Article

On global solutions of the nonlinear Moore-Gibson-Thompson equation

Hongwei Zhang ${ }^{1, *}$ and Huiru Ji ${ }^{1}$
1 Department of Mathematics, Henan University of Technology, Zhengzhou 450001, China.
* Correspondence: whz661@163.com
Communicated by: Absar Ul Haq
Received: 28 April 2022; Accepted: 26 June 2022; Published: 30 June 2022.

Abstract: This work is devoted to study the global solutions of a class of nonlinear Moore-Gibson-Thompson equation. By applying the Galerkin and compact methods, we derive some sufficient conditions on the nonlinear terms, which lead to the existence and uniqueness of the global solution.

Keywords: Moore-Gibson-Thompson equation; Initial boundary value problem; Galerkin method; Existence and uniqueness of global solution.

MSC: 35L20.

1. Introduction

T
he object of this work is to study the global solution to the following boundary value problem for the Moore-Gibson-Thompson equation

$$
\begin{align*}
& \alpha u_{t t t}+\beta u_{t t}-c^{2} \Delta u-r \Delta u_{t}+f(u)=0, \text { in } \Omega \times(0,+\infty), \tag{1}\\
& u(x, t)=0 \text { on } \partial \Omega \tag{2}\\
& u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), u_{t t}(x, 0)=u_{2}(x), x \in \Omega \tag{3}
\end{align*}
$$

where Ω is a bounded domain in $R^{n}(n \geq 1)$ with sufficiently smooth boundary $\partial \Omega, u_{0}(x), u_{1}(x)$ and $u_{2}(x)$ are given functions and f is a given nonlinear function. All the parameters α, β, c^{2}, r are assumed to be positive constants.

In recent years, increasing attention has been paid to the well-posedness and asymptotic behavior of the Moore-Gibson-Thompson (MGT) equation, see [1-7]. The MGT model is considered through third-order (in time), strictly hyperbolic partial differential equation as follows

$$
\begin{equation*}
\alpha u_{t t t}+\beta u_{t t}-c^{2} \Delta u-r \Delta u_{t}=f(x), \tag{4}
\end{equation*}
$$

it is one of the nonlinear acoustic models describing the propagation of acoustics wave in gases and liquid, it has a wide range of applications in medical and industry. In the physical context of the acoustic waves, u is the velocity potential of the acoustic phenomena, α denotes the thermal relaxation time, c denotes the speed of sound, β denotes friction, and b denotes a parameter of diffusivity.

It is often convenient to write MGT equation as an abstract form

$$
\begin{equation*}
\alpha u_{t t t}+\beta u_{t t}+c^{2} A u+r A u_{t}=f\left(u, u_{t}, u_{t t}\right) \tag{5}
\end{equation*}
$$

and it has been shown $[8,9]$ that the linear part of Eq. (5) generates a strongly continuous semigroup as long as $r>0$. In [10], the authors provided a brief overview of well-posedness results, both local and global, pertinent to various configurations of MGT equations. Especially, the authors in [11] considered the following model with nonlinear control feedback

$$
\begin{equation*}
\tau u_{t t t}+\alpha \beta u_{t t}+c^{2} A u+b A u_{t}+\beta u_{t}^{3}=2 k u_{t}^{2}+p(u) \tag{6}
\end{equation*}
$$

where the parameter $\beta>0, p(u)$ denotes an active force and the operator A is strictly positive. By semigroup method, it was proved in [11] we that (6) with initial data of arbitrary size in H is locally and globally well-posed under the following assumption: $p \in C^{1}(R)$ and its derivative satisfies $-\delta \leq p^{\prime}(s) \leq m$ for some positive constants δ and m. Kaltenbacher et al., [12] established the well-posedness by Galerkin approximations and then employ fixed-point arguments for well-posedness of the Jordan-Moore-Gibson-Thompson (JMGT) equation

$$
\begin{equation*}
\alpha u_{t t t}+\beta u_{t t}-b \Delta u_{t}-c^{2} \Delta u=\left(\frac{1}{c^{2}} \frac{B}{2 A} u_{t}^{2}+|\nabla u|^{2}\right)_{t} . \tag{7}
\end{equation*}
$$

More recently, Boulaaras et al., [13] proved the existence and uniqueness of the weak solution of the Moore-Gibson-Thompson equation with the integral condition by applying the Galerkin method.

In this paper, we extend the results in [11] to Problem (1)-(3) by applying the Galerkin method and compact method. The contents of this paper are organized as follows; In $\S 2$, we prepare some materials needed for our proof. Finally, in $\S 3$, we give the main result and the proof.

2. Preliminaries

Throughout this paper, the domain Ω is assumed to be sufficiently smooth to admit integration by parts and second-order elliptic regularity. We use C to denote a universal positive constant that may have different values in different places. $W^{m, 2}(\Omega)=H^{m}(\Omega)$ and $W_{0}^{m, 2}(\Omega)=H_{0}^{m}(\Omega)$ denote the well-known Soblev space. We denote by $\|\cdot\|_{p}$ the $L^{p}(\Omega)$ norm and by $\|\nabla$.$\| the norm in H_{0}^{1}(\Omega)$. In particular, we denote $\|\cdot\|=\|\cdot\| \|_{2}$

By a weak solution $u(x, t)$ of Problem (1)-(3) on $\Omega \times[0, T]$ for any $T>0$, we mean $u \in L^{\infty}\left((0, T) ; H^{2}(\Omega) \cap\right.$ $\left.H_{0}^{1}(\Omega)\right) \cap W^{1, \infty}\left((0, T) ; H_{0}^{1}(\Omega)\right) \cap W^{2, \infty}\left((0, T) ; L^{2}(\Omega)\right), \Delta u_{t}, u_{t t t} \in L^{\infty}\left((0, T) ; H^{-1}(\Omega)\right)$ such that $u(x, 0)=u_{0}(x)$ a.e. in $\Omega, u_{t}(x, 0)=u_{1}(x)$ a.e. in $\Omega, u_{t t}(x, 0)=u_{2}(x)$ a.e. in Ω, and

$$
\alpha\left(u_{t t t}+\beta u_{t t}-c^{2} \Delta u-r \Delta u_{t}+f(u), v\right)=0
$$

for any $v \in H_{0}^{1}(\Omega)$, a.e. $t \in[0, T]$.
In this paper, we assume $\alpha, \beta, c^{2}, r>0$ and

$$
\begin{equation*}
f \in C^{1} \text { and }\left|f^{\prime}(s)\right| \leq C_{1} . \tag{8}
\end{equation*}
$$

Lemma 1. [14] Let $\Omega \in R^{n}$ be a bounded domain and w_{j} be a base of $L^{2}(\Omega)$. Then for any $\epsilon>0$ there exist a positive constant N_{ϵ}, such that

$$
\|u\| \leq\left(\sum_{j=1}^{N_{\epsilon}}\left(u, w_{j}\right)\right)^{\frac{1}{2}}+\epsilon\|u\|_{1, p}
$$

for any $u \in W_{0}^{1, p}(\Omega)(2 \leq p<\infty)$, where N_{ϵ} is independent on u.
Lemma 2. [15] Let $G\left(z_{1}, z_{2}, \ldots z_{h}\right)$ be the function of the variables $z_{1}, z_{2}, \ldots z_{h}$ and suppose that G is continuous differentiable for k-times $(k \geq 1)$ with respect to every variable. Let $z_{i}(x, t) \in L^{\infty}\left([0, T] ; H^{k}(\Omega)\right)(i=1,2, \ldots h)$, then the estimation

$$
\int_{\Omega}\left|D_{x}^{k} G\left(z_{1}(x, t), z_{2}(x, t), \ldots, z_{h}(x, t)\right)\right|^{2} d x<C(M, k, h) \sum_{i=1}^{h}\left\|z_{i}\right\|_{H^{k}(\Omega)}
$$

holds, where $D_{x}=\frac{\partial}{\partial x}, M=\max _{i=1,2, \ldots, h} \max _{0 \leq t \leq T, x \in \Omega}\left|z_{i}(x, t)\right|$.

3. Solvability of the problem

In this section, by using Galerkin's method and compactness method, we shall prove the existence of global solutions of Problem (1)-(3).

Let $\left\{w_{j}(x)\right\}_{j \in N}$ be the eigenfunctions of the following boundary problem

$$
\begin{equation*}
-\Delta w=\lambda w, x \in \Omega ; w=0, x \in \partial \Omega \tag{9}
\end{equation*}
$$

corresponding to the eigenvalue $\lambda_{j}(j=1,2,3, \ldots)$. Then $\left\{w_{j}(x)\right\}_{j \in N}$ can be normalized to from an orthogonal basis of $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and to be orthnormal with respect to the $L^{2}(\Omega)$ scalar product.

Now, we seek an approximate solution of Problem (1)-(3) in the form of

$$
\begin{equation*}
u^{N}(x, t)=\sum_{j=1}^{N} T_{j N}(t) w_{j}(x) \tag{10}
\end{equation*}
$$

where the constants $T_{j N}$ are defined by the conditions $T_{j N}(t)=\left(u^{N}(x, t), w_{j}(x)\right)$ and can be determined from the relation

$$
\begin{align*}
& \alpha\left(u_{t t t}^{N}, w_{j}\right)+\beta\left(u_{t t}^{N}, w_{j}\right)-c^{2}\left(\Delta u^{N}, w_{j}\right)-r\left(\Delta u_{t}^{N}, w_{j}\right)+\left(f\left(u^{N}\right), w_{j}\right)=0 \tag{11}\\
& \left(u^{N}(0), w_{j}\right)=\left(u_{0}, w_{j}\right)=u_{0 j},\left(u_{t}^{N}(0), w_{j}\right)=\left(u_{1}, w_{j}\right)=u_{1 j},\left(u_{t t}^{N}(0), w_{j}\right)=\left(u_{2}, w_{j}\right)=u_{2 j} . \tag{12}
\end{align*}
$$

Lemma 3. Assume (8) holds, $u_{0} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), u_{1} \in H_{0}^{1}(\Omega)$, and $u_{2} \in L^{2}(\Omega)$, then for any $T>0$, Problem (11)-(12) possesses a solution u^{N} on $[0, T]$, and the following estimate holds in the class

$$
\begin{equation*}
\left\|u^{N}\right\|^{2}+\left\|u_{t}^{N}\right\|^{2}+\left\|\nabla u^{N}\right\|^{2}+\alpha\left\|u_{t t}^{N}\right\|^{2}+r\left\|\nabla u_{t}^{N}\right\|^{2}+\int_{0}^{t}\left\|\nabla u_{t}^{N}\right\|^{2} d \tau+\beta\left\|\nabla u_{t t}^{N}\right\|^{2} d \tau \leq C \tag{13}
\end{equation*}
$$

Proof. Problem (11)-(12) leads to a system of ODEs for unknown functions $T_{j N}(t)$. Based on standard existence theory for ODE, one can obtain functions $T_{j N}(t):\left[0, t_{k}\right) \rightarrow R, j=1,2, \ldots, k$, which satisfy approximate Problem (11)-(12) in a maximal interval $\left[0, t_{k}\right), t_{k} \in(0, T]$. This solution is then extended to the closed interval $[0, T]$ by using the estimate below.

Multiplying (11) by $T_{j N t t}(t)$, summing up the products for $j=1,2, \ldots, N$ and integrating by parts, we get

$$
\begin{equation*}
\alpha\left(u_{t t t}^{N}, u_{t t}^{N}\right)+\beta\left(u_{t t}^{N}, u_{t t}^{N}\right)+c^{2}\left(\nabla u^{N}, \nabla u_{t t}^{N}\right)+r\left(\nabla u_{t}^{N}, \nabla u_{t t}^{N}\right)+\left(f\left(u^{N}\right), u_{t t}^{N}\right)=0 . \tag{14}
\end{equation*}
$$

Integrating (14) with respect to t from 0 to t, we obtain

$$
\begin{align*}
\alpha\left\|u_{t t}^{N}\right\|^{2}+2 \beta & \int_{0}^{t}\left\|u_{t t}^{N}\right\|^{2} d \tau+r\left\|\nabla u_{t}^{N}\right\|^{2}+2 \int_{0}^{t}\left(f\left(u^{N}\right), u_{t t}^{N}\right) d \tau \\
& =-c^{2} \int_{0}^{t}\left(\nabla u^{N}, \nabla u_{t t}^{N}\right) d \tau+\alpha\left\|u_{t t}^{N}(0)\right\|^{2}+r\left\|\nabla u_{t}^{N}(0)\right\|^{2} \tag{15}
\end{align*}
$$

We observe that

$$
\begin{equation*}
\int_{0}^{t}\left(f\left(u^{N}\right), u_{t t}^{N}\right) d \tau=\left.\left(f\left(u^{N}\right), u_{t t}^{N}\right)\right|_{0} ^{t}-\int_{0}^{t} \int_{\Omega} f^{\prime}\left(u^{N}\right)\left(u_{t}^{N}\right)^{2} d x d \tau \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left(\nabla u^{N}, \nabla u_{t t}^{N}\right) d \tau=\left.\left(\nabla u^{N}, \nabla u_{t}^{N}\right)\right|_{0} ^{t}-\int_{0}^{t}\left\|\nabla u_{t}^{N}\right\|^{2} d \tau \tag{17}
\end{equation*}
$$

Adding $2\left[\left(u^{N}, u_{t}^{N}\right)+\left(u_{t}^{N}, u_{t t}^{N}\right)+\left(\nabla u^{N}, \nabla u_{t}^{N}\right)\right]$ to both sides of (15) and a substitution of the equalities (16) and (17) in (15) gives

$$
\begin{align*}
\frac{d}{d t} & {\left[\left\|u^{N}\right\|^{2}+\left\|u_{t}^{N}\right\|^{2}+\left\|\nabla u^{N}\right\|^{2}\right]+\alpha\left\|u_{t t}^{N}\right\|^{2}+2 \beta \int_{0}^{t}\left\|u_{t t}^{N}\right\|^{2} d \tau+r\left\|\nabla u_{t}^{N}\right\|^{2} } \\
& =2\left[\left(u^{N}, u_{t}^{N}\right)+\left(u_{t}^{N}, u_{t t}^{N}\right)+\left(\nabla u^{N}, \nabla u_{t}^{N}\right)\right]+\alpha\left\|u_{t t}^{N}(0)\right\|^{2}+r\left\|\nabla u_{t}^{N}(0)\right\|^{2}-\left.2\left(f\left(u^{N}\right), u_{t t}^{N}\right)\right|_{0} ^{t} \\
& +2 \int_{0}^{t} \int_{\Omega} f^{\prime}\left(u^{N}\right)\left(u_{t}^{N}\right)^{2} d x d \tau-\left.2 c^{2}\left(\nabla u^{N}, \nabla u_{t}^{N}\right)\right|_{0} ^{t}+2 c^{2} \int_{0}^{t}\left\|\nabla u_{t}^{N}\right\|^{2} d \tau . \tag{18}
\end{align*}
$$

Then, by Hölder inequality and the fact $|f(s)|=\left|\int_{0}^{t} f^{\prime}(s) d s\right| \leq C_{1}|s|$ by (A1), we arrive at

$$
\begin{align*}
& \frac{d}{d t}\left[\left\|u^{N}\right\|^{2}+\left\|u_{t}^{N}\right\|^{2}+\left\|\nabla u^{N}\right\|^{2}\right]+\alpha\left\|u_{t t}^{N}\right\|^{2}+2 \beta \int_{0}^{t}\left\|u_{t t}^{N}\right\|^{2} d \tau+r\left\|\nabla u_{t}^{N}\right\|^{2} \\
& \leq \\
& \quad 2\left\|u^{N}\right\|\left\|u_{t}^{N}\right\|+2\left\|u_{t}^{N}\right\|\left\|u_{t t}^{N}\right\|+2\left\|\nabla u^{N}\right\|\left\|\nabla u_{t}^{N}\right\|+\alpha\left\|u_{t t}^{N}(0)\right\|^{2}+r\left\|\nabla u_{t}^{N}(0)\right\|^{2} \\
& \quad+2 C_{1}\left\|u^{N}\right\|\left\|u_{t}^{N}\right\|+2 C_{1}\left\|u^{N}(0)\right\|\left\|u_{t}^{N}(0)\right\|+2 C_{1} \int_{0}^{t}\left\|u_{t}^{N}\right\|^{2} d \tau \\
& \quad+2 c^{2}\left\|\nabla u^{N}\right\|\left\|\nabla u_{t}^{N}\right\|+2 c^{2}\left\|\nabla u^{N}(0)\right\|\left\|\nabla u_{t}^{N}(0)\right\|+2 c^{2} \int_{0}^{t}\left\|\nabla u_{t}^{N}\right\|^{2} d \tau \\
& \leq \\
& \quad \frac{1}{2}\left(\alpha\left\|u_{t t}^{N}\right\|^{2}+r\left\|\nabla u_{t}^{N}\right\|^{2}\right)+C_{2}\left(\left\|u^{N}\right\|^{2}+\left\|u_{t}^{N}\right\|^{2}+\left\|\nabla u^{N}\right\|^{2}\right) \tag{19}\\
& \quad+2 C_{1} \int_{0}^{t}\left\|u_{t}^{N}\right\|^{2} d \tau+2 c^{2} \int_{0}^{t}\left\|\nabla u_{t}^{N}\right\|^{2} d \tau+\alpha\left\|u_{t t}^{N}(0)\right\|^{2}+r\left\|\nabla u_{t}^{N}(0)\right\|^{2} \\
& \quad+C_{3}\left\|u^{N}(0)\right\|^{2}+C_{4}\left\|u_{t}^{N}(0)\right\|^{2}+c^{2}\left\|\nabla u^{N}(0)\right\|^{2}+c^{2}\left\|\nabla u_{t}^{N}(0)\right\|^{2} .
\end{align*}
$$

Taking into account that

$$
\left\|u_{t t}^{N}(0)\right\|^{2}+\left\|\nabla u_{t}^{N}(0)\right\|^{2}+\left\|\nabla u^{N}(0)\right\|^{2} \rightarrow\left\|u_{2}\right\|^{2}+\left\|\nabla u_{0}\right\|^{2}+\left\|\nabla u_{1}\right\|^{2}
$$

and

$$
\left\|u^{N}(0)\right\|^{2}+\left\|u_{t}^{N}(0)\right\|^{2} \rightarrow\left\|u_{0}\right\|^{2}+\left\|u_{1}\right\|^{2}
$$

as $N \rightarrow \infty$, then applying the Gronwall inequality to (19) and then integrating from 0 to t appears that

$$
\begin{equation*}
\left\|u^{N}\right\|^{2}+\left\|u_{t}^{N}\right\|^{2}+\left\|\nabla u^{N}\right\|^{2}+\alpha\left\|u_{t t}^{N}\right\|^{2}+r\left\|\nabla u_{t}^{N}\right\|^{2}+\int_{0}^{t}\left\|\nabla u_{t}^{N}\right\|^{2} d \tau+\beta\left\|\nabla u_{t t}^{N}\right\|^{2} d \tau \leq C \tag{20}
\end{equation*}
$$

Multiplying (11) by $\lambda_{j} T_{j N}(t)$ summing up the products for $j=1,2, \ldots N$, integrating by parts and integrating with respect to t, we get

$$
\begin{equation*}
r\left\|\Delta u^{N}\right\|^{2}+c^{2} \int_{0}^{t}\left\|\Delta u^{N}\right\|^{2} d \tau=2 \alpha \int_{0}^{t}\left(u_{t t t}^{N}, \Delta u^{N}\right) d \tau+2 \beta \int_{0}^{t}\left(u_{t t}^{N}, \Delta u^{N}\right) d \tau+\int_{0}^{t}\left(f\left(u^{N}\right), \Delta u^{N}\right) d \tau+r\left\|\Delta u^{N}(0)\right\|^{2} \tag{21}
\end{equation*}
$$

Combining Cauchy inequality, the fact $\left\|\Delta u^{N}(0)\right\|^{2} \rightarrow\left\|\Delta u_{0}\right\|^{2}$, and $|f(s)| \leq C_{1}|s|$, and making use of the following inequality

$$
\begin{aligned}
\int_{0}^{t}\left(u_{t t t}^{N}, \Delta u^{N}\right) d \tau & =\left.\left(u_{t t}^{N}, \Delta u^{N}\right)\right|_{0} ^{t}-\int_{0}^{t}\left(u_{t t}^{N}, \Delta u_{t}^{N}\right) d \tau \\
& =\left(u_{t t}^{N}, \Delta u^{N}\right)-\left(u_{t t}^{N}(0), \Delta u^{N}(0)\right)+\frac{1}{2}\left\|\nabla u_{t}^{N}\right\|^{2}-\frac{1}{2}\left\|\nabla u_{t}^{N}(0)\right\|^{2}
\end{aligned}
$$

we have

$$
\begin{align*}
r\left\|\Delta u^{N}\right\|^{2}+ & c^{2} \int_{0}^{t}\left\|\Delta u^{N}\right\|^{2} d \tau \\
\leq & 2 \alpha\left\|u_{t t}^{N}\right\|\left\|\Delta u^{N}\right\|+2 \alpha\left\|u_{t t}^{N}(0)\right\|\left\|\Delta u^{N}(0)\right\|+\alpha\left(\left\|\nabla u_{t}^{N}\right\|^{2}-\left\|\nabla u_{t}^{N}(0)\right\|^{2}\right)+2 \beta \int_{0}^{t}\left\|u_{t t}^{N}\right\|\left\|\Delta u^{N}\right\| d \tau \\
& +\int_{0}^{t}\left\|f\left(u^{N}\right)\right\|\left\|\Delta u^{N}\right\| d \tau+r\left\|\Delta u^{N}(0)\right\|^{2} \\
\leq & \epsilon_{1}\left\|\Delta u^{N}\right\|^{2}+C_{6}\left(\left\|u_{t t}^{N}\right\|^{2}+\left\|\nabla u_{t}^{N}\right\|^{2}\right)+C_{7}\left(\left\|u_{t t}^{N}(0)\right\|^{2}+\left\|\Delta u^{N}(0)\right\|^{2}+\left\|\nabla u_{t}^{N}(0)\right\|^{2}\right) \\
& +\epsilon_{1} \int_{0}^{t}\left\|\Delta u^{N}\right\|^{2} d \tau+C_{8} \int_{0}^{t}\left\|u_{t t}^{N}\right\|^{2} d \tau+C_{9} \int_{0}^{t}\left\|u^{N}\right\|^{2} d \tau \tag{22}
\end{align*}
$$

Choosing ϵ_{1} sufficiently small and ϵ_{2} sufficiently large such that $\epsilon_{2}>2 c^{2}$, then it follows from (22) and (20) that

$$
\begin{equation*}
\left\|\Delta u^{N}\right\|^{2} \leq C_{10} \int_{0}^{t}\left\|\Delta u^{N}\right\|^{2} d \tau+C_{11} \tag{23}
\end{equation*}
$$

Thus, applying Gronwall's inequality to (23), we deduce

$$
\begin{equation*}
\left\|\Delta u^{N}\right\|^{2} \leq C \tag{24}
\end{equation*}
$$

Combining (20) and (24), we get

$$
\begin{equation*}
\left\|u^{N}\right\|^{2}+\left\|u_{t}^{N}\right\|^{2}+\left\|\nabla u^{N}\right\|^{2}+\left\|u_{t t}^{N}\right\|^{2}+\left\|\nabla u_{t}^{N}\right\|^{2}+\int_{0}^{t}\left\|\nabla u_{t}^{N}\right\|^{2} d \tau+\beta\left\|\nabla u_{t t}^{N}\right\|^{2} d \tau \leq C \tag{25}
\end{equation*}
$$

Furthermore, by (25), we have that (11)-(12) possesses a global solution.
Theorem 1. Assume (8) holds, $u_{0} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), u_{1} \in H_{0}^{1}(\Omega)$, and $u_{2} \in L^{2}(\Omega)$, then for any $T>0$, Problem (1)-(3) possesses a unique global solution.

Proof. For any $v \in H_{0}^{1}(\Omega)$, it follows that

$$
\begin{equation*}
\alpha\left|\left(u_{t t t}^{N}, v\right)\right| \leq\left(\beta\left\|u_{t t}^{N}\right\|+c^{2}\left\|\Delta u^{N}\right\|+\left\|\nabla u_{t}^{N}\right\|+C_{1}\left\|u^{N}\right\|\right)\|v\|_{H_{0}^{1}} . \tag{26}
\end{equation*}
$$

Thus, using Lemma 3, it follows that

$$
\begin{equation*}
\left\|u_{t t t}^{N}\right\|_{H^{-1}(\Omega)} \leq M \tag{27}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|\Delta u_{t}^{N}\right\|_{H^{-1}(\Omega)} \leq M \tag{28}
\end{equation*}
$$

From Lemma 3, (27) and (28), there exist a subsequence of $\left\{u^{N}\right\}$, still denoted by $\left\{u^{N}\right\}$, and a function u, ξ, η, such that

$$
\begin{align*}
& u^{N} \rightarrow u \text { weak } * \text { in } L^{\infty}\left(0, T, H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right), \tag{29}\\
& u_{t}^{N} \rightarrow u_{t} \text { weak } * \operatorname{in} L^{\infty}\left(0, T, H_{0}^{1}(\Omega)\right), \tag{30}\\
& u_{t t}^{N} \rightarrow u_{t t} \text { weak } * \operatorname{in} L^{\infty}\left(0, T, L^{2}(\Omega)\right), \tag{31}\\
& u_{t t t}^{N} \rightarrow u_{t t t} \text { weak } * \operatorname{in} L^{\infty}\left(0, T, H^{-1}(\Omega)\right), \tag{32}\\
& f\left(u^{N}\right) \rightarrow \xi \text { weak } * \operatorname{in} L^{\infty}\left(0, T, H^{-1}(\Omega)\right), \tag{33}\\
& \Delta u_{t}^{N} \rightarrow \eta \text { weak } * \operatorname{in} L^{\infty}\left(0, T, H^{-1}(\Omega)\right) . \tag{34}
\end{align*}
$$

and for any $t \in[0, T]$

$$
\begin{align*}
& u^{N} \rightarrow u \text { weakly in } H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \tag{35}\\
& u_{t}^{N} \rightarrow u_{t} \text { weakly in } H_{0}^{1}(\Omega), \tag{36}\\
& u_{t t}^{N} \rightarrow u_{t t} \text { weakly in } L^{2}(\Omega), \tag{37}\\
& u_{t t t}^{N} \rightarrow u_{t t t} \text { weakly in } H^{-1}(\Omega), \tag{38}\\
& \left.f\left(u^{N}\right) \rightarrow \xi \text { weak } * \operatorname{in} H^{-1}(\Omega)\right), \tag{39}\\
& \left.\Delta u_{t}^{N} \rightarrow \eta \text { weak } * \operatorname{in} H^{-1}(\Omega)\right) . \tag{40}
\end{align*}
$$

Since $f \in C^{1}$ and $\left\|f\left(u^{N}\right)\right\| \leq C\left\|u^{N}\right\| \leq C$, for any $v \in H_{0}^{1}(\Omega)$ and any $t \in[0, T]$, we have

$$
\begin{align*}
& \left(\Delta u_{t}^{N}, v\right)=-\left(\nabla u_{t}^{N}, \nabla v\right) \rightarrow-\left(\nabla u_{t}, \nabla v\right)=\left(\Delta u_{t}, v\right) \tag{41}\\
& f\left(u^{N}\right) \rightarrow f(u) \tag{42}
\end{align*}
$$

as $N \rightarrow \infty$. Then we get $\xi=f(u), \eta=\nabla u_{t}$, combining this with (35)-(40), we have

$$
\begin{gathered}
u \in L^{\infty}\left((0, T) ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap W^{1, \infty}\left((0, T) ; H_{0}^{1}(\Omega)\right) \cap W^{2, \infty}\left((0, T) ; L^{2}(\Omega)\right) \\
\Delta u_{t}, u_{t t t} \in L^{\infty}\left((0, T) ; H^{-1}(\Omega)\right) .
\end{gathered}
$$

By using Lemma 3 and (27), we observe that

$$
\begin{equation*}
\left|\left(u^{N}, w_{j}\right)\right|+\sum_{k=1}^{3}\left|\left(u_{t^{k}}^{N}, w_{j}\right)\right| \leq M \tag{43}
\end{equation*}
$$

where $u_{t^{k}}^{N}=\frac{\partial^{k} u^{N}}{\partial t^{k}}$. Then, by Ascoli-Arcela theorem, we can select from $\left\{u^{N}\right\}$ a subsequence, still denoted by $\left\{u^{N}\right\}$, such that as $N \rightarrow \infty$, the subsequence

$$
\begin{equation*}
\left(u^{N}, w_{j}\right) \rightarrow\left(u, w_{j}\right),\left(u_{t^{k}}^{N}, w_{j}\right) \rightarrow\left(u_{t^{k}}, w_{j}\right), k=1,2,3, j=1,2 \ldots \ldots \tag{44}
\end{equation*}
$$

In particular, we take $t=0$ and we note that $\left\{w_{j}(x)\right\}_{j \in N}$ are an orthogonal basis of $L^{2}(\Omega)$, we know that

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), u_{t t}(x, 0)=u_{2}(x) \text { a.e. in } \Omega . \tag{45}
\end{equation*}
$$

By (29)-(34),(44) and Lemma 2.1, we have

$$
\begin{equation*}
u^{N} \rightarrow u, u_{t}^{N} \rightarrow u_{t} \text { in } C\left([0, T], L^{2}(\Omega)\right) \tag{46}
\end{equation*}
$$

Thanks to (29)-(42), letting $N \rightarrow \infty$ in (11), leads to

$$
\begin{equation*}
\alpha\left(u_{t t t}, v\right)+\beta\left(u_{t t}, v\right)-c^{2}(\Delta u, v)-r\left(\Delta u_{t}, v\right)+(f(u), v)=0 \tag{47}
\end{equation*}
$$

for any $v \in H_{0}^{1}(\Omega)$. Altogether, we conclude that u is a solution of the initial boundary Problem (1)-(3).
Now, suppose that there exist two different solutions u_{1}, u_{2} for Problem (1)-(3), then the difference $w=$ $u_{1}-u_{2}$ satisfies

$$
\begin{align*}
& \alpha w_{t t t}+\beta w_{t t}-c^{2} \Delta w-r \Delta w_{t}+f\left(u_{1}\right)-f\left(u_{2}\right)=0, \text { in } \Omega \times(0,+\infty) \tag{48}\\
& w(x, t)=0 \text { on } \partial \Omega \tag{49}\\
& w(x, 0)=0, w_{t}(x, 0)=0, w_{t t}(x, 0)=0, x \in \Omega \tag{50}
\end{align*}
$$

Integrating (48) for t from 0 to t, we have

$$
\begin{equation*}
\alpha w_{t t}+\beta w_{t}-r \Delta w=\int_{0}^{t}\left(c^{2} \Delta w+f\left(u_{2}\right)-f\left(u_{1}\right)\right) d \tau \tag{51}
\end{equation*}
$$

Multiplying the Eq. (51) by w_{t}, integrating over Ω, adding up $\left(w, w_{t}\right)$, we obtain

$$
\begin{align*}
\frac{1}{2}\left(\alpha\left\|w_{t}\right\|^{2}+r\|\nabla w\|^{2}+\|w\|^{2}\right)+\beta\left\|w_{t}\right\|^{2} & =2 \int_{0}^{t}\left(c^{2} \Delta w+f\left(u_{2}\right)-f\left(u_{1}\right)\right) w_{t} d \tau \\
& =2 c^{2}\left(\|\nabla w\|^{2}-\left\|\nabla w_{0}\right\|^{2}\right)+2 \int_{0}^{t} \int_{\Omega} \theta w w_{t} d x d \tau \\
& \leq C\left(\|\nabla w\|^{2}+\left\|w_{t}\right\|^{2}\right) \tag{52}
\end{align*}
$$

where we have used mean value theorem and $|\theta| \leq 1$. By applying Gronwall inequality, we deduce that

$$
\begin{equation*}
\alpha\left\|w_{t}\right\|^{2}+r\|\nabla w\|^{2}+\|w\|^{2}=0 \tag{53}
\end{equation*}
$$

This implies that $w=0$ for all $t \in[0, T]$. Thus the uniqueness is proved.
Acknowledgments: The authors would like to thank the referee for his/her valuable comments that resulted in the present improved version of the article.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Crighton, D. G. (1979). Model equations of nonlinear acoustics. Annual Review of Fluid Mechanics, 11, 11-33.
[2] Coulouvrat, F. (1992). On the equations of non linear acoustics. Journal d'acoustique (Les Ulis), 5(4), 321-359.
[3] Hamilton M. F., \& Blackstock, D. T. (1997). Nonlinear Acoustics. Academic Press, New York.
[4] Jordan, P. (2008). Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons. The Journal of the Acoustical Society of America, 124(4), 2491-2491.
[5] Kaltenbacher, B. (2015). Mathematics of nonlinear acoustics. Evolution Equations \& Control Theory, 4(4), 447-491.
[6] Moore, F. K., \& Gibson, W. E. (1960). Propagation of weak disturbances in a gas subject to relaxation effects. Journal of the Aerospace Sciences, 27(2), 117-127.
[7] Bose, S. K., \& Gorain, G. C. (1998). Stability of the boundary stabilised internally damped wave equation $y^{\prime \prime}+\lambda y^{\prime \prime \prime}=$ $c^{2}(\Delta y+\mu \Delta y)$ in a bounded domain in R^{n}. Indian Journal of Mathematics, 40(1), 1-15.
[8] Kaltenbacher, B., Lasiecka, I., \& Marchand, R. (2011). Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control and Cybernetics, 40(4), 971-988.
[9] Marchand, R., McDevitt, T., \& Triggiani, R. (2012). An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Mathematical Methods in the Applied Sciences, 35(15), 1896-1929.
[10] Caixeta, A. H., Lasiecka, I., \& Cavalcanti, V. N. D. (2016). On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations \& Control Theory, 5(4), 661-676.
[11] Caixeta, A. H., Lasiecka, I., \& Cavalcanti, V. N. (2016). Global attractors for a third order in time nonlinear dynamics. Journal of Differential Equations, 261(1), 113-147.
[12] Kaltenbacher, B., \& Nikolic, V. (2019). The Jordan-Moore-Gibson-Thompson equation: Well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time. Mathematical Models and Methods in Applied Sciences, 29(13), 2523-2556.
[13] Boulaaras, S., Zarai, A., \& Draifia, A. (2019). Galerkin method for nonlocal mixed boundary value problem for the Moore-Gibson-Thompson equation with integral condition. Mathematical Methods in the Applied Sciences, 42(8), 2664-2679.
[14] Clements, J. (1974). Existence theorems for a quasilinear evolution equation. SIAM Journal on Applied Mathematics, 26(4), 745-752.
[15] Yulin, Z., \& Hongyuan, F. (1983). The nonlinear hyperbolic systems of higher order of generalized Sine-Gordon type. Acta Mathematica Sinica, 26, 234-249.
© 2022 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

