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Abstract: We consider 1D and 2D Schrödinger equation with delta potential on the positive half-axis with
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the beta critical.
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1. Introduction and Main Results

T his paper deals with 1D and 2D exactly solvable models for the Schrödinger operators. We study the
existence of negative eigenvalues lying under the continuous spectrum of the Schrödinger operator

with δ potential. The main goal is to find the threshold value of the coupling constant for which such
eigenvalues exist. In one dimensional case, our result’s are similar to the consequences of the more general
results concerning the Schrödinger operators with a finite number of δ−interactions

H = − d2

dx2 +
n

∑
k=1

αkδ(x − xk) (1)

on the line [1]. In [1], Albeverio and Nizhnik have provided the effective algorithm for determining the number
of negative eigenvalues of such operators in terms of the intensities αk and the distances dk = xk+1 − xk
between the interactions. In this paper, we consider the eigenvalue problem

− d2y
dx2 − βδ(x − a)y(x) = λy(x), (2)

on the positive half-axis with Dirichlet, Neumann, and Robin type boundary conditions. For all solvable
models under consideration, there exists a critical value βcr such that the operator possesses the negative
eigenvalues if β > βcr and has no eigenvalues if β > βcr. The goal of this paper is to present and estimate
the exact values of the beta critical for Eq. (2) considering appropriate boundary condition. We define beta
critical as a critical value of the coupling constant denoted by βcr, the value of β such that Eq. (2) does not
have negative eigenvalues for β < βcr and has them if β > βcr. The delta potential allows solutions for both
the bound states λ < 0 and scattering states λ > 0. There has been a considerable interest in the study of
coupling constant and the problem was investigated by several researchers like S.Albeverio and others in [2],
P.Exner and K.Pankrashkin in [3], Barry Simon in [4], Martin Klaus in [5], and Cranston, Koralov, Molchanov
and Vainberg in [6]. It is known that the spectrum of −∆ − βV(x) consists of the absolutely continuous part
[0, ∞) and at most a finite number of of negative eigenvalues

σ(−∆ − βV(x)) = {λj} ∪ [0, ∞), 0 ≤ j ≤ N, λj ≤ 0. (3)

The classification of the spectrum into discrete and continuous parts usually corresponds to a classification
of the dynamics into localized (bound) states and locally decaying states when time increases (scattering)
respectively. The lower bound, 0, of the absolutely continuous spectrum is called the ionization threshold. This
follows from the fact that the particle is no longer localized, but moves freely when λ > 0. This classification
is related to the space-time behaviour of solutions of the corresponding Schrödinger equation.

Open J. Math. Anal. 2022, 6(1), 15-20; doi:10.30538/psrp-oma2022.0101 https://pisrt.org/psr-press/journals/oma

https://pisrt.org/psr-press/journals/oma
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oma


Open J. Math. Anal. 2022, 6(1), 15-20 16

It is known that [7] βcr > 0 in the case of Dirichlet boundary condition and βcr = 0 in the case of the
Neumann boundary condition in the dimension 1 and 2 . It was shown that the choice βcr > 0 or βcr = 0
depends on whether the truncated resolvent is bounded or goes to infinity when λ → 0−. In fact, βcr was
expressed through truncated resolvent operator and depend on the boundary condition and dimension [7].
The main results of this paper in 1D is stated as follows.

Theorem 1. Consider one dimensional eigenvalue problem

− d2y
dx2 − βδ(x − a)y(x) = λy(x), y(a) = 1, λ = −k2 < 0, (4)

then the βcr = 1
a > 0 in the case of Dirichlet Boundary condition and βcr = 0 in the case of Neumann and Robin

boundary condition.

Proof. The solution of the problem (4) is given by

y(x) = Pe−kx + Qekx, (5)

where P and Q are constants and λ = −k2 < 0. One can determine the value of constant P and Q by using the
Dirichlet condition y(0) = 0 with y(a) = 1. Then we split the solution of the problem (4) in to two different
regions. {

y1(x) = sinh kx
sinh ka , if 0 ≤ x ≤ a

y2(x) = ek(a−x), if a ≤ x.

Integrate the Eq. (4) with respect to x over a small interval ∆ϵ at the point x = a,

∫ a+ϵ

a−ϵ

(
− d2

dx2 − βδ(x − a)y
)

dx =
∫ a+ϵ

a−ϵ
(λy) dx. (6)

The integral of the second derivative is just the first derivative function and the integral over the function in
the right hand side goes to zero. This yields,

−y′
∣∣a+ϵ

a−ϵ
− βy(a) = 0. (7)

When ϵ −→ 0, we get
k + k coth ka = β.

This implies, k
β = 1

1+coth ka and ka
βa = 1

1+coth ka . Let ka = A, βa = B, then e−2A = 1 − 2A
B . Again let 2A = z, then

we have,
e−z = 1 − z

B
. (8)

From Eq. (8),

1 − z
B
≥ 0.

By solving the inequality, we get
β

2
≥ k

and ultimately, β2

4 ≥ k2. This leads to

λ = −k2 ≥ −β2

4
(9)

Hence, if β = 0 then there is no possibility of having negative eigenvalues. Therefore, βcr must be greater
than zero to produce negative eigenvalues. We notice that we will not have a solution of the Eq. (8) if 1

B ≥ 1.
That means, there is no negative eigenvalues when 1

a ≥ β. However, for 1
B ≤ 1, there is a solution of the Eq.

(8). That means, when 1
a ≤ β, we will have the negative eigenvalues. As we defined βcr, the value of β such

that Eq. (4) does not have negative eigenvalues for β < βcr and has them if β > βcr, we conclude that βcr =
1
a

for the Eq. (4) with Dirichlet boundary condition.
If we consider the delta potential located at x = an then the βcr −→ ∞ as an −→ 0. That means, if we

approach the potential towards to the boundary, i.e., an −→ 0 then βcr −→ ∞.
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We consider the Neumann boundary condition then the Eq. (2) becomes

− d2y
dx2 − βδ(x − a)y(x) = λy(x), y′(0) = 0, y(a) = 1, λ = −k2 < 0, k > 0. (10)

Similar to Dirichlet problem, we divide the solution of Neumann problem in to two different regions:{
y1(x) = cosh kx

cosh ka , if 0 ≤ x ≤ a

y2(x) = ek(a−x), if a ≤ x.

Integrate the Eq. (10) with respect to x over a small interval and take ϵ −→ 0 yields,

k + k tanh ka = β.

After simplification, we get
k
β
=

1
1 + tanh ka

and then we multiply and divide by a for the right hand side,

ka
βa

=
1

1 + tanh ka
.

Let ka = A, βa = B, then

e−2A =
2A
B

− 1.

Following the same analysis as Dirichlet case, we get β2

4 ≤ k2. This implies that λ = −k2 ≤ −β2

4 and concludes
that if β = 0 then there is still a possibility of having a negative eigenvalues. Hence, βcr = 0.

Now we consider the Robin boundary condition. The Eq. (2) with Robin boundary condition is given by

− d2y
dx2 − βδ(x − a)y(x) = λy(x),

dy
dx

+ y(x)
∣∣∣∣
x=0

= 0, y(a) = 1, λ = −k2 < 0. (11)

As above, we divide the solution of this problem in to two different regions:{
y1(x) = k cosh kx−sinh kx

k cosh ka−sinh ka , if 0 ≤ x ≤ a

y2(x) = ek(a−x), if a ≤ x.

We integrate the Eq. (11) with respect to x over a small interval ∆ϵ,

∫ a+ϵ

a−ϵ
(−y

′′ − βδ(x − a)y )dx =
∫ a+ϵ

a−ϵ
(λy)dx.

After integration and taking ϵ −→ 0, we get,

k + k
(

k − coth ka
k coth ka − 1

)
= β.

After simplification,
k
β
=

1

1 +
(

k−coth ka
k coth ka−1

) ,

and
ka
βa

=
1

1 +
(

k−coth ka
k coth ka−1

) .

Let ka = A, βa = B, then

e−2A =
2A2 − 2Aa − AB + Ba

AB + Ba
.
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Observe that 2A2−2Aa−AB+Ba
AB+Ba must be ≥ 0. After solving this inequality, we get

β

2
≤ k.

Now, λ = −k2 ≤ −β2

4 . Hence, if β = 0 then there is a possibility of having negative eigenvalues so βcr must be
zero.

Two Dimensional eigenvalue problem

The rotational invariance suggests that the two dimensional Laplacian should take a particularly simple
form in polar coordinates. We use polar coordinates (r, θ) and look for solutions depending only on r. For
d = 2, we do not consider the Neumann boundary condition since βcr is always zero in this case.

Theorem 2. Consider two dimensional Dirichlet problem with delta potential on the circle,

− ∆y(x)− βδ1+ay(x) = λy(x), y(1) = 0, y(1 + a) = 1, λ = −k2 < 0, k > 0, (12)

then the βcr > 0 and β ∈ (0, 1/2) .

Proof. The Eq. (2) takes the following form for d = 2 with delta potential on the circle,

y′′ +
y′

r
− βδ1+ay(r) = λy(r), y(1) = 0, y(1 + a) = 1, λ = −k2 < 0, k > 0. (13)

We divide the solution of Eq. (13) into two different regions: region (I) with 1 ≤ r < 1 + a and region (II) with
1 + a < r, y1(r) =

Y0(k)J0(kr)−J0(k)Y0(kr)
Y0(k)J0(k(1+a))−J0(k)Y0(k(1+a)) , if 1 ≤ r ≤ 1 + a

y2(r) =
K0(kr)

K0(k(1+a)) , if 1 + a ≤ r.

Using the same argument as in the one dimensional problem, we get

−y
′
∣∣∣∣1+a+ϵ

1+a−ϵ

− βy(1 + a) = 0.

After simplification, we have
−
(
y
′
2|1+a+ϵ − y

′
1|1+a−ϵ

)
= β.

When ϵ −→ 0, we get

−Y0(k)J1(k(1 + a) + J0(k)Y1(k(1 + a))
Y0(k)J0(k(1 + a))− J0(k)Y0(k(1 + a))

− −K1(k(1 + a))
K0(k(1 + a)

=
β

k
, (14)

where Y0 and Y1 are Bessel function of second kind and and J0 and J1 are Bessel function of first kind. Similarly,
K0 and K1 are a modified Bessel function of second kind. We define

g(k, a) =
g1(k, a)
g2(k, a)

=
−Y0(k)J1(k(1 + a) + J0(k)Y1(k(1 + a))
Y0(k)J0(k(1 + a))− J0(k)Y0(k(1 + a))

.

We notice that g(k, a) = −1 for all the values of a as shown in the Figures 1–4.
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Figure 1. graph of the function g(k,5).

Figure 2. Graph of the function g(k,2).

Figure 3. Graph of the function g(k,4).

Figure 4. Graph of the function g(k,10).
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From Eq. (14), we get

− 1 +
K1(k(1 + a))
K0(k(1 + a)

=
β

k
. (15)

We will use the following fact from [8] to prove that βcr > 0.

Lemma 1 ([8]). Let p, q ≥ 0. Then the double inequalities

1 +
1

2(x + p)
<

K1(x)
K0(x)

< 1 +
1

2(x + q)
(16)

hold for all x > 0 if only if p ≥ 1/4 and q = 0.

Now, from Eqs (15) and (16) we get,

1
2(x + p)

<
K1(x)
K0(x)

− 1 <
1

2(x + q)
.

When x = k(a + 1) > 0,

1
2(k(a + 1) + p)

<
K1(k(a + 1))
K0(k(a + 1))

− 1 <
1

2(k(a + 1) + q)
.

1
2(k(a + 1) + p)

<
β

k
<

1
2(k(a + 1) + q)

.

1
2((a + 1) + p

k )
< β <

1
2((a + 1) + q

k )
.

Since a > 0, p ≥ 1
4 , k > 0, which tells us that β > 0 and hence βcr > 0 and β ∈ (0, 1

2 ).
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