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Abstract: In this paper, we investigate some properties of the AP-Henstock integral on a compact set
and prove that the product of an AP-Henstock integrable function and a function of bounded variation is
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1. Introduction and Main Results

T he Henstock integral of real-valued functions was first defined by Henstock[1,2]. It is a direct
generalization of the Riemann integral because it uses the concept of the tagged partition and the

Riemann sum. In Henstock integral, the concept of the norm of a tagged partition in the Riemann integral
is replaced by the positive gauge function. Therefore, the definition of the Henstock integral is as simple as
the definition of the Riemann integral. On the other hand, to introduce the Lebesgue integral, a good amount
of measure theory is required. It is one of the reasons why the Henstock integral is simpler than the Lebesgue
integral. However, the Henstock integral is also a generalization of the Lebesgue integral. Every Lebesgue
integrable function is Henstock integrable, and both integrals are the same. One of the Lebesgue integral
deficits is that not every continuous function that is differentiable everywhere, possible except for a countable
number of points, is recovered from its derivative by the Lebesgue integrable. In this sense, we say that the
Lebesgue integral does not recover a function from its derivative. On the other hand, the Henstock integral
overcomes this drawback: every continuous function F : [a, b] → R that is differentiable everywhere except
for countable number of points on [a, b] can be recovered from its derivative by the Henstock integral, and∫ x

a F′ = F(x)− F(a).
The approximate Henstock integral (AP-Henstock integral) [3] further generalizes the Henstock integral

by using the concept of the approximate derivative [4], and the gauge function in the Henstock integral is
generalized to the choice in the AP-Henstock integral. Every Henstock integrable function is AP-Henstock
integrable, and the integrals are the same. Furthermore, the AP-Henstock integral recovers an approximate
continuous function from its approximate derivative:

Theorem 1. [4] If F : [a, b] → R is approximately continuous on [a, b] and approximately differentiable everywhere
except for countable number of points on [a, b], then the approximate derivative of F, denoted by F′

ap, is AP-Henstock
integrable, and

∫ x
a F′

ap = F(x)− F(a) for any x ∈ [a, b].

For the detailed introduction of the AP-Henstock integral, the reader is referred to [5–9].
Although the space of integrable functions is closed under the addition and the scalar multiplication, the

product of two integrable functions is not necessarily integrable. Therefore, it is an important question of
what kind of properties of an integrable function guarantees the integrability of the product of two integrable
functions. We call those properties the multiplier properties and the related theorems the multiplier theorems. For
example, in the case of the Lebesgue, Denjoy, and Henstock integral, the product of an integrable function
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f : [a, b] → R and a function of bounded variation(which is integrable in any sense mentioned above) G :
[a, b] → R is integrable, and ∫ b

a
f G = F(b)G(b)−

∫ b

a
FdG,

where F(x) =
∫ x

a f , and the last integral is the Riemann-Stieltjes integral. For the Perron integral, a restricted
condition on the function of bounded variation is required, see [6]. In this paper, we develop the same kind of
multiplier properties that ensure the AP-Henstock integrability of the product of two AP-Henstock integrable
functions.

On the other hand, the Henstock integral can be defined on unbounded intervals [10]. It is now known as
Hake’s theorem that there is no such thing as an “improper integral” for the Henstock integral. By modifying
the definition of the Henstock integral on unbounded intervals, we define the AP-Henstock integrals on
unbounded intervals. In this setting, we investigate some properties for the AP-Henstock integral and prove
that, under some additional conditions, the product of an AP-integrable function and a function of bounded
variation. Furthermore, the product of an AP-integrable function and a regulated function is AP-Henstock
integrable.

We state the mean value theorem for the Riemann-Stieltjes integral which will be used in the main body
of our work.

Theorem 2. [1] Let f be a continuous functions on [a, b] and let φ be a bounded increasing function on [a, b]. Then
there exists ξ in [a, b] such that ∫ b

a
f dφ = f (ξ)(φ(b)− φ(a)).

2. Definition and basic properties

An approximate neighborhood(or ap-nbd) of x ∈ [a, b] is a measurable set Sx ⊂ [a, b] containing x as a
point of density. For every x ∈ E ⊂ [a, b], choose an ap-nbd Sx ⊂ [a, b] of x. Then we say that S = {Sx :
x ∈ E} is a choice on E. A tagged interval ([u, v], x) is said to fine to the choice S = {Sx} if u, v ∈ Sx. Let
P = {([xi−1, xi], ti) : 1 ≤ i ≤ n} be a finite collection of non-overlapping tagged intervals. If ([xi−1, xi], ti) is
fine to the choice S for each i = 1, · · · , n, then we say that P is S-fine. Let E ⊂ [a, b]. If P is S-fine and ti ∈ E
for each i = 1, · · · , n, then P is said to be S-fine on E. If P is S-fine and [a, b] = ∪n

i=1[xi−1, xi], then we say that
P is S-fine partition of [a, b].

Definition 1. [4] A function f : [a, b] → R is said to be approximate Henstock integrable (AP-Henstock
integrable) on [a, b] if there exists a real number A such that for each ϵ > 0 there is a choice S on [a, b] such that∣∣∣∣∣ n

∑
i=1

f (ti)(xi − xi−1)− A

∣∣∣∣∣ < ϵ,

for each S-fine partition P = {([xi−1, xi], ti) : 1 ≤ i ≤ n} of [a, b]. In this case, A is called the AP-Henstock
integral of f on [a, b], and we write A =

∫ b
a f . We denote ∑n

i=1 f (ti)(xi − xi−1) = S(P ; f ) and the collection of
all functions that are AP-Henstock integrable on an interval I by AH(I).

Theorem 3. [4] Let f and g be AP-Henstock integrable functions on [a, b]. then for any real numbers α and β, α f + βg
is AP-Henstock integrable on [a, b] and

∫ b
a (α f + βg) = α

∫ b
a f + β

∫ b
a g.

Theorem 4. Let f : [a, b] → R. If f = 0 almost everywhere on [a, b], then f ∈ AH([a, b]) and
∫ b

a f = 0.

Proof. The facts that f is Henstock integrable on [a, b] and the integral is 0 are proved in [6]. Since every
Henstock integrable function is AP-Henstock integrable and the integrals are the same, f ∈ AH([a, b]) and∫ b

a f = 0.

Corollary 1. Let f ∈ AH([a, b]) and g : [a, b] → R. If g = f almost everywhere on [a, b], then g ∈ AH([a, b]) and∫ b
a g =

∫ b
a f .
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Proof. Since g − f = 0 almost everywhere on I, by the theorem, g − f ∈ AH([a, b]) and
∫ b

a (g − f ) = 0.

Therefore, g = (g − f ) + f ∈ AH(I) and
∫ b

a g =
∫ b

a (g − f ) +
∫ b

a f =
∫ b

a f .

Theorem 5. [4] Let f : [a, b] → R be AP-Henstock integrable on [a, b] and let F(x) =
∫ x

a f for each x ∈ [a, b]. Then

1. the function F is measurable;
2. the function F is approximately continuous on [a, b];
3. the function F is approximately differentiable almost everywhere on [a, b] and F′

ap = f almost everywhere on [a, b];
and

4. the function f is measurable.

3. Integral of the translate of a function

In this section, we prove that the translate of an AP-Henstock integrable function is AP-Henstock
integrable.

Let I := [a, b] and let r ∈ R. We define the r-additive translate of I to be the interval Ir := [a + r, b + r],
and the r-additive translate of f to be the function fr(y) := f (y − r) for all y ∈ Ir. Similarly, if r > 0, we define
the r-multiplicative translate of I to be the interval I(r) := [ar, br], and the r-multiplicative translate of f to be
the function f(r)(z) := f (z/r) for all z ∈ I(r).

Theorem 6. (a) If f is AP-Henstock integrable on I, then fr is AP-Henstock integrable on Ir and
∫

Ir
fr =

∫
I f .

(b) If f is AP-Henstock integrable on I, then f(r) is AP-Henstock integrable on I(r) and
∫

I(r)
f(r) = r

∫
I f .

Proof. (a) Let ϵ > 0. Since f ∈ AH(I), there exist a choice S = {Sx : x ∈ I} on I such that if P1 is a
S-fine partition of I, then |S( f ;P1)−

∫
I f | ≤ ϵ. Now, we define Sϵ := {Sy−r + r : Sy−r ∈ S , y ∈ Ir}.

Suppose that Q := {([yi−1, yi], si)}n
i=1 is a Sϵ-fine partition of Ir. If we let xi := yi − r and ti := si − r,

then xi−1 ≤ ti ≤ xi, xi−1, xi ∈ Sti , and ti ∈ I, whence P := {([xi−1, xi], ti)}n
i=1 is a S-fine partition of I.

Since S( fr;Q) = S( f ;P), we infer that∣∣∣∣S( fr;Q)−
∫

I
f
∣∣∣∣ = ∣∣∣∣S( f ;P)−

∫
I

f
∣∣∣∣ ≤ ϵ.

Since ϵ > 0 is arbitrary, we conclude that fr ∈ AH(Ir) and
∫

Ir
fr =

∫
I f .

(b) Let ϵ > 0. Since f ∈ AH(I), there exists a choice S = {Sx : x ∈ I} of I such that if P1 is a S-fine
partition on I, then |S( f ;P1)−

∫
I f | ≤ ϵ/r. Now, we define Sϵ := {rSy/r : Sy/r ∈ S , y ∈ I(r)}, then Sϵ

is a choice on I(r). Suppose that Q := {([yi−1, yi], si)}n
i=1 is a Sϵ-fine partition of I(r). If we let xi := yi/r

and ti := si/r, then xi−1 ≤ ti ≤ xi, xi−1, xi ∈ Sti , and ti ∈ I, whence P := {([xi−1, xi], ti)}n
i=1 is a S-fine

partition of I. Since S( f(r);Q) = ∑n
i=1 f(r)(si)(yi − yi−1) = r ∑n

i=1 f (ti)(xi − xi−1) = rS( f ;P), we have∣∣∣∣S( f(r);Q)− r
∫

I
f
∣∣∣∣ = r

∣∣∣∣S( f ;P)−
∫

I
f
∣∣∣∣ ≤ ϵ.

Since ϵ > 0 is arbitrary, we conclude that f(r) ∈ AH(I(r)) and
∫

I(r)
f(r) = r

∫
I f .

4. Multiplier Properties on bounded intervals

It is well known that the product of two AP-Henstock integrable functions is not necessarily AP-Henstock
integrable, even when one of them is bounded or continuous. In this section, we provide some conditions
under which the product of two AP-Henstock integrable functions is AP-Henstock integrable. We also
establish the Mean Value Theorems. We start by showing the squeeze theorem for the AP-Henstock integral.

Theorem 7. A function f belongs to AH(I := [a, b]) if and only if for every ϵ > 0 there exist functions φϵ and ψϵ in
AH(I) with φϵ(x) ≤ f (x) ≤ ψϵ(x) for all x ∈ I, and such that∫

I
(ψϵ − φϵ) ≤ ϵ.
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Proof. Let f ∈ AH(I) and let ϵ > 0. We can take φϵ := ψϵ := f . Conversely, assume that for every ϵ > 0 there
exist functions φϵ and ψϵ in AH(I) with φϵ(x) ≤ f (x) ≤ ψϵ(x) for all x ∈ I, and such that

∫
I(ψϵ − φϵ) ≤ ϵ.

Then for each ϵ > 0, it follows that S(φϵ;P) ≤ S( f ;P) ≤ S(ψϵ;P) for any tagged partition P of I. Since
φϵ ∈ AH(I), there exists a choice S1 on I such that if P is a S1-fine partition of I, then |S(φϵ;P)−

∫
I φϵ| ≤ ϵ,

whence it follows that
∫

I φϵ − ϵ ≤ S(φϵ;P). Similarly there exists a choice S2 on I such that if P is a S2-fine
partition of I, then S(ψϵ;P) ≤

∫
I ψϵ + ϵ. Now let S := {S1 ∩ S2 : S1 ∈ S1, S2 ∈ S2} and let P be a S-fine

tagged partition of I. Then we have ∫
I

φϵ − ϵ ≤ S( f ;P) ≤
∫

I
ψϵ + ϵ,

and if Q is a S-fine partition of I, then

−
∫

I
ψϵ − ϵ ≤ −S( f ;Q) ≤ −

∫
I

φϵ + ϵ.

Adding these inequalities, we obtain

−
∫

I
(ψϵ − φϵ)− 2ϵ ≤ S( f ;P)− S( f ;Q) ≤

∫
I
(ψϵ − φϵ) + 2ϵ.

Hence we conclude that
| S( f ;P)− S( f ;Q) |≤

∫
I
(ψϵ − φϵ) + 2ϵ ≤ 3ϵ.

Since ϵ > 0 is arbitrary, f satisfies the Cauchy Criterion([4], Theorem 16.6) for the AP-Henstock integral.
Therefore f ∈ AH(I).

Definition 2. [1] Let I := [a, b]. A function f : I → R is said to be regulated on I if for every ϵ > 0 there exists
a step function sϵ : I → R such that

| f (x)− sϵ(x) |≤ ϵ

for all x ∈ I.

It easy to see that a function f is regulated on I if and only if there is a sequence {sn}∞
n=1 of step functions

on I that converges uniformly to f on I.

Theorem 8. Let I := [a, b]. If f : I → R is regulated on I, then f is AP-Henstock integrable on I.

Proof. Let f : I → R be regulated on I and let ϵ > 0. Then there exists a step function sϵ : I → R such that

| f (x)− sϵ(x) |≤ ϵ

for all x ∈ I. Therefore, we have sϵ(x)− ϵ ≤ f (x) ≤ sϵ(x) + ϵ for all x ∈ [a, b]. If we let φϵ(x) := sϵ(x)− ϵ

and ψϵ(x) := sϵ(x) + ϵ for all x ∈ I, then the functions φϵ and ψϵ are AP-Henstock integrable on I and
φϵ(x) ≤ f (x) ≤ ψϵ(x) for x ∈ I. Moreover, since∫

I
(ψϵ − φϵ) ≤ 2(b − a)ϵ,

it follows from Theorem 7 that f is AP-Henstock integrable on I.

Theorem 9. Let f ∈ AH(I := [a, b]) be bounded below and g be regulated on I. Then the product f g belongs to
AH(I).

Proof. Assume that f (x) ≥ 0 for x ∈ I. It is clear that if s is a step function, then s f belongs to AH(I).
Let A >

∫
I f ≥ 0 and let ϵ > 0. Since g is regulated on I, there exists a step function sϵ on I such that

|g(x)− sϵ(x)| ≤ ϵ
2A for all x ∈ I. Now, we define φϵ(x) := f (x)

(
sϵ(x)− ϵ

2A
)

and ψϵ := f (x)
(
sϵ(x) + ϵ

2A
)

for
all x ∈ I, then φϵ, ψϵ ∈ AH(I) and it follows that φϵ(x) ≤ f (x)g(x) ≤ ψϵ(x) for all x ∈ I, and that∫

I
(ψϵ − φϵ) =

ϵ

A

∫
I

f ≤ ϵ.
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Therefore, it follows from Theorem 7 that f g ∈ AH(I). Now, let f (x) ≥ M on I. Then by writing f g =

( f − M)g + Mg, we see that f g ∈ AH(I).

Theorem 10. Let f and | f | be AP-Henstock integrable on I := [a, b] and let g be a bounded, measurable function on I.
Then the product f g is AP-Henstock integrable on I.

Proof. Let h := f g. Since h is measurable, there exists a sequence {sn}∞
n=1 of step functions such that

{sn}∞
n=1 converges to h almost everywhere on I. Let sn be the middle function of −M| f |, sn, and M| f |.

Then −M| f | ≤ sn ≤ M| f | and {sn} converges to h almost everywhere on I. Therefore, it follows from the
Dominated Convergence Theorem for the AP-Henstock integral [9] that h ∈ AH(I).

Theorem 11. Let I := [a, b], f ∈ AH(I), φ is of bounded variation on I, and F(x) :=
∫ x

a f on I. If F is
Riemann-Stieltjes integrable with respect to φ on I, then the product f φ belongs to AH(I) and∫

I
f φ =

∫
I

φdF = F(b)φ(b)−
∫

I
Fdφ,

where the second and third integrals are the Riemann-Stieltjes integrals.

Proof. Since F is Riemann-Stieltjes integrable with respect to φ, the third integral exists, and the existence
of the second integral and the validity of the second equality follows from the well-known integration by
part formula for the Riemann-Stieljes integral ([4], Theorem 12.14). Therefore, we only need to show the first
equality. To this end, let ϵ > 0. Since φ is Riemann-Stieltjes integrable with respect to F, there exist δ > 0 such
that if P = {([xi−1, xi], ti)}n

i=1 is any tagged partition of I with norm less than 2δ, then∣∣∣∣∣ n

∑
i=1

φ(ti)(F(xi)− F(xi−1))−
∫

I
φdF

∣∣∣∣∣ ≤ ϵ.

Let |φ(x)| ≤ M for all x ∈ I. Since f ∈ AH(I), there exist a choice S on I such that if P = {([xi−1, xi], ti)}n
i=1

is S-fine partition of I, then ∣∣∣∣∣ n

∑
i=1

{ f (ti)(xi − xi−1)− (F(xi)− F(xi−1))}
∣∣∣∣∣ ≤ ϵ/2M,

and it follows from the Saks-Henstock Lemma for the AP-Henstock integral that

n

∑
i=1

| f (ti)(xi − xi−1)− (F(xi)− F(xi−1))| ≤ ϵ/M.

Define S ′ := {Sx ∩ (x − δ, x + δ) : Sx ∈ S} and let P = {([xi−1, xi], ti)}n
i=1 be S ′-fine partition of I. Then,∣∣∣∣∣ n

∑
i=1

f (ti)φ(ti)(xi − xi−1)−
∫

I
φdF

∣∣∣∣∣
≤

∣∣∣∣∣ n

∑
i=1

f (ti)φ(ti)(xi − xi−1)−
n

∑
i=1

φ(ti) (F(xi)− F(xi−1))

∣∣∣∣∣+
∣∣∣∣∣ n

∑
i=1

φ(ti) (F(xi)− F(xi−1))−
∫

I
φdF

∣∣∣∣∣
≤ M

n

∑
i=1

| f (ti)(xi − xi−1)− (F(xi)− F(xi−1))|+ ϵ ≤ 2ϵ.

Since ϵ > 0 is arbitrary, f φ ∈ AH(I) and
∫

I f φ =
∫

I φdF.

Note that the indefinite AP-Henstock integral is only approximately continuous, not necessarily
continuous on I. It is shown in [6] (Exercise 12.10) that if two bounded functions F and φ on I share a common
point of discontinuity in I, then F is not Rieman-Stieltjes integrable with respect to φ on I. Therefore, the
condition in the above theorem that F is Reimann-Stiltjes integrable with respect to φ cannot be removed. On
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the other hand, it is well-known fact that if F is continuous and φ is of bounded variation on I, then F is
Riemann-Stieltjes integrable with respect to φ [6]. Therefore, the following corollary follows.

Corollary 2. Let f be AP-Henstock integrable on I := [a, b], φ be bounded variation on I, and F(x) :=
∫ x

a f on I. If F
is continuous on I, then f φ ∈ AH(I) and∫

I
f φ =

∫
I

φdF = F(b)φ(b)−
∫

I
Fdφ,

where the second and third integrals are the Riemann-Stieltjes integrals.

In addition to the multiplier theorem above, we provide a version of integration by parts theorem.

Theorem 12. Let I := [a, b] and let F, G : I → R be approximately continuous on I. If f , g ∈ AH(I), and F′
ap = f ,

G′
ap = g except for countably many points in I, then Fg + f G ∈ AH(I) and

∫
I
(Fg + f G) = F(b)G(b)− F(a)G(a).

Moreover, Fg ∈ AH(I) if and only if f G ∈ AH(I), in which case∫
I

Fg = F(b)G(b)− F(a)G(a)−
∫

I
f G.

Proof. By the hypothesis, there exist countable sets C f and Cg such that F′
ap(x) = f (x) for x ∈ I − C f and

G′
ap(x) = g(x) for x ∈ I − Cg. Let C := C f ∪ Cg be a countable set. For x ∈ I − C, (FG)′ap = F′

apG +

FG′
ap = f G + Fg. Also, by the hypothesis, FG is approximately continous on I. Therefore, by Theorem 1,

(FG)′ap ∈ AH(I) and
∫

I(FG)′ap = F(g)G(g) − F(a)G(a). Since C is a countable set, f G + Fg ∈ AH(I) and∫
I f G + Fg =

∫
I(FG)′ap. Moreover, if Fg ∈ AH(I), since f G = (Fg + f G)− Fg, f G ∈ AH(I).

We now establish the Mean Value Theorems for the AP-Henstock integral.

Theorem 13. (First Mean Value Theorem). If f is continuous on I := [a, b], and if p ∈ AH(I) does not change sign on
I, then there exists ξ ∈ I such that ∫

I
f p = f (ξ)

∫
I

p.

Proof. Since f is continuous, f is bounded on I. We invoke the fact that a nonnegative AP-Henstock integrable
function is Lebesgue integrable and that the product of a Lebesgue integrable function and a bounded,
Lebesgue integrable function is Lebesgue integrable. Therefore, p is Lebesgue integrable and f p is Lebesgue
integrable on I. If p ≥ 0, then mp ≤ f p ≤ Mp, where m := min{ f (x) : x ∈ I} and M := max{ f (x) : x ∈ I},
and

m
∫

I
p ≤

∫
I

f p ≤ M
∫

I
p.

If
∫

I p = 0, then the result is trivial; if not, it follows from the Bolzano Intermediate Value Theorem in R. If
p ≤ 0, then the argument is similar.

Theorem 14. (Second Mean Value Theorem). If f ∈ AH(I := [a, b]), F(x) =
∫ x

a f is continuous on I, and if g is
monotone on I, then there exists ξ ∈ I such that

∫
I

f g = g(a)
∫ ξ

a
f + g(b)

∫ b

ξ
f .

Proof. Since g is of bounded variation, it follows from Theorem 11 that f g ∈ AH(I) and∫
I

f g =
∫

I
gdF = g(b)F(b)− g(a)F(a)−

∫
I

Fdg,
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where the third integral is the Riemann-Stieltjes integral. Then, by Theorem 1.2, there exists ξ ∈ I such that the
last two terms equal

g(b)F(b)− g(a)F(a)− F(ξ)(g(b)− g(a)) = g(a)(F(ξ)− F(a)) + g(b)(F(b)− F(ξ))

= g(a)
∫ ξ

a
f + g(b)

∫ b

ξ
f .

5. Multiplier Properties on unbounded intervals.

In this section, we define the AP-Henstock integral on unbounded intervals and investigate some
properties of the integral including some multiplier properties.

We extend any function f : [a, ∞) → R to a function defined on [a, ∞] in the extended real numbers
R∗ := R∪ {∞,−∞} by defining f (∞) = 0. We then take a tagged partition of the interval [a, ∞] :

P := {([x0, x1], ti), · · · , ([xn−1, xn], tn), ([xn, xn+1], tn+1)},

so that x0 = a and xn+1 = ∞. A choice S = {Sx : x ∈ [a, ∞]} on [a, ∞] is a set of ap-nbd Sx ⊂ [a, ∞] that
contains x as a point of density. We require that Sx is bounded for each x ∈ R and S∞ = [d, ∞] for some d > a.
We say that the tagged partition P is S-fine if xi−1, xi ∈ Sti for i = 1, · · · , n + 1, and d ≤ xn. Because Sx is
bounded for x ∈ R, tn+1 = ∞. Define 0 · ∞ = 0 so that the contribution of the final term in P to the Riemann
sum is f (∞) · ∞ = 0. Now, we give the definition of the AP-integral of a function f : [a, ∞] → R.

Definition 3. A function f : [a, ∞] → R is AP-Henstock integrable on [a, ∞), or on [a, ∞] if there exists a real
number A such that for each ϵ > 0 there is a choice S on [a, ∞] such that∣∣∣∣∣ n

∑
i=1

f (ξi)(xi − xi−1)− A

∣∣∣∣∣ < ϵ

for each S-fine partition P = {([xi−1, xi], ti) : 1 ≤ i ≤ n + 1} of [a, ∞]. In this case, A is called the AP-Henstock
integral of f on [a, ∞) and we write A =

∫ ∞
a f .

The collection of all functions that are AP-Henstock integrable on an interval [a, ∞) will be denoted by
AH([a, ∞)). The next theorem is the Cauchy Criterion for the AP-Henstock integral on unbounded intervals.

Theorem 15. Let I := [a, ∞] and let f : I → R. Then, f ∈ AH(I) if and only if for any ϵ > 0 there exists a choice Sϵ

of I such that if P and Q are any partitions of I that are S-fine, then |S( f ;P)− S( f ;Q)| ≤ ϵ.

Proof. Let f ∈ AH([a, ∞]) with Ã :=
∫ ∞

a f . Let S̃ϵ be a choice on I such that if P ,Q are S̃ϵ-fine partitions of I,
then |S( f ;P)− A| ≤ ϵ/2 and |S( f ;Q)− A| ≤ ϵ/2, which follows that

|S( f ;P)− S( f ;Q)| ≤ |S( f ;P)− Ã|+ |S( f ;Q)− Ã| ≤ ϵ.

Now, suppose that for any ϵ > 0 there exists a choice Sϵ on I such that if P and Q are any partitions of I
that are Sϵ-fine of I, then |S( f ;P) − S( f ;Q)| ≤ ϵ. For each n ∈ N, let Sn = {Sn,x : x ∈ I} be a choice on
I such that if P and Q are Sn-fine, then |S( f ;P) − S( f ;Q)| ≤ 1/n. We may assume that Sn+1,x ⊂ Sn,x for
all x ∈ I, n ∈ N. For each n ∈ N, let Pn be a Sn-fine partition of I. If m > n, then Pm and Pn are Sn-fine.
Therefore, for m > n, |S( f ;Pn)− S( f ;Pm)| ≤ 1/n, and it follows that {S( f ;Pn)}∞

n=1 is a Cauchy sequence. Let
A := limn→∞ S( f ;Pn). By taking m → ∞, we have |S( f ;Pn)− A| ≤ 1/n. Now, for any given ϵ > 0, let K ∈ N
be such that 1/K ≤ ϵ/2. If Q be a SK-fine partition of I, then

|S( f ;Q)− A| ≤ |S( f ;Q)− S( f ;PK)|+ |S( f ;PK)− A| ≤ 2/K ≤ ϵ.

The following theorem is the additive property of the AP-Henstock integral of a function on [a, ∞].
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Theorem 16. Let I := [a, ∞], f : I → R and let c > a. Then f ∈ AH(I) if and only if the restriction of f to [a, c] and
[c, ∞] are both integrable. In this case we have ∫ ∞

a
f =

∫ c

a
f +

∫ ∞

c
f .

Proof. Let I1 := [a, c] and I2 := [c, ∞]. Suppose that f ∈ AH(I1) and f ∈ AH(I2). Let f1 be the restriction
of f to I1 and let f2 be the restriction of f to I2. Let A1 :=

∫
I1

f1 and let A2 :=
∫

I2
f . Given ϵ > 0, let

S ′
ϵ := {S′

ϵ,x : x ∈ I1} be a choice on I1 and let S ′′
ϵ := {S′′

ϵ,x : x ∈ I2} be a choice on I2 such that if P1 is a S ′
ϵ-fine

partition of I1 and P2 is a S ′′
ϵ -fine partition of I2, then

|S( f1;P1)− A1| ≤ 1
2 ϵ and |S( f2;P2)− A2| ≤ 1

2 ϵ.

We define a choice Sϵ := {Sϵ,x : x ∈ I} on I by

Sϵ,x =


S′

ϵ,x ∩ [a, c) if x ∈ [a, c)

(S′
ϵ,c ∩ [a, c]) ∪ (S′′

ϵ,c ∩ [c, ∞)) if x = c

S′′
ϵ,x ∩ (c, ∞) if x ∈ (c, ∞)

S′′
ϵ,∞ if x = ∞.

Let P be a Sϵ-fine partition of I and suppose that each tag occurs only once. Then the point c must be a
tag of an subinterval in P . Let ([u, v], c) be the tagged interval in P of which the tag is c. Then P is of
the form Pa ∪ ([u, v], c) ∪ Pb where the tags of Pa are less than c and the tags of Pb are greater than c. Let
P1 := Pa ∪ ([u, c], c) and let P2 := Pb ∪ ([c, v], c). Then P1 is a S ′

ϵ-fine partition of I1 and P2 is a S ′′
ϵ -fine

partition of I2. Therefore,

|S( f ;P)− A1 − A2| ≤ |S( f1;P1)− A1|+ |S( f2;P2)− A2|.

Since ϵ > 0 is arbitrary, f is integrable on I to
∫

I1
f +

∫
I2

f .
Now, suppose that f ∈ AH([a, ∞]). For each ϵ > 0, let S̃ϵ := {S̃ϵ,x : x ∈ I} be a choice on I that satisfies

the Cauchy Criterion (Theorem 15). Let f1 denote the restriction of f to I1 and let S̃ ′
ϵ := {S̃ϵ,x ∩ I1 : x ∈ I1} be

the restriction of S̃ϵ to I1. Let P1,Q1 be S̃′
ϵ-fine partitions of I1. By adjoining the same tagged partition of I2,

extend P1,Q1 to partitions P ,Q of I that are S̃ϵ-fine . Then,

|S( f1;P1)− S( f1;Q1)| = |S( f ;P)− S( f ;Q)| ≤ ϵ.

Therefore, by Theorem 15, f1 is integrable on I1. In the same way, the restriction of f to I2 is integrable on I2

Corollary 3. If f ∈ AH([a, ∞]) and if [c, d] ⊂ [a, ∞], then the restriction of f to [c, d] is integrable.

Proof. Let f ∈ AH([a, ∞]) and [c, d] ⊂ [a, ∞]. Then it follows from the theorem that f ∈ AH([c, ∞]), which
follows that f ∈ AH([c, d]).

Theorem 17. Let I := [a, ∞] and let f : I → R. Then f ∈ AH(I) if and only if f ∈ AH([a, c]) for every c ≥ a and
there exists A ∈ R such that

lim
c→∞

∫ c

a
f = A.

In this case,
∫ ∞

a f = A.

Proof. Let f ∈ AH(I),
∫ ∞

a f = A, and let ϵ > 0. Then there exists a choice S := {Sx : x ∈ I} on I such that if
P = {([xi−1, xi], ti)}n+1

i=1 is a S-fine partition of I, then |S( f ;P)− A| ≤ 1
2 ϵ. Let c ≥ xn. Since f ∈ AH([a, c]) by

Theorem 16, there exists a choice Sc := {Sc,x : x ∈ [a, c]} on [a, c] such that if Pc is a Sc-fine partition of [a, c],
then

∣∣S( f ;Pc)−
∫ c

a f
∣∣ ≤ 1

2 ϵ. We may assume that Sc,x ⊂ Sx for all x ∈ [a, c]. Let P∗
c := Pc ∪ ([c, ∞], ∞), then

P∗
c is a S-fine partition of [a, ∞] such that S( f ;Pc) = S( f ;P∗

c ). Therefore,∣∣∣∣∫ c

a
f − A

∣∣∣∣ ≤ ∣∣∣∣∫ c

a
f − S( f ;Pc)

∣∣∣∣+ |S( f ;P∗
c )− A| ≤ ϵ.
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Since ϵ > 0 is arbitrary, limc→∞
∫ c

a f = A.
Now, suppose that f ∈ AH([a, c]) for every c ≥ a and that there exists A ∈ R such that limc→∞

∫ c
a f = A.

Take a strictly increasing unbounded sequence {ck}∞
k=0 with c0 = a. Given ϵ > 0, let N ∈ N be such that if

b ≥ cN , then
∣∣∣∫ b

a f − A
∣∣∣ ≤ ϵ. Since f ∈ AH(Ik := [ck−1, ck]) for each k ∈ N, let Sk :=

{
Sk,x : x ∈ Ik

}
be a choice

on Ik such that if Pk is a Sk-fine partition of Ik, then
∣∣∣S( f ;Pk)−

∫
Ik

f
∣∣∣ ≤ ϵ/2k. We may assume that

1. S1,c0 ⊂
[
c0, c0+c1

2

]
,

and if k ≥ 1, that

2. Sk+1,ck
⊂ Sk,ck

∩
(

ck−1+ck
2 , ck+ck+1

2

)
, and

3. Sk,x ⊂
(

ck−1+x
2 , x+ck

2

)
for x ∈ (ck−1, ck).

Now, in order to define a choice on I, we assign a measurable set Sx to each x ∈ I by

Sx =

{
Sk,x if x ∈ [ck−1, ck), k ∈ N
[cN , ∞] if x = ∞,

so that S∗ = {S∗
x : x ∈ I} be a choice on I. Let P = {([xi−1, xi], ti)}n+1

i=1 be a S∗-fine partition of I. By the
definition of S∗, the tag for the unbounded subinterval [xn, ∞] in P must be ∞ and cN ≤ xn. Now let s ∈ N
be the smallest positive integer such that xn ≤ cs so that N ≤ s. Again, by the the condition (3), for k =

1, · · · , s − 1, the point ck must be the tag for any subinterval in P that contains ck, and we may assume that ck
appears as an end point to the intervals. We let

Q1 := P ∩ [c0, c1], · · · ,Qs−1 := P ∩ [cs−2, cs−1],Qs := P ∩ [cs−1, xn].

Then, Qk(k = 1, · · · , s − 1) is Sk-fine partition of Ik. Therefore, we have∣∣∣∣S( f ;Qk)−
∫

Ik

f
∣∣∣∣ ≤ ϵ

2k .

Also, since Qs is a Ss-fine subpartion of Is, by the Saks-Henstock Lemma,∣∣∣∣S( f ;Qs)−
∫ xn

cs−1

f
∣∣∣∣ ≤ ϵ

2s .

Let Q∞ := {([xn, ∞], ∞)} so that S( f ;Q∞) = 0. Now, since P = Q1 ∪ · · · ∪ Qs ∪Q∞, we have

|S( f ;P)− A| =
∣∣∣∣∣ s

∑
i=1

S( f ;Qi) + S( f ; Q∞)− A

∣∣∣∣∣ ≤
∣∣∣∣∣ s

∑
i=1

S( f ;Qi)−
∫ xn

a
f

∣∣∣∣∣+ |S( f ;Q∞)|+
∣∣∣∣∫ xn

a
f − A

∣∣∣∣ ≤ 2ϵ

Since ϵ > 0 is arbitrary, f ∈ AH(I) and
∫

I f = A.

We give a different version of Cauchy Criterion for f ∈ AH([a, ∞]).

Theorem 18. Let f : [a, ∞] → R be such that f ∈ AH([a, c]) for all c ≥ a. Then f ∈ AH([a, ∞]) if and only if for
every ϵ > 0 there exists K(ϵ) ≥ a such that if q > p ≥ K(ϵ), then |

∫ q
p f |≤ ϵ.

Proof. Suppose that f ∈ AH([a, ∞]). Let ϵ > 0. By the previous theorem, there exists K(ϵ) > 0 such that∣∣∫ c
a f −

∫ ∞
a f

∣∣ < ϵ/2 for all c ≥ K(ϵ). Let q > p > K(ϵ), then∣∣∣∣∫ q

p
f
∣∣∣∣ = ∣∣∣∣∫ q

a
f −

∫ p

a
f
∣∣∣∣ = ∣∣∣∣∫ q

a
f −

∫ ∞

a
f
∣∣∣∣+ ∣∣∣∣∫ p

a
f −

∫ ∞

a
f
∣∣∣∣ < ϵ.

Conversely, suppose that for any given ϵ > 0, there exists K(ϵ) > 0 such that if q > p ≥ K(ϵ), then
∣∣∣∫ q

p f
∣∣∣ ≤ ϵ.

Let {xn} be an unbounded increasing sequence with x0 ≥ a. Since for any xm ≥ xn ≥ K(ϵ),
∣∣∫ xm

a f −
∫ xn

a f
∣∣ =
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∣∣∣∫ xm
xn

f
∣∣∣ ≤ ϵ, the sequence

{∫ xn
a f

}∞
n=1 is a Cauchy sequence. Let limn→∞

∫ xn
a f := A and N be an integer such

that xN ≥ K(ϵ) and
∣∣∫ xn

a f − A
∣∣ < ϵ whenever n ≥ N. If c > xN , then∣∣∣∣∫ c

a
f − A

∣∣∣∣ = ∣∣∣∣∫ xN

a
f − A

∣∣∣∣+ ∣∣∣∣∫ c

xN

f
∣∣∣∣ < 2ϵ.

Since ϵ > 0 is arbitrary, limc→∞
∫ c

a f = A, and by Theorem 17, f ∈ AH(I).

We now consider the multiplier properties for the AP-Henstock integral on unbounded intervals.

Theorem 19. Let f ∈ AH([a, ∞)) be bounded below and let g be a regulated function on [a, ∞). Then the product
f g ∈ AH([a, ∞)).

Proof. Assume that f (x) ≥ 0 on [a, ∞]. By Corollary 3 and Theorem 9, f g ∈ AH([p, q]) for any q > p ≥ a.
Let s be a step function such that |g(x)− s(x)| < 1 for all x ∈ [a, ∞]. Let ϵ > 0. By Theorem 18, there exists
K(ϵ) > d such that |

∫ q
p f | < ϵ whenever q > p ≥ K(ϵ). If q ≥ x ≥ p ≥ K(ϵ), then |g(x)| < M for some M > 0

and | f (x)g(x)| < M f (x). Since | f g| and M f are measurable on [p, q], | f g| is Lebesgue integrable and hence
| f g| ∈ AH([p, q]). It follows that

∣∣∣∫ q
p f g

∣∣∣ ≤ ∫ q
p | f g| <

∫ q
p f < ϵ. Therefore, by Theorem 18, f g ∈ AH([a, ∞]).

Now, if f (x) > α on [a, ∞] for some α < 0, then since ( f − α)g, αg ∈ AH([a, ∞]), the result follows from
f g = ( f − α)g + αg.

Theorem 20. Let I := [a, ∞) and let f , φ : I → R. Suppose that f ∈ AH(I), F(x) :=
∫ x

a f is continuous on I, and
that φ is bounded and monotone on I. Then the product f φ ∈ AH(I).

Proof. Let ϵ > 0. Since φ is bounded on I, there exists M > 0 such that |φ(x)| ≤ M for all x ∈ I. By Theorem
18, there exists K(ϵ) ≥ a such that if q > p ≥ K(ϵ), then |

∫ q
p f |≤ ϵ/2M. Since φ is monotone, it follows from

Corollary 2 that f φ ∈ AH([p, q]) and from Theorem 14 that there exists ξ ∈ [p, q] such that

∫ q

p
f φ = φ(p)

∫ ξ

p
f + φ(q)

∫ q

ξ
f .

Thus, if q > p ≥ K(ϵ), then |
∫ q

p f φ |≤ M(ϵ/2M) + M(ϵ/2M) = ϵ. Since ϵ > 0 is arbitrary, by Theorem 18, f φ

is AP-Henstock integrable on I.
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