3 ∪ [0, 1]

|bsms | rms−dp e(s−p)Recnrn(1+o(1))(1 + o(1)) ≤ 6C
∣∣∣apdp

∣∣∣ [T(2r, f )]3(1 + o(1)). (67)

Since s− p > 0, by (67) and Lemma 12, we get

ρ( f ) ≥ lim sup
r→+∞

log T(r, f )
log r

= +∞, ρ2( f ) ≥ lim sup
r→+∞

log log T(r, f )
log r

= n. (68)

From (62) and (68) we obtain ρ( f ) = +∞ and ρ2( f ) = n.
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