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1. Introduction

T he object of this work is to study the global solution to the following boundary value problem for the
Moore-Gibson-Thompson equation

atiyy + By — EAu — rAuy + f(u) =0, in Q x (0, +00), 1)
u(x,t) = 0on o), )
u('xlo) = uo(X), ut<.X', 0) =u (x)/ utt(xr 0) = Z/lz(X), x €Q), (3)

where () is a bounded domain in R"(n > 1) with sufficiently smooth boundary 9Q), u¢(x), u1 (x) and uy(x) are
given functions and f is a given nonlinear function. All the parameters a, 8, c?,r are assumed to be positive
constants.

In recent years, increasing attention has been paid to the well-posedness and asymptotic behavior of the
Moore-Gibson-Thompson (MGT) equation, see [1-7]. The MGT model is considered through third-order (in
time), strictly hyperbolic partial differential equation as follows

KUy + Pug — AU — rAuy = f(x), 4)

it is one of the nonlinear acoustic models describing the propagation of acoustics wave in gases and liquid, it
has a wide range of applications in medical and industry. In the physical context of the acoustic waves, u is
the velocity potential of the acoustic phenomena, « denotes the thermal relaxation time, ¢ denotes the speed of
sound, 3 denotes friction, and b denotes a parameter of diffusivity.

It is often convenient to write MGT equation as an abstract form

Qutps + Byt + AU+ rAuy = f(u, up, uy), (5)

and it has been shown [8,9] that the linear part of Eq. (5) generates a strongly continuous semigroup as long as
r > 0. In [10], the authors provided a brief overview of well-posedness results, both local and global, pertinent
to various configurations of MGT equations. Especially, the authors in [11] considered the following model
with nonlinear control feedback

Tugs + afugs + > Au+ bAuy + ui = 2ku? + p(u), (6)
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where the parameter 5 > 0, p(u) denotes an active force and the operator A is strictly positive. By semigroup
method, it was proved in [11] we that (6) with initial data of arbitrary size in H is locally and globally
well-posed under the following assumption: p € C!(R) and its derivative satisfies —5 < p’(s) < m for some
positive constants § and m. Kaltenbacher et al., [12] established the well-posedness by Galerkin approximations
and then employ fixed-point arguments for well-posedness of the Jordan-Moore-Gibson-Thompson (JMGT)
equation

1 B
KUt + IBM” — bAut — CZAM = ( 2 2Aut + |VM| ) (7)

More recently, Boulaaras et al., [13] proved the existence and uniqueness of the weak solution of the
Moore-Gibson-Thompson equation with the integral condition by applying the Galerkin method.

In this paper, we extend the results in [11] to Problem (1)-(3) by applying the Galerkin method and
compact method. The contents of this paper are organized as follows; In §2, we prepare some materials needed
for our proof. Finally, in §3, we give the main result and the proof.

2. Preliminaries

Throughout this paper, the domain (2 is assumed to be sufficiently smooth to admit integration by parts
and second-order elliptic regularity. We use C to denote a universal positive constant that may have different
values in different places. W"?(Q) = H™(Q) and Wg"z(Q) = H{'(Q)) denote the well-known Soblev space.
We denote by ||.||, the L¥ (Q)) norm and by || V.|| the norm in H}(Q). In particular, we denote ||.|| = ||.||»

By a weak solution u(x, t) of Problem (1)-(3) on Q x [0, T] for any T > 0, we mean u € L®((0, T); H2(Q) N
H}(Q)) NWE*((0,T); H3(Q)) NW**((0,T); L>(Q))), Aug, uge € L*((0,T); H-1(Q)) such that u(x,0) = ug(x)
a.e. in Q, us(x,0) = uq(x ) a.e. in Q, uy(x,0) = up(x) a.e. in Q), and

(gt + Bug — > Au — rAus + f(u),v) =0

forany v € H}(Q),ae. t € [0, T).
In this paper, we assume &, f3, c2,r > 0and

fecCland|f'(s)] <Cy. (8)

Lemma 1. [14] Let () € R" be a bounded domain and w; be a base of L%(Q). Then for any € > 0 there exist a positive
constant Ng, such that

Ne
[Jull < ( Z ,70;))2 + el Jul |1

forany u € W&’p(Q)(Z < p < o0), where Ng is independent on u.

Lemma 2. [15] Let G(z1,2p,...2z) be the function of the variables z1,zy,...z;, and suppose that G is continuous
differentiable for k-times (k > 1) with respect to every variable. Let z;j(x,t) € L®([0,T]; H*(Q))(i = 1,2,..h),
then the estimation

h
/Q IDKG(21(x, 1), z2(x, 1), ..., zi(x, 1)) [Pdx < C(M, k, h) Y |zill e ()
i=1

holds, where D, = %,M = max;_1p, pMaXo<i<Tqxeq |Zi(X,1)].

3. Solvability of the problem

In this section, by using Galerkin’s method and compactness method, we shall prove the existence of
global solutions of Problem (1)-(3).
Let {w;(x)}jen be the eigenfunctions of the following boundary problem

—Aw=Aw,x € Q,w=0,x € (), 9)
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corresponding to the eigenvalue A;(j = 1,2,3, ...). Then {w;(x)};cn can be normalized to from an orthogonal
basis of H?(Q)) N H}(Q) and to be orthnormal with respect to the L2(Q)) scalar product.
Now, we seek an approximate solution of Problem (1)-(3) in the form of

N
N(x,t) = gT,-w)wj(x), (10)
f=

where the constants Tjy are defined by the conditions Tjy(t) = (uN(x,t),wj(x)) and can be determined from
the relation

w(ub);, wj) + ﬁ(uﬁf, wj) — (AuN, w;) — r(Aul, wj) + (f(uN),wj) =0, (11)
(uN(0), wj) = (ug, wj) = ugj, (uf (0),w;j) = (uy,wj) = uyj, (ufy (0),w;) = (uz, w;j) = uy. (12)

Lemma 3. Assume (8) holds, ug € H*(Q) N H{(Q), uy € H{(Q), and uy € L>(QY), then for any T > 0, Problem
(11)-(12) possesses a solution u™ on [0, T), and the following estimate holds in the class

1N 12+ uf ]2 + HWNIIZ+0<IIutt||2+rHWtN||2+/ Va7 + || Vu | Pd < C. (13)

Proof. Problem (11)-(12) leads to a system of ODEs for unknown functions Ty (). Based on standard existence
theory for ODE, one can obtain functions Tn(f) : [0,tx) — R,j = 1,2, ...k, which satisfy approximate Problem
(11)-(12) in a maximal interval [0, t;), f € (0, T]. This solution is then extended to the closed interval [0, T| by
using the estimate below.

Multiplying (11) by Tjny(t), summing up the products for j = 1,2, ..., N and integrating by parts, we get

w(ul, ul) + ﬁ(u{\t], ul) + A(VulN, Vul) + r(Vul, Vul)) + (f(uN),uf\t]) =0. (14)

Integrating (14) with respect to t from 0 to t, we obtain

allI+26 [ 1 Pa -+ [P+ 2 [ (), e
=& [, Ve -+ al W O + | TN O] (15)
We observe that
[ uyar= ()~ [ 7P (16
and
/(; (v, Vul)dr = (VuN, V)| — | /O Y IvuN| P, (17)

Adding 2[(uN, ulN) + (ulN, ulY) + (VuN, VulN)] to both sides of (15) and a substitution of the equalities (16) and
(17) in (15) gives

d t
ﬁ[HMNIIZJrIIL@VHZJrIIWNIF]Jrﬂélluﬁl\“rZﬁ/O [l |Pde + 7|V up] |
=20, uf) + (i, uf)) + (Vul, V)] + al[uff ()] + r[[Vu! (0)]1 = 2(f (u™), uil)[§

+2//f YN 2dxdr — 22 (VuN, Vul) || + 22 / V| [2dr. (18)

Then, by Holder inequality and the fact [f(s)| = | fo f'(s)ds| < Cqls| by (A1), we arrive at
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d
NP+ ]2+ [ P ]+‘X||uttH2+2,B/ ||| PdT + ][ Vu |2

< 2| [N |||+ 2f | [ |ff ] + 2/ VuM[[[Vu]] + al [uff (0)] [ + || Va (0) |
+2C1IIuN||||u§VH+2C1HMN(0)HHus(0)||+2C1/ [|uf[[Pd
+ 20|V |||V | + 262 [V (0) ||| Ve (0) ]| +2¢ / IVul|[Pdr
1
< S (@l [P + [V 1) + Co(llu™] 1P + ]2 + [ V] ?)
t t
+20; [l |ae 422 [ 1Vud|Pae +alli (0)|2 + || 9 0)|
+ Cal[u™ (0|2 + Calluf’ (O)|2 + |V (0|2 + ¢ Vuf (0)] 2. (19)
Taking into account that
||t O + Va2 + [V ()2 = [u2] | + || Vuo|[* + || Vuea |

and
1™ ()] 1?4+ [[uf (0)[* = [[uol[* + x| [*

as N — oo, then applying the Gronwall inequality to (19) and then integrating from 0 to t appears that

[N 12 4 [ 2+ VN |2+ al[uf 12+ 7| [V ||2+/ Va7 + Bl Vuy | Pd < C. (20)

Multiplying (11) by A;Tin(f) summing up the products for j = 1,2,...N, integrating by parts and integrating
with respect to ¢, we get

t ot t t
r||AuN||2+c2/0 ||AuN||2dT:2o</O (uﬁ’t,AuN)dT+2ﬁ/0 (uft],AuN)dT+/0 (F(u), AuNYdT + r|| AN (0) 2.
(21)

Combining Cauchy inequality, the fact ||[AuN(0)[|?> — ||Aug||?, and |f(s)| < Ci|s|, and making use of the
following inequality

/Ot(uﬁ’t,AuN)dT = (ul), AuN)|6 — /Ot(uﬁ], AulNYdt
= (ul, ™) — (uf (0), AN (0)) + 3|V |2 — 311V (0)],
we have
a2 [ flauN|Par
< 20|43+ 22 O) |86 (O)]| + (I V| ~ VN 1) +26 [ 1] []a] e

+/ [1F ™M) I18uN|dT + r[] Au™(0)|?
< e |AuM[]? + Co([[uff 17 + [[Vu'|[2) + C(|uff ()17 + [|8u™ ()2 + || Vui' (0)[?)

t
+e1/0 ||AuN||2dT+Cg/O ||u”||2dT+C9/ ||uN|2d. 22)

Choosing €; sufficiently small and e, sufficiently large such that e, > 2¢?, then it follows from (22) and (20)
that
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13|12 < Coo [ 1au|Pae + . 3)
Thus, applying Gronwall’s inequality to (23), we deduce
a2 < C. (24)
Combining (20) and (24), we get
[N [+ 12+ (VN2 P+ V]2 + /Ot [V [T + Bl Vgt |PdT < C. (25)
Furthermore, by (25), we have that (11)-(12) possesses a global solution. [

Theorem 1. Assume (8) holds, ug € H*(QY) N H}(Q), u1 € HY(Q), and up € L2(Q), then for any T > 0, Problem
(1)-(3) possesses a unique global solution.

Proof. For any v € H}(Q), it follows that
ao| gy, 0) | < (Blluii || + |Au ||+ [ Vai' || + Cul [N [ Dol 3. (26)

Thus, using Lemma 3, it follows that

||u£\t]t||H*1(Q) <M. (27)
Similarly, we have
18|10y < M. (28)

From Lemma 3, (27) and (28), there exist a subsequence of {u"N}, still denoted by {uN}, and a function u, &, 7,
such that

ulN' = wweak x in L*(0, T, H*(Q) N HL(Q)), (29)
ul — uy weak x in L*(0, T, H (QY)), (30)
ul) — wy weak x in L*(0, T, L*(QQ)), (31)
ully — uy weak « in L°(0, T, H1(Q)), (32)
FuN) — &weak x in L®(0, T, H 1(Q))), (33)
AulN — 5 weak x in L®(0, T, H 1(Q)). (34)
and forany t € [0, T
ulN' — w weakly in H*(Q) N H}(Q), (35)
ul — uy weakly in H}(Q), (36)
ull — uy weakly in L2(Q)), (37)
ully — upr weakly in H-1(QQ), (38)
FuN) — &weak x in H1(Q)), (39)
AulN — y weak x in H1(Q)). (40)

Since f € Ctand ||f(uN)|| < C|[uN|| < C, for any v € H}(Q) and any ¢ € [0, T], we have

(AuN,v) = —(Vul, Vo) = —(Vus, Vo) = (Aug,v), (41)
fu™) = f(u) (42)
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as N — oco. Then we get { = f(u), 7 = Vuy, combining this with (35)-(40), we have

u € L2((0,T); H2(Q) N H{(Q)) N WY ((0, T); Hy (Q2)) N W>((0,T); L2(Q2)),
Aup, ug € L2((0,T); HH(Q)).

By using Lemma 3 and (27), we observe that

3
I(uN,w]‘)lJrkle(ufk],w]‘)l <M, (43)
where ui}f = a’;)%kN. Then, by Ascoli-Arcela theorem, we can select from {u™N} a subsequence, still denoted by

{uN}, such that as N — oo, the subsequence
(uN, wj) — (u, wj), (uf}], wj) — (utk,wj), k=1,23j=1,2.. (44)
In particular, we take t = 0 and we note that {w;(x) } jcn are an orthogonal basis of L%(Q), we know that
u(x,0) = ug(x), us(x,0) = ug(x), ug(x,0) = uz(x) a.e. in QL. (45)
By (29)-(34),(44) and Lemma 2.1, we have
uN = ou, ulN — upin C([0, T], L2(Q))). (46)
Thanks to (29)-(42), letting N — oo in (11), leads to
a(upr, ) + B(ur, v) — (Au,v) —r(Aug,v) + (f(u),v) = 0 (47)

for any v € H}(Q). Altogether, we conclude that u is a solution of the initial boundary Problem (1)-(3).
Now, suppose that there exist two different solutions 11, 1y for Problem (1)-(3), then the difference w =
uq — up satisfies

awy + Bwy — AEAw — rAw; + f(ur) — f(up) =0, in Q x (0, +00), (48)
w(x,t) = 00on 9, (49)
w(x,0) = 0,wi(x,0) =0, wy(x,0) =0, x € Q, (50)

Integrating (48) for ¢ from O to t, we have

t
awy + pw — rAw = /0 (PAw + f(ug) — f(uy))dr. (51)
Multiplying the Eq. (51) by w, integrating over (), adding up (w, w), we obtain

3 @l 711Vl + [l ) + Bllad P = 2 [ (@0 + faz) — flan) i
= 262(||Vwl[? — ||Vw0||2)+2/0t/06wwtdxdr
< C([|Val[? + [[we][2), (52)
where we have used mean value theorem and |6| < 1. By applying Gronwall inequality, we deduce that
alwr|? + r|[ Vel |? + |[w] |* = 0. (53)
This implies that w = 0 for all t € [0, T|. Thus the uniqueness is proved. [
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