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Abstract: The martingale analogue of Kolmogorov’s law of the iterated logarithm was obtained by W. Stout
using probabilistic approach. In this paper, we give a new proof of one side of the same law of the iterated
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1. Introduction

K olmogorov’s law of the iterated logarithm (LIL) for the sequence of independent random variables is
in the words of K. L. Chung, “a crowning achievement in classical probability theory". We first begin

with Kolmogorov’s celebrated law of the iterated logarithm.

Theorem 1 (Kolmogorov [1]). Let Sm = ∑m
k=1 Xk where {Xk} is a sequence of real valued independent random

variables. Let sm be the variance of Sm. Suppose sm → ∞ and |Xm|2 ≤ Kms2
m

log log (ee + s2
m)

for some sequence of constants

Km → 0. Then, almost surely,

lim sup
m→∞

Sm(ω)√
2sm log log s2

m
= 1.

This beautiful law of the iterated logarithm result of Kolmogorov was first proved by Khintchine [2]
for Bernoulli random variables. Khintchine obtained this result while improvising the efforts of Hausdorff
(1913), Hardy and Littlewood (1914) and Steinhaus (1922) to obtain the exact rate of convergence in Borel’s
Theorem on normal numbers. Over the years, people have obtained the analog of the Kolmogorov’s result
in various settings in analysis. Some of the existing settings are lacunary trigonometric series, martingales,
harmonic functions, Bloch functions etc. Readers are referred to a survey article by Bingham [3] which has
more than 400 references on the law of the iterated logarithm. Salem and Zygmund [4] obtained the analogue
of Kolmogorov’s LIL in the context of lacunary trigonometric series and their result is the first LIL in analysis.
Moreover, Salem and Zygmund [4] also introduced a law of the iterated logarithm for the tail sums of lacunary
trigonometric series, known as tail LIL. The tail LIL of lacunary series was then completed by Ghimire and
Moore [5].

In 1970, Stout [6] obtained a martingale version of Kolmogorov’s LIL where he used the probabilistic
approach. In this paper, we prove one side of the same law of the iterated logarithm for dyadic martingales
using a different approach. Precisely, we use the harmonic analysis approach and easily obtain the upper
bound. In the proof, we make the use of a subgaussian type estimate and Borel-Cantelli lemma. Our main
result is:

Theorem 2. If { fn}∞
n=0 is a dyadic martingale on [0, 1), then

lim sup
n→∞

| fn(x)|
Sn f (x)

√
2 log log Sn f (x)

≤ 1

almost everywhere on the set where { fn}∞
n=0 is unbounded.
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2. Preliminaries

We first fix some notations, give some definitions and state some lemmas which will be used in the course
of the proof.

Let Dn denote the family of dyadic subintervals of the unit interval [0, 1) of the form
[

j
2n , j+1

2n

)
, where

n = 0, 1, 2 · · · and j = 0, 1, · · · 2n − 1.

Definition 1 (Dyadic martingale). A dyadic martingale is a sequence of integrable functions, { fn}∞
n=0 with

fn : [0, 1) → R such that,

(i) for every n, fn is Fn− measurable where Fn is the σ−algebra generated by dyadic intervals of the form
[ j

2n , j+1
2n ), j ∈ {0, 1, 2, · · · 2n − 1};

(ii) and the following conditional expectation condition holds

E( fn+1|Fn) = fn,

where E( fn+1|Fn)(x) = 1
|Qn |

∫
Qn

fn+1(y)dy, for Qn ∈ Dn and x ∈ Qn.

Definition 2. For a dyadic martingale, { fn}∞
n=0, we define

(i) the increments: dk = fk − fk−1. So fn(x) = ∑n
k=1 dk(x) + f0.

(ii) the quadratic characteristics or square function: S2
n f (x) = ∑n

k=1 d2
k(x).

(iii) the limit function: S2 f (x) = lim
n→∞

S2
n f (x) = ∑∞

k=1 d2
k(x).

Next, we define Hardy-Littlewood maximal function:

Definition 3 (Hardy-Littlewood maximal function). Let f ∈ Lp(Rn), 1 ≤ p < ∞. Let

M f (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

| f (y)|dy.

Then M f is called the Hardy-Littlewood maximal function of f . Here |B(x, r)| denotes the measure of the ball
centered at x and of radius r.

Let m denote the Lebesgue measure on R.

Lemma 1 (Borel-Cantelli [7]). Let {Ek}∞
k=1 be a countable collections of measurable sets for which ∑∞

k=1 m(Ek) < ∞.
Then almost all x ∈ R belong to at most finitely many of the sets E′

ks.

Next, we obtain an estimate for the sequence of dyadic martingales. This estimate will be used in the
proof of a lemma. The estimate is stated as a lemma below:

Lemma 2. For a dyadic martingale { fn}∞
n=0, with f0 = 0

∫ 1

0
exp

(
fn(x)− 1

2
S2

n f (x)
)

dx ≤ 1.

This estimate was originally obtained by Chang et al., [8] using the probabilistic approach. Recently, S.
Ghimire also obtained the same estimate using the analytic approach. Please refer [9] for the detail.

Remark 1. Note that if we rescale the sequence { fn} by λ, then Lemma 2 gives,

∫ 1

0
exp

(
λ fn(x)− 1

2
λ2S2

n f (x)
)

dx ≤ 1.

This shows that the above inequality is inhomogeneous type. We will make the use of this form in the proof
the lemma that follows.
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With the help of Lemma 2, we now obtain a subgaussian type estimate related to dyadic martingales. This
estimate plays the central role in the proof of our main result. The proof of the estimate can be found in [9].
We also revisit the same proof here. The estimate is given as a lemma below;

Lemma 3. For a dyadic martingale { fn} and λ > 0, we have∣∣∣∣∣
{

x ∈ [0, 1) : sup
m≥1

| fm(x)| > λ

}∣∣∣∣∣ ≤ 6 exp
(

−λ2

2||S f ||2∞

)
.

Proof. Fix n. Let λ > 0, γ > 0. Then for every m ≤ n,

fm(x) =
1

|Qm|

∫
Qm

fn(y)dy, x ∈ Qm, |Qm| =
1

2m .

Fix x. Then sup
1≤m≤n

| fm(x)| ≤ M| fn|(x), where M fn is the Hardy-Littlewood maximal function of fn. Then using

Jensen’s inequality, we have

exp(γ| fm(x)|) = exp
(

γ

∣∣∣∣∫Qm
fn(y)d

(
y

|Qm|

)∣∣∣∣)
≤ 1

|Qm|

∫
Qm

exp(γ| fn(y)|)dy

≤ M(eγ| fm(x)|)(x).

Using the Hardy-Littlewood maximal estimate, we have∣∣∣∣∣
{

x ∈ [0, 1) : sup
1≤m≤n

| fm(x)| > λ

}∣∣∣∣∣ =
∣∣∣∣∣
{

x ∈ [0, 1) : sup
1≤m≤n

eγ| fm(x)| > eγλ

}∣∣∣∣∣
≤
∣∣∣{x ∈ [0, 1) : M(eγ| fm |)(x) > eγλ

}∣∣∣
≤ 3

eγλ

∫ 1

0
exp(γ| fn(y)|)dy

≤ 3
eγλ

exp
(

γ2

2
||Sn f ||2∞

) ∫ 1

0
exp

(
γ| fn(y)| −

γ2

2
S2

n f (y)
)

dy.

Using Lemma 2, we have

∫ 1

0
exp

(
γ| fn(y)| −

γ2

2
S2

n f
)

dy

=
∫
{y: fn(y)≥0}

exp
(

γ fn(y)−
γ2

2
S2

n f (y)
)

dy +
∫
{y: fn(y)<0}

exp
(
−γ fn(y)−

γ2

2
S2

n f (y)
)

dy

≤
∫ 1

0
exp

(
γ fn(y)−

γ2

2
S2

n f (y)
)

dy +
∫ 1

0
exp

(
−γ fn(y)−

γ2

2
S2

n f (y)
)

dy ≤ 2.

So, ∣∣∣∣∣
{

x ∈ [0, 1) : sup
1≤m≤n

| fm(x)| > λ

}∣∣∣∣∣ ≤ 6
eγλ

exp
(

γ2

2
||Sn f ||2∞

)
.

Choose γ =
λ

||Sn f ||2∞
. With this γ, the above inequality becomes,

∣∣∣∣∣
{

x ∈ [0, 1) : sup
1≤m≤n

| fm(x)| > λ

}∣∣∣∣∣ ≤ 6 exp
(

−λ2

2||Sn f ||2∞

)
.

Note that for the dyadic martingale { fn},

S2
n f (x) =

n

∑
k=1

d2
k(x) −→ S2 f (x) =

∞

∑
k=1

d2
k(x).
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Consequently,
−1

2||Sn f ||2∞
≤ −1

2||S f ||2∞
.

Recall the continuity property of Lebesgue measure, if {En} is a sequence of sets with En ⊂ En+1 for all n and

E =
∞⋃

n=1

En, then |E| = lim
n→∞

|En|. Using this we get,

∣∣∣∣∣
{

x ∈ [0, 1) : sup
m≥1

| fm(x)| > λ

}∣∣∣∣∣ ≤ 6 exp
(

−λ2

2||S f ||2∞

)
.

This completes the proof of the lemma.

Burkholder and Gundy [10] obtained the asymptotic behavior of dyadic martingale. They showed that
the sets {x : S f (x) < ∞} and {x : lim fn exists} are equal almost everywhere (a.e.) where a.e. equal means
that the measure of the set where they are not equal is zero. From the result of Burkholder and Gundy, we
see that the sequence of dyadic martingales { fn} behave asymptotically well on the set {x : S f (x) < ∞}.
How does the dyadic martingale behave on the set {x : S f (x) = ∞}, which is the complement of the set
{x : S f (x) < ∞}? The behavior of dyadic martingales is quite pathological on the set {x : S f (x) = ∞}.
Precisely, it is unbounded a.e. on this set. Even though, one can obtain the rate of growth of | fn| on the set
{x : S f (x) = ∞}. The rate of growth of | fn| can be obtained by the martingale analogue of Kolmogorov’s law
of the iterated logarithm. Stout [6] obtained the law of the iterated logarithm for dyadic martingales. Here we
obtain the same upper bound in the law of the iterated logarithm for dyadic martingales using the estimates
obtained in Lemma 3 and Borel-Cantelli Lemma (Lemma 1).

3. Proof of main result

Proof of Theorem 2. Let θ > 1 and δ > 0. We note that for every x ∈ [0, 1), we have either Sn f (x) > θk for
some n or Sn f (x) ≤ θk, for every n, and thus, S f (x) ≤ θk. We define stopping time as;

γk(x) =

{
min

(
n : Sn+1 f (x) > θk

)
;

∞, i f S f (x) ≤ θk.

So by stopping time, γk is the smallest index such that Sγk+1 f (x) > θk. This means Sγk f (x) ≤ θk. Define,

f̃n(x) = fn∧γk (x) =

{
f1(x), f2(x), . . . , fγk (x), fγk (x), . . . , for γk ̸= ∞,
f1(x), f2(x), f3(x), . . . , if γk = ∞.

We first show that S f̃ ≤ θk. So for n < γk(x), we have S f̃n(x) = S fn(x) ≤ S fγk (x) ≤ θk. Again if n ≥ γk(x),
then S f̃n(x) = S fγk (x) ≤ θk. Thus, ∀n S f̃n(x) ≤ θk. Then, lim

n→∞
S f̃n(x) ≤ θk. So we have S f̃ ≤ θk. Choose

λ = (1 + δ)θk
√

2 log log θk. Then using Lemma 3 for the dyadic martingale { f̃n} with the chosen λ, we get

∣∣∣∣∣
{

x ∈ [0, 1) : sup
n≥1

| f̃n(x)| > (1 + δ)θk
√

2 log log θk

}∣∣∣∣∣ ≤ 6 exp

(
−(1 + δ)2θ2k2 log log θk

2||S f ||2∞

)

≤ 6 exp

(
−(1 + δ)2θ2k2 log log θk

2θ2k

)

=
6

(k log θ)(1+δ)2 .

Summing over all k, we have

∞

∑
k=1

∣∣∣∣∣
{

x ∈ [0, 1) : sup
n≥1

| f̃n(x)| > (1 + δ)θk
√

2 log log θk

}∣∣∣∣∣ ≤ 6
(log θ)(1+δ)2

∞

∑
k=1

1
k(1+δ)2 < ∞.
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Then by Borel-Cantelli Lemma 2, we have for a.e. x,

sup
n≥1

| f̃n(x)| ≤ (1 + δ)θk
√

2 log log θk

for sufficiently large k, say, k ≥ M, M depends on x. Thus for a.e. x, we have,

sup
n≥1

| fn∧γk (x)(x)| ≤ (1 + δ)θk
√

2 log log θk

for sufficiently large k ≥ M. We choose x such that fn(x) is unbounded. Then from [10] we have,

{x : S f (x) < ∞} a.e.
= {x : fn(x) converges}.

So we have S f (x) = ∞. Then γ1(x) ≤ γ2(x) ≤ γ3(x) ≤ . . . i.e. for every i, γi(x) < ∞.
Let n ≥ γM. Then choose k such that γk(x) < n ≤ γk+1(x). Here, γk(x) < n gives γk(x) ≤ n − 1. Thus,

Sn f (x) = Sn−1+1 f (x) > θk. Using this, we have

| fn(x)| ≤ sup
1≤m≤γk+1

| fm∧γk+1(x)|

≤ sup
m≥1

| fm∧γk+1(x)|

≤ (1 + δ)θk+1
√

2 log log θk+1

< (1 + δ)Sn f (x)θ
√

2 log(log Sn f (x) + log θ).

So,

lim sup
n→∞

| fn(x)|
Sn f (x)

√
2 log(log Sn f (x))

< (1 + δ)θ lim sup
n→∞

√
2 log(log Sn f (x) + log θ)

2 log(log Sn f (x))
.

Clearly,

lim sup
n→∞

√
log(log Sn f (x) + log θ)

log(log Sn f (x))
= 1.

Therefore for a.e. x,

lim sup
n→∞

| fn(x)|
Sn f (x)

√
2 log log Sn f (x)

< (1 + δ)θ.

Letting θ ↘ 1 we get,

lim sup
n→∞

| fn(x)|
Sn f (x)

√
2 log log Sn f (x)

≤ 1 + δ.

This can be done for every δ > 0. Hence we have for a.e. x,

lim sup
n→∞

| fn(x)|
Sn f (x)

√
2 log log Sn f (x)

≤ 1.

4. Conclusion

The upper bound of the law of the iterated logarithm in the context of dyadic martingale using analytic
approach has been obtained where we made the use of some subgaussian type estimates and Borel-Cantelli
Lemma. We look forward to obtain the lower bound result using the similar approach.
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