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1. Introduction

T he object of this work is to study the global solution to the following boundary value problem for the
Moore-Gibson-Thompson equation

αuttt + βutt − c2∆u − r∆ut + f (u) = 0, in Ω × (0,+∞), (1)

u(x, t) = 0 on ∂Ω, (2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), utt(x, 0) = u2(x), x ∈ Ω, (3)

where Ω is a bounded domain in Rn(n ≥ 1) with sufficiently smooth boundary ∂Ω, u0(x), u1(x) and u2(x) are
given functions and f is a given nonlinear function. All the parameters α, β, c2, r are assumed to be positive
constants.

In recent years, increasing attention has been paid to the well-posedness and asymptotic behavior of the
Moore-Gibson-Thompson (MGT) equation, see [1–7]. The MGT model is considered through third-order (in
time), strictly hyperbolic partial differential equation as follows

αuttt + βutt − c2∆u − r∆ut = f (x), (4)

it is one of the nonlinear acoustic models describing the propagation of acoustics wave in gases and liquid, it
has a wide range of applications in medical and industry. In the physical context of the acoustic waves, u is
the velocity potential of the acoustic phenomena, α denotes the thermal relaxation time, c denotes the speed of
sound, β denotes friction, and b denotes a parameter of diffusivity.

It is often convenient to write MGT equation as an abstract form

αuttt + βutt + c2 Au + rAut = f (u, ut, utt), (5)

and it has been shown [8,9] that the linear part of Eq. (5) generates a strongly continuous semigroup as long as
r > 0. In [10], the authors provided a brief overview of well-posedness results, both local and global, pertinent
to various configurations of MGT equations. Especially, the authors in [11] considered the following model
with nonlinear control feedback

τuttt + αβutt + c2 Au + bAut + βu3
t = 2ku2

t + p(u), (6)
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where the parameter β > 0, p(u) denotes an active force and the operator A is strictly positive. By semigroup
method, it was proved in [11] we that (6) with initial data of arbitrary size in H is locally and globally
well-posed under the following assumption: p ∈ C1(R) and its derivative satisfies −δ ≤ p′(s) ≤ m for some
positive constants δ and m. Kaltenbacher et al., [12] established the well-posedness by Galerkin approximations
and then employ fixed-point arguments for well-posedness of the Jordan-Moore-Gibson-Thompson (JMGT)
equation

αuttt + βutt − b∆ut − c2∆u = (
1
c2

B
2A

u2
t + |∇u|2)t. (7)

More recently, Boulaaras et al., [13] proved the existence and uniqueness of the weak solution of the
Moore-Gibson-Thompson equation with the integral condition by applying the Galerkin method.

In this paper, we extend the results in [11] to Problem (1)-(3) by applying the Galerkin method and
compact method. The contents of this paper are organized as follows; In §2, we prepare some materials needed
for our proof. Finally, in §3, we give the main result and the proof.

2. Preliminaries

Throughout this paper, the domain Ω is assumed to be sufficiently smooth to admit integration by parts
and second-order elliptic regularity. We use C to denote a universal positive constant that may have different
values in different places. Wm,2(Ω) = Hm(Ω) and Wm,2

0 (Ω) = Hm
0 (Ω) denote the well-known Soblev space.

We denote by ||.||p the Lp(Ω) norm and by ||∇.|| the norm in H1
0(Ω). In particular, we denote ||.|| = ||.||2

By a weak solution u(x, t) of Problem (1)-(3) on Ω× [0, T] for any T > 0, we mean u ∈ L∞((0, T); H2(Ω)∩
H1

0(Ω))∩W1,∞((0, T); H1
0(Ω))∩W2,∞((0, T); L2(Ω)), ∆ut, uttt ∈ L∞((0, T); H−1(Ω)) such that u(x, 0) = u0(x)

a.e. in Ω, ut(x, 0) = u1(x) a.e. in Ω, utt(x, 0) = u2(x) a.e. in Ω, and

α(uttt + βutt − c2∆u − r∆ut + f (u), v) = 0

for any v ∈ H1
0(Ω), a.e. t ∈ [0, T].

In this paper, we assume α, β, c2, r > 0 and

f ∈ C1 and | f ′(s)| ≤ C1. (8)

Lemma 1. [14] Let Ω ∈ Rn be a bounded domain and wj be a base of L2(Ω). Then for any ϵ > 0 there exist a positive
constant Nϵ, such that

||u|| ≤ (
Nϵ

∑
j=1

(u, wj))
1
2 + ϵ||u||1,p

for any u ∈ W1,p
0 (Ω)(2 ≤ p < ∞), where Nϵ is independent on u.

Lemma 2. [15] Let G(z1, z2, ...zh) be the function of the variables z1, z2, ...zh and suppose that G is continuous
differentiable for k-times (k ≥ 1) with respect to every variable. Let zi(x, t) ∈ L∞([0, T]; Hk(Ω))(i = 1, 2, ...h),
then the estimation

∫
Ω
|Dk

xG(z1(x, t), z2(x, t), ..., zh(x, t))|2dx < C(M, k, h)
h

∑
i=1

||zi||Hk(Ω)

holds, where Dx = ∂
∂x , M = maxi=1,2,...,h max0≤t≤T,x∈Ω |zi(x, t)|.

3. Solvability of the problem

In this section, by using Galerkin’s method and compactness method, we shall prove the existence of
global solutions of Problem (1)-(3).

Let {wj(x)}j∈N be the eigenfunctions of the following boundary problem

− ∆w = λw, x ∈ Ω; w = 0, x ∈ ∂Ω, (9)
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corresponding to the eigenvalue λj(j = 1, 2, 3, ...). Then {wj(x)}j∈N can be normalized to from an orthogonal
basis of H2(Ω) ∩ H1

0(Ω) and to be orthnormal with respect to the L2(Ω) scalar product.
Now, we seek an approximate solution of Problem (1)-(3) in the form of

uN(x, t) =
N

∑
j=1

TjN(t)wj(x), (10)

where the constants TjN are defined by the conditions TjN(t) = (uN(x, t), wj(x)) and can be determined from
the relation

α(uN
ttt, wj) + β(uN

tt , wj)− c2(∆uN , wj)− r(∆uN
t , wj) + ( f (uN), wj) = 0, (11)

(uN(0), wj) = (u0, wj) = u0j, (uN
t (0), wj) = (u1, wj) = u1j, (uN

tt (0), wj) = (u2, wj) = u2j. (12)

Lemma 3. Assume (8) holds, u0 ∈ H2(Ω) ∩ H1
0(Ω), u1 ∈ H1

0(Ω), and u2 ∈ L2(Ω), then for any T > 0, Problem
(11)-(12) possesses a solution uN on [0, T], and the following estimate holds in the class

||uN ||2 + ||uN
t ||2 + ||∇uN ||2 + α||uN

tt ||2 + r||∇uN
t ||2 +

∫ t

0
||∇uN

t ||2dτ + β||∇uN
tt ||2dτ ≤ C. (13)

Proof. Problem (11)-(12) leads to a system of ODEs for unknown functions TjN(t). Based on standard existence
theory for ODE, one can obtain functions TjN(t) : [0, tk) → R, j = 1, 2, ..., k, which satisfy approximate Problem
(11)-(12) in a maximal interval [0, tk), tk ∈ (0, T]. This solution is then extended to the closed interval [0, T] by
using the estimate below.

Multiplying (11) by TjNtt(t), summing up the products for j = 1, 2, ..., N and integrating by parts, we get

α(uN
ttt, uN

tt ) + β(uN
tt , uN

tt ) + c2(∇uN ,∇uN
tt ) + r(∇uN

t ,∇uN
tt ) + ( f (uN), uN

tt ) = 0. (14)

Integrating (14) with respect to t from 0 to t, we obtain

α||uN
tt ||2+2β

∫ t

0
||uN

tt ||2dτ + r||∇uN
t ||2 + 2

∫ t

0
( f (uN), uN

tt )dτ

= −c2
∫ t

0
(∇uN ,∇uN

tt )dτ + α||uN
tt (0)||2 + r||∇uN

t (0)||2. (15)

We observe that ∫ t

0
( f (uN), uN

tt )dτ = ( f (uN), uN
tt )|t0 −

∫ t

0

∫
Ω

f ′(uN)(uN
t )2dxdτ (16)

and ∫ t

0
(∇uN ,∇uN

tt )dτ = (∇uN ,∇uN
t )|t0 −

∫ t

0
||∇uN

t ||2dτ. (17)

Adding 2[(uN , uN
t ) + (uN

t , uN
tt ) + (∇uN ,∇uN

t )] to both sides of (15) and a substitution of the equalities (16) and
(17) in (15) gives

d
dt
[||uN ||2 + ||uN

t ||2 + ||∇uN ||2] + α||uN
tt ||2 + 2β

∫ t

0
||uN

tt ||2dτ + r||∇uN
t ||2

= 2[(uN , uN
t ) + (uN

t , uN
tt ) + (∇uN ,∇uN

t )] + α||uN
tt (0)||2 + r||∇uN

t (0)||2 − 2( f (uN), uN
tt )|t0

+ 2
∫ t

0

∫
Ω

f ′(uN)(uN
t )2dxdτ − 2c2(∇uN ,∇uN

t )|t0 + 2c2
∫ t

0
||∇uN

t ||2dτ. (18)

Then, by Hölder inequality and the fact | f (s)| = |
∫ t

0 f ′(s)ds| ≤ C1|s| by (A1), we arrive at
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d
dt
[||uN ||2 + ||uN

t ||2 + ||∇uN ||2] + α||uN
tt ||2 + 2β

∫ t

0
||uN

tt ||2dτ + r||∇uN
t ||2

≤ 2||uN ||||uN
t ||+ 2||uN

t ||||uN
tt ||+ 2||∇uN ||||∇uN

t ||+ α||uN
tt (0)||2 + r||∇uN

t (0)||2

+ 2C1||uN ||||uN
t ||+ 2C1||uN(0)||||uN

t (0)||+ 2C1

∫ t

0
||uN

t ||2dτ

+ 2c2||∇uN ||||∇uN
t ||+ 2c2||∇uN(0)||||∇uN

t (0)||+ 2c2
∫ t

0
||∇uN

t ||2dτ

≤ 1
2
(α||uN

tt ||2 + r||∇uN
t ||2) + C2(||uN ||2 + ||uN

t ||2 + ||∇uN ||2)

+ 2C1

∫ t

0
||uN

t ||2dτ + 2c2
∫ t

0
||∇uN

t ||2dτ + α||uN
tt (0)||2 + r||∇uN

t (0)||2

+ C3||uN(0)||2 + C4||uN
t (0)||2 + c2||∇uN(0)||2 + c2||∇uN

t (0)||2. (19)

Taking into account that

||uN
tt (0)||2 + ||∇uN

t (0)||2 + ||∇uN(0)||2 → ||u2||2 + ||∇u0||2 + ||∇u1||2

and
||uN(0)||2 + ||uN

t (0)||2 → ||u0||2 + ||u1||2

as N → ∞, then applying the Gronwall inequality to (19) and then integrating from 0 to t appears that

||uN ||2 + ||uN
t ||2 + ||∇uN ||2 + α||uN

tt ||2 + r||∇uN
t ||2 +

∫ t

0
||∇uN

t ||2dτ + β||∇uN
tt ||2dτ ≤ C. (20)

Multiplying (11) by λjTjN(t) summing up the products for j = 1, 2, ...N, integrating by parts and integrating
with respect to t, we get

r||∆uN ||2 + c2
∫ t

0
||∆uN ||2dτ = 2α

∫ t

0
(uN

ttt, ∆uN)dτ + 2β
∫ t

0
(uN

tt , ∆uN)dτ +
∫ t

0
( f (uN), ∆uN)dτ + r||∆uN(0)||2.

(21)

Combining Cauchy inequality, the fact ||∆uN(0)||2 → ||∆u0||2, and | f (s)| ≤ C1|s|, and making use of the
following inequality

∫ t

0
(uN

ttt, ∆uN)dτ = (uN
tt , ∆uN)|t0 −

∫ t

0
(uN

tt , ∆uN
t )dτ

= (uN
tt , ∆uN)− (uN

tt (0), ∆uN(0)) +
1
2
||∇uN

t ||2 − 1
2
||∇uN

t (0)||2,

we have

r||∆uN ||2 + c2
∫ t

0
||∆uN ||2dτ

≤ 2α||uN
tt ||||∆uN ||+ 2α||uN

tt (0)||||∆uN(0)||+ α(||∇uN
t ||2 − ||∇uN

t (0)||2) + 2β
∫ t

0
||uN

tt ||||∆uN ||dτ

+
∫ t

0
|| f (uN)||||∆uN ||dτ + r||∆uN(0)||2

≤ ϵ1||∆uN ||2 + C6(||uN
tt ||2 + ||∇uN

t ||2) + C7(||uN
tt (0)||2 + ||∆uN(0)||2 + ||∇uN

t (0)||2)

+ ϵ1

∫ t

0
||∆uN ||2dτ + C8

∫ t

0
||uN

tt ||2dτ + C9

∫ t

0
||uN ||2dτ. (22)

Choosing ϵ1 sufficiently small and ϵ2 sufficiently large such that ϵ2 > 2c2, then it follows from (22) and (20)
that
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||∆uN ||2 ≤ C10

∫ t

0
||∆uN ||2dτ + C11. (23)

Thus, applying Gronwall’s inequality to (23), we deduce

||∆uN ||2 ≤ C. (24)

Combining (20) and (24), we get

||uN ||2 + ||uN
t ||2 + ||∇uN ||2 + ||uN

tt ||2 + ||∇uN
t ||2 +

∫ t

0
||∇uN

t ||2dτ + β||∇uN
tt ||2dτ ≤ C. (25)

Furthermore, by (25), we have that (11)-(12) possesses a global solution.

Theorem 1. Assume (8) holds, u0 ∈ H2(Ω) ∩ H1
0(Ω), u1 ∈ H1

0(Ω), and u2 ∈ L2(Ω), then for any T > 0, Problem
(1)-(3) possesses a unique global solution.

Proof. For any v ∈ H1
0(Ω), it follows that

α|(uN
ttt, v)| ≤ (β||uN

tt ||+ c2||∆uN ||+ ||∇uN
t ||+ C1||uN ||)||v||H1

0
. (26)

Thus, using Lemma 3, it follows that

||uN
ttt||H−1(Ω) ≤ M. (27)

Similarly, we have

||∆uN
t ||H−1(Ω) ≤ M. (28)

From Lemma 3, (27) and (28), there exist a subsequence of {uN}, still denoted by {uN}, and a function u, ξ, η,
such that

uN → u weak ∗ in L∞(0, T, H2(Ω) ∩ H1
0(Ω)), (29)

uN
t → ut weak ∗ in L∞(0, T, H1

0(Ω)), (30)

uN
tt → utt weak ∗ in L∞(0, T, L2(Ω)), (31)

uN
ttt → uttt weak ∗ in L∞(0, T, H−1(Ω)), (32)

f (uN) → ξ weak ∗ in L∞(0, T, H−1(Ω)), (33)

∆uN
t → η weak ∗ in L∞(0, T, H−1(Ω)). (34)

and for any t ∈ [0, T]

uN → u weakly in H2(Ω) ∩ H1
0(Ω), (35)

uN
t → ut weakly in H1

0(Ω), (36)

uN
tt → utt weakly in L2(Ω), (37)

uN
ttt → uttt weakly in H−1(Ω), (38)

f (uN) → ξ weak ∗ in H−1(Ω)), (39)

∆uN
t → η weak ∗ in H−1(Ω)). (40)

Since f ∈ C1 and || f (uN)|| ≤ C||uN || ≤ C, for any v ∈ H1
0(Ω) and any t ∈ [0, T], we have

(∆uN
t , v) = −(∇uN

t ,∇v) → −(∇ut,∇v) = (∆ut, v), (41)

f (uN) → f (u) (42)
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as N → ∞. Then we get ξ = f (u), η = ∇ut, combining this with (35)-(40), we have

u ∈ L∞((0, T); H2(Ω) ∩ H1
0(Ω)) ∩ W1,∞((0, T); H1

0(Ω)) ∩ W2,∞((0, T); L2(Ω)),

∆ut, uttt ∈ L∞((0, T); H−1(Ω)).

By using Lemma 3 and (27), we observe that

|(uN , wj)|+
3

∑
k=1

|(uN
tk , wj)| ≤ M, (43)

where uN
tk = ∂kuN

∂tk . Then, by Ascoli-Arcela theorem, we can select from {uN} a subsequence, still denoted by
{uN}, such that as N → ∞, the subsequence

(uN , wj) → (u, wj), (uN
tk , wj) → (utk , wj), k = 1, 2, 3, j = 1, 2..... (44)

In particular, we take t = 0 and we note that {wj(x)}j∈N are an orthogonal basis of L2(Ω), we know that

u(x, 0) = u0(x), ut(x, 0) = u1(x), utt(x, 0) = u2(x) a.e. in Ω. (45)

By (29)-(34),(44) and Lemma 2.1, we have

uN → u, uN
t → ut in C([0, T], L2(Ω)). (46)

Thanks to (29)-(42), letting N → ∞ in (11), leads to

α(uttt, v) + β(utt, v)− c2(∆u, v)− r(∆ut, v) + ( f (u), v) = 0 (47)

for any v ∈ H1
0(Ω). Altogether, we conclude that u is a solution of the initial boundary Problem (1)-(3).

Now, suppose that there exist two different solutions u1, u2 for Problem (1)-(3), then the difference w =

u1 − u2 satisfies

αwttt + βwtt − c2∆w − r∆wt + f (u1)− f (u2) = 0, in Ω × (0,+∞), (48)

w(x, t) = 0 on ∂Ω, (49)

w(x, 0) = 0, wt(x, 0) = 0, wtt(x, 0) = 0, x ∈ Ω, (50)

Integrating (48) for t from 0 to t, we have

αwtt + βwt − r∆w =
∫ t

0
(c2∆w + f (u2)− f (u1))dτ. (51)

Multiplying the Eq. (51) by wt, integrating over Ω, adding up (w, wt), we obtain

1
2
(α||wt||2 + r||∇w||2 + ||w||2) + β||wt||2 = 2

∫ t

0
(c2∆w + f (u2)− f (u1))wtdτ

= 2c2(||∇w||2 − ||∇w0||2) + 2
∫ t

0

∫
Ω

θwwtdxdτ

≤ C(||∇w||2 + ||wt||2), (52)

where we have used mean value theorem and |θ| ≤ 1. By applying Gronwall inequality, we deduce that

α||wt||2 + r||∇w||2 + ||w||2 = 0. (53)

This implies that w = 0 for all t ∈ [0, T]. Thus the uniqueness is proved.
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