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Abstract: In this paper we consider the following abstract class of weakly dissipative second-order systems

with infinite memory, u′′(t) + Au(t) −
∫ ∞

0
g(s)Aαu(t − s)ds = 0, t > 0, and establish a general stability

result with a very general assumption on the behavior of g at infinity; that is g′(t) ≤ −ξ(t)G (g(t)) , t ≥ 0.
where ξ and G are two functions satisfying some specific conditions. Our result generalizes and improves
many earlier results in the literature. Moreover, we obtain our result with imposing a weaker restrictive
assumption on the boundedness of initial data used in many earlier papers in the literature such as the one
in [1–5]. The proof is based on the energy method together with convexity arguments.
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1. Introduction

V iscoelastic materials exhibit an instantaneous elasticity effect and creep characteristics at the same
time. The importance of the viscoelastic properties of materials has been realized because of the

rapid developments in rubber and plastics industry. The modeling of the dynamics of physical phenomena
such as heat flow in conductors with memory, hereditary polarization in dielectrics, population dynamics,
viscolasticity can be described by an abstract integro-differential equation of the formu′′(t) + Au(t)−

∫ t

−∞
g(t − s)Aαu(s)ds = 0, t > 0,

u(−t) = u0(t), t ≥ 0, u′(0) = u1,
(1)

where ′ represents a derivative with respect to time t, A : D(A) ⊂ H −→ H is a positive definite self-adjoint
operator on H, g is the relaxation function (convolution kernel), α ∈ [0, 1], u0, u1 are given history function
and initial data respectively.

The study of viscoelastic problems has attracted the attention of many authors and several decay and
blow up results have been established. We start with the pioneer work [6,7] where Dafermos considered a
one-dimensional viscoelastic problem and established various existence results and then proved, for smooth
monotone decreasing relaxation functions, that the solutions go to zero as t goes to infinity. After that, many
results dealing with the existence, uniqueness, regularity and asymptotic behavior of many systems of the
form (1) have been studied; see, for example, [1,8–11]. In the case of finite memory, that is, u0(t) = 0 for
t < 0, see [12–18]. In particular, Rivera et al., [15] considered the interpolating cases α ∈ (0, 1) and a relaxation
function g which decays exponentially to zero at infinity, that is,

−c0g(s) ≤ g′(s) ≤ −c1g(s) ∀ s ∈ R+. (2)
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They showed that the energy decays polynomially at the rate of 1
t . Recently, Hassan and Messaoudi [19]

considered u′′(t) + Au(t)−
∫ t

0
g(t − s)Aαu(s)ds = 0, t > 0,

u(0) = u0(t), u′(0) = u1,
(3)

and established a new general decay rate result for which the relaxation function g satisfies condition

g′(t) ≤ −ξ(t)G (g(t)) , t ≥ 0. (4)

For case of infinite memory, see [20–25]. In particular, Guesmia [1] considered

utt + Au −
∫ +∞

0
g(s)Bu(t − s)ds = 0 for t > 0, (5)

and introduced a new ingenuous approach for proving a more general decay result based on the properties
of convex functions and the use of the generalized Young inequality. He used a larger class of infinite history
kernels satisfies the following condition

∫ +∞

0

g(s)
G−1(−g′(s))

ds + sup
s∈R+

g(s)
G−1(−g′(s))

< +∞, (6)

such that
G(0) = G′(0) = 0 and lim

t→+∞
G′(t) = +∞, (7)

where G : R+ → R+ is an increasing strictly convex function. Al-Mahdi and Al-Gharabli [2] considered the
following viscoelastic problem

utt − ∆u +
∫ +∞

0 g(s)∆u(t − s)ds + |ut|m−2ut = 0, in Ω × (0,+∞)

u(x, t) = 0, on ∂Ω × (0,+∞)

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), in Ω × (0,+∞),

(8)

and they established decay results with using a relaxation function g, satisfying the condition

g′(t) ≤ −ξ(t)gp(t), 1 ≤ p <
3
2

. (9)

Very recently, Guesmia [26] considered two models of wave equations with infinite memory and established
an explicit and general decay rate results where the relaxation function satisfying the condition (4).

Motivated by the above works, we intend to study the following class of viscoelastic equations of the formu′′(t) + Au(t)−
∫ ∞

0
g(s)Aαu(t − s)ds = 0, t > 0,

u(−t) = u0, u′(0) = u1,
(10)

where A : D(A) ⊂ H −→ H is a positive definite self-adjoint operator on H such that the embedding
D(Aβ) ↪→ D(Aσ) is compact for any β > σ ≥ 0 and α ∈ (0, 1).

Remark 1. The assumption D(Aβ) ↪→↪→ D(Aσ) for any β > σ ≥ 0 guarantees the existence of some constants
ω, ω0, ω1 such that

∥v∥2 ≤ ω
∥∥∥A1/2v

∥∥∥2
∀ v ∈ D

(
A1/2

)
, (11)

∥∥∥Aα/2v
∥∥∥2

≤ ω0

∥∥∥A1/2v
∥∥∥2

∀ v ∈ D
(

A1/2
)

, (12)

and ∥∥∥A1/2v
∥∥∥2

≤ 1

∥∥∥A1−α/2v
∥∥∥2

∀ v ∈ D
(

A1−α/2
)

. (13)
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2. Our main objectives

We intend to establish a two fold objective:

1. improve many earlier works such as the ones in [11,15,19] from finite memory to infinite memory;
2. prove a general decay estimate for the solution of Problem (10) with a wider class of relaxation functions

than the ones considered in [1–5] by getting a better decay rate with imposing a weaker assumption on
the boundedness of initial data than the one considered in the earlier papers such as the one in [1–5].

The paper is organized as follows: We present some assumptions and remarks in §3. We state and prove some
technical lemmas in §4. The main result, its proof and some examples are presented in §5.

3. Assumptions

In this section, we state some assumptions needed in the proof of our main decay result. The strictly
decreasing differentiable relaxation (kernel) function g : [0, ∞) −→ (0, ∞) satisfies the following assumptions:

(A.1) g(0) > 0 and 1 − 0

∫ +∞

0
g(s)ds = l > 0.

(A.2) There exists a non-increasing differentiable function ξ : R+ −→ (0, ∞) and a C1 function G : [0,+∞) −→
[0,+∞) which is linear or it is strictly increasing and strictly convex C2 function on (0, r], with G(0) =

G′(0) = 0, such that
g′(t) ≤ −ξ(t)G(g(t)), ∀ t ≥ 0, (14)

where ξ is satisfying
∫ +∞

0 ξ(s)ds = +∞.
(A.3) We assume that ∫ +∞

0
g(s)||Aα/2u0(s)||2ds < +∞,

and ∫ +∞

0
g(s)||A1/2u0(s)||2ds < +∞.

Remark 2. The class of relaxation functions satisfying ( A.1)− ( A.2) in the present paper is larger than the
ones satisfying (6) and (7) used in some earlier papers such as the one in [1]. In fact, the boundedness of the
sup in (6) use in [1], can be interpreted as the inequality in ( A.2) in the present paper (with ξ = 1). The
conditions (6) and (7) used in [1] ask also the boundedness of the integral. So, it is better to consider the
relaxation functions satisfy ( A.1)− ( A.2) used in the present paper than the one used in [1].

Remark 3. Hypothesis ( A.3) is needed for proving the existence and stability results. For the stability, if
( A.3) holds, then the functions h0 and h1 defined in Lemma 4 well be defined. Moreover, Hypothesis ( A.3) is
weaker than the one used in [1–5] that is, there exists a positive constant M such that

||∇Aα/2u0(s)||2 ≤ M,

and
||∇A1/2u0(s)||2 ≤ M.

Remark 4. As is in Mustafa [14], if G is a strictly increasing and strictly convex C2 function on (0, r], with
G(0) = G′(0) = 0, then there is a strictly convex and strictly increasing C2 function G : [0,+∞) −→ [0,+∞)

which is an extension of G. For instance, we can define G, for any t > r, by

G(t) :=
G′′(r)

2
t2 +

(
G′(r)− G′′(r)r

)
t +

(
G(r) +

G′′(r)
2

r2 − G′(r)r
)

.

We state the existence, regularity and uniqueness theorem whose proof is in [15].

Theorem 1 ([15]). Suppose that (u0(·, 0), u1) ∈ D(A) × D(A1/2) and (A.1-A.3) hold. Then, Problem (10) has a
unique global solution satisfying

u ∈ C (R+;D(A)) ∩ C1
(
R+;D

(
A1/2

))
∩ C2 (R+; H) .
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Moreover, if (u0(·, 0), u1) ∈ D
(

Aσ+1/2
)
×D (Aσ) for σ ≥ 0, then the solution satisfies

u ∈ C
(
R+;D

(
Aσ+1/2

))
∩ C1 (R+;D (Aσ)) ∩ C2

(
R+;D

(
Aσ−1/2

))
.

The "modified" energy functionals associated to our problem are given by

E(t) :=
1
2

[
∥u′(t)∥2 +

∥∥∥A1/2u(t)
∥∥∥2

−
(

1 − l
ω0

)∥∥∥Aα/2u(t)
∥∥∥2

+
(

g ◦ Aα/2u
)
(t)

]
, (15)

E(t) :=
1
2

[
∥A(1−α)/2u′(t)∥2 +

∥∥∥A1−α/2u(t)
∥∥∥2

−
(

1 − l
ω0

)∥∥∥A1/2u(t)
∥∥∥2

+
(

g ◦ A1/2u
)
(t)

]
, (16)

for any t ≥ 0, where for v ∈ L2
loc(R+; H),

(g ◦ v)(t) :=
∫ ∞

0
g(s)∥v(t)− v(t − s)∥2ds.

Remark 5. The positiveness of the energy functionals comes from inequalities (12) and (13).

Lemma 1 ([15]). For any initial data (u0, u1) ∈ D(A)×D
(

A1/2
)

, the energy functionals associated to Problem (10)
satisfy, for any t ≥ 0, the identities

E′(t) =
1
2

(
g′ ◦ Aα/2u

)
(t) ≤ 0, (17)

E ′(t) =
1
2

(
g′ ◦ A1/2u

)
(t) ≤ 0. (18)

As in Jin et al., [27], we set, for any 0 < ε < 1,

Cε :=
∫ ∞

0

g2(s)
εg(s)− g′(s)

ds and hε(t) := εg(t)− g′(t).

Lemma 2 ([27]). Assume that the condition (A.1) holds. Then, for any v ∈ L2
loc
(
[0,+∞); L2(0, L)

)
, we have

∫ L

0

(∫ ∞

0
g(s)(v(t)− v(t − s))ds

)2
dx ≤ Cε(hε ◦ v)(t), ∀ t ≥ 0. (19)

Lemma 3 (Jensen’s inequality). Let F : [a, b] −→ R be a convex function. Assume that the functions f : −→ [a, b]

and h : Ω −→ R are integrable such that h(x) ≥ 0, for any x ∈ Ω and
∫

Ω
h(x)dx = k > 0. Then,

F
(

1
k

∫
Ω

f (x)h(x)dx
)
≤ 1

k

∫
Ω

F( f (x))h(x)dx.

4. Technical lemmas

In this section, we state and prove some Lemmas that are useful in the proof of Theorem 2. Through out
this work we use c > 1 to represent a generic constant, which is independent of t and the initial data.

Lemma 4. Assume that (A.1-A.3) hold. Then, there exist two positive constants M0, M1 such that∫ +∞

t
g(s)||Aα/2u(t)− Aα/2u(t − s)||2ds ≤ M0h0(t), (20)

and ∫ +∞

t
g(s)||A1/2u(t)− A1/2u(t − s)||2ds ≤ M1h1(t), (21)

where h0(t) =
∫ +∞

0 g(t + s)
(

1 + ||Aα/2u0(s)||2
)

ds, and h1(t) =
∫ +∞

0 g(t + s)
(

1 + ||A1/2u0(s)||2
)

ds.
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Proof. Indeed, we have∫ +∞

t
g(s)||Aα/2u(t)− A1/2u(t − s)||2ds

≤ 2||Aα/2u(t)||2
∫ +∞

t
g(s)ds + 2

∫ +∞

t
g(s)||Aα/2u(t − s)||2ds

≤ 2 sup
s≥0

||Aα/2u(s)||2
∫ +∞

0
g(t + s)ds + 2

∫ +∞

0
g(t + s)||Aα/2u(−s)||2ds

≤
4ω0 sups≥0 E(s)

1 − l

∫ +∞

0
g(t + s)ds + 2

∫ +∞

0
g(t + s)||Aα/2u0(s)||2ds

≤ 4ω0E(0)
1 − l

∫ +∞

0
g(t + s)ds + 2

∫ +∞

0
g(t + s)||Aα/2u0(s)||2ds

≤ M0

∫ +∞

0
g(t + s)

(
1 + ||Aα/2u0(s)||2

)
ds. (22)

where M0 = max
{

2, 4ω0E(0)
1−l

}
.

The proof of (21) can be established similarly to the proof of (20).

Lemma 5. Assume that conditions (A.1-A.3) hold. Then, for any 0 < δ < 1, the functional I1 defined by

I1(t) := −
〈

u′(t),
∫ ∞

0
g(s)(u(t)− u(t − s))ds

〉
satisfies, along the solution of (10), the estimate

I′1(t) ≤ −
(

1 − l
ω0

− δ

)
∥u′(t)∥2 + δ

∥∥∥A1/2u(t)
∥∥∥2

+
c
δ
(Cε + 1)

(
hε ◦ A1/2u

)
(t), ∀ t ≥ 0. (23)

Proof. Differentiating I1 and exploiting the differential equation in Problem (10), we get

I′1(t) =

〈
A1/2u(t),

∫ ∞

0
g(s)A1/2(u(t)− u(t − s))ds

〉
−

〈∫ ∞

0
g(s)Aα/2u(t − s)ds,

∫ ∞

0
g(s)Aα/2(u(t)− u(t − s))ds

〉
−

(
1 − l
ω0

)
∥u′(t)∥2 −

〈
u′(t),

∫ ∞

0
g′(s)(u(t)− u(t − s))ds

〉
. (24)

Next, we estimate the terms in the right-hand side of the above identity. Using the Cauchy-Schwarz,
Young and Hölder inequalities, Lemma 2 and inequalities (11) and (12), it follows that, for any 0 < δ < 1,〈

A1/2u(t),
∫ ∞

0
g(s)A1/2(u(t)− u(t − s))ds

〉
≤ δ

2
∥A1/2u(t)∥2 +

c
δ

Cε

(
hε ◦ A1/2u

)
(t),−

〈∫ ∞

0
g(s)Aα/2u(t − s)ds,

∫ ∞

0
g(s)Aα/2(u(t)− u(t − s))ds

〉
=

∥∥∥∥∫ ∞

0
g(s)Aα/2(u(t)− u(t − s))ds

∥∥∥∥2
−

〈(
1 − l
ω0

)
Aα/2u(t),

∫ ∞

0
g(s)Aα/2(u(t)− u(t − s))ds

〉
≤ δ

2ω0

∥∥∥Aα/2u(t)
∥∥∥2

+
c
δ

Cε

(
hε ◦ Aα/2u

)
(t)

≤ δ

2

∥∥∥A1/2u(t)
∥∥∥2

+
c
δ

Cε

(
hε ◦ A1/2u

)
(t),

and 〈
u′(t),

∫ ∞

0
g′(s)(u(t)− u(t − s))ds

〉
=

〈
u′(t), ε

∫ ∞

0
g(s)(u(t)− u(t − s))ds

〉
−

〈
u′(t),

∫ ∞

0
hε(s)(u(t)− u(t − s))ds

〉
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≤ δ

2
∥u′(t)∥2 +

ε2

2δ

∥∥∥∥∫ ∞

0
g(s)(u(t)− u(t − s))ds

∥∥∥∥2
+

δ

2
∥u′(t)∥2 +

1
2δ

∥∥∥∥∫ ∞

0
hε(s)(u(t)− u(t − s))ds

∥∥∥∥2

≤ δ∥u′(t)∥2 +
c
δ
(Cε + 1)

(
hε ◦ A1/2u

)
(t).

Plugging the above estimates in (24), we obtain the desired estimate.

Lemma 6. Under the conditions (A.1-A.3), the functional I2 defined by

I2(t) := ⟨u′(t), u(t)⟩

satisfies, along the solution of (10), the estimate

I′2(t) ≤ ∥u′(t)∥2 − l
2
∥A1/2u(t)∥2 + cCε

(
hε ◦ Aα/2u

)
(t), ∀ t ≥ 0. (25)

Proof. Differentiating I2, using the equation in (10), and repeating the above computations, we get

I′2(t) = ∥u′(t)∥2 −
∥∥∥A1/2u(t)

∥∥∥2
+

(
1 − l
ω0

)∥∥∥Aα/2
∥∥∥2

+

〈∫ ∞

0
g(s)Aα/2(u(s)− u(t − s))ds, Aα/2u(t)

〉
≤ ∥u′(t)∥2 − l

∥∥∥A1/2u(t)
∥∥∥2

+
l

2ω0

∥∥∥Aα/2u(t)
∥∥∥2

+
ω0

2l

∥∥∥∥∫ ∞

0
g(s)Aα/2((u(t)− u(t − s))ds

∥∥∥∥2

≤ ∥u′(t)∥2 − l
2

∥∥∥A1/2u(t)
∥∥∥2

+ cCε

(
hε ◦ A1/2u

)
(t), ∀ t ≥ 0.

Lemma 7. Assume that (A.1-A.3) hold. Then, the functionals J1 and J2 defined by

J1(t) :=
∫ t

0
p(t − s)

∥∥∥Aα/2u(s)
∥∥∥2

ds

and

J2(t) :=
∫ t

0
p(t − s)

∥∥∥A1/2u(s)
∥∥∥2

ds

with p(t) :=
∫ ∞

t
g(s)ds satisfy, along the solution of (10), the estimates

J′1(t) ≤ 3(1 − l)∥A1/2u(t)∥2 − 1
2
(g ◦ Aα/2u)(t) +

1
2

∫ ∞

t
g(s)∥Aα/2u(t)− Aα/2u(s)∥2

2ds,

and
J′2(t) ≤

3

0
(1 − l)∥A1/2u(t)∥2 − 1

2
(g ◦ A1/2u)(t) +

1
2

∫ ∞

t
g(s)∥A1/2u(t)− A1/2u(s)∥2

2ds,

for any t ≥ 0.

Proof. Exploiting Young’s inequality, (A.1-A.3), inequality (12) and the fact that p(t) ≤ p(0) = 1−l
0

, we obtain,
for any t ≥ 0,

J′1(t) =p(0)
∥∥∥Aα/2u(t)

∥∥∥2
−

∫ t

0
g(t − s)

∥∥∥Aα/2u(s)
∥∥∥2

ds

=p(t)
∥∥∥Aα/2u(t)

∥∥∥2
−

∫ t

0
g(t − s)

∥∥∥Aα/2(u(s)− u(t))
∥∥∥2

ds

− 2
∫ t

0
g(t − s)

〈
Aα/2u(t), A1/2(u(s)− u(t))

〉
ds

≤p(0)
∥∥∥Aα/2u(t)

∥∥∥2
−

∫ t

0
g(t − s)∥Aα/2u(t)− Aα/2u(t − s)∥2ds

+
2

0
(1 − l)

∥∥∥Aα/2u(t)
∥∥∥2

+
1
2

∫ t

0
g(t − s)∥Aα/2u(t)− Aα/2u(t − s)∥2ds
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=
3

0
(1 − l)

∥∥∥Aα/2u(t)
∥∥∥2

− 1
2

∫ t

0
g(t − s)∥Aα/2u(t)− Aα/2u(t − s)∥2ds

≤3(1 − l)
∥∥∥A1/2u(t)

∥∥∥2
− 1

2

∫ t

0
g(t − s)∥Aα/2u(t)− Aα/2u(t − s)∥2ds

≤3(1 − l)
∥∥∥A1/2u(t)

∥∥∥2
− 1

2

∫ ∞

0
g(t − s)∥Aα/2u(t)− Aα/2u(t − s)∥2ds

+
1
2

∫ ∞

t
g(t − s)∥Aα/2u(t)− Aα/2u(t − s)∥2ds. (26)

Similarly, differentiating J2 and repeating the above computations, we get, for any t ≥ 0,

J′2(t) =p(0)
∥∥∥A1/2u(t)

∥∥∥2
−

∫ t

0
g(t − s)

∥∥∥A1/2u(s)
∥∥∥2

ds

=p(t)
∥∥∥A1/2u(t)

∥∥∥2
−

∫ t

0
g(t − s)

∥∥∥A1/2(u(s)− u(t))
∥∥∥2

ds

− 2
∫ t

0
g(t − s)

〈
A1/2u(t), A1/2(u(s)− u(t))

〉
ds

≤p(0)
∥∥∥A1/2u(t)

∥∥∥2
−

∫ ∞

0
g(t − s)∥A1/2u(t)− A1/2u(t − s)∥2ds

+
2

0
(1 − l)

∥∥∥A1/2u(t)
∥∥∥2

+
1
2

∫ ∞

0
g(t − s)∥A1/2u(t)− A1/2u(t − s)∥2ds

=
3

0
(1 − l)

∥∥∥A1/2u(t)
∥∥∥2

− 1
2

∫ ∞

0
g(t − s)∥A1/2u(t)− A1/2u(t − s)∥2ds

=
3

0
(1 − l)

∥∥∥A1/2u(t)
∥∥∥2

− 1
2

∫ ∞

0
g(t − s)∥A1/2u(t)− A1/2u(t − s)∥2ds

+
1
2

∫ ∞

t
g(t − s)∥A1/2u(t)− A1/2u(t − s)∥2ds. (27)

Lemma 8. Assume ( A.1- A.3) hold. Then, the functional L defined by

L(t) := N(E(t) + E(t)) + ε1 I1(t) + ε2 I2(t)

satisfies, for a suitable choice of N, ε1, ε2 > 0,
L ∼ E + E , (28)

and the estimate

L′(t) ≤− 2
l
(1 − l)

(
4 +

3
2ω0

)
∥u′(t)∥2 − (1 − l)

(
4 +

3
2ω0

)
∥A1/2u(t)∥2

+
1
4

(
g ◦ Aα/2u + g ◦ A1/2u

)
(t), ∀ t ≥ 0,

(29)

Proof. It is straightforward to establish the equivalence (28). To prove (29), we start by exploiting relations
(17), (18), (23) and (25) to get

L′(t) ≤ −
[(

1 − l
ω0

− δ

)
ε1 − ε2

]
∥u′(t)∥2 −

(
l
2

ε2 − δε1

)∥∥∥A1/2u(t)
∥∥∥2

−
(

N
2
− c

δ
(ε1 + ε2)−

c
δ

Cε(ε1 + ε2)

)(
hε ◦ A1/2u

)
(t)

−
(

N
2
− c

δ
(ε1 + ε2)−

c
δ

Cε(ε1 + ε2)

)(
hε ◦ Aα/2u

)
(t)

+
Nε

2

(
g ◦ Aα/2u + g ◦ A1/2u

)
(t). (30)

Now, we set β := 1−l
ω0

and choose δ small enough so that

<. min
{

1
2

β,
l
8

β

}
.
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Consequently, for ε1 = 16(1−l)
lβ

(
4 + 3

20

)
, we pick ε2 = 3

8 βε1 satisfying

1
4

βε1 < ε2 <
1
2

βε1.

Then,

(β − ).ε1 − ε2 >
1
2

βε1 − ε2 =
1
8

βε1 =
2
l
(1 − l)

(
4 +

3
20

)
and

l
2

ε2 − δε1 >
l
2

(
ε2 −

1
4

βε1

)
=

l
16

βε1 = (1 − l)
(

4 +
3
20

)
.

From
εg2(s)

εg(s)− g′(s)
< g(s) and the Lebesgue Dominated Convergence Theorem, we deduce

lim
ε→0+

εCε = lim
ε→0+

∫ ∞

0

εg2(s)
εg(s)− g′(s)

ds = 0.

So there exists 0 < ε0 < 1 such that if ε < ε0, then

εCε <
1

8c
δ (ε1 + ε2)

.

Now, we choose N large enough so that L ∼ E + E and

N > max
{

4c
δ
(ε1 + ε2),

1
2ε0

}
.

For ε = 1
2N , we have

N
4
− c

δ
(ε1 + ε2) > 0 and ε < ε0.

This gives
N
2
− c

δ
(ε1 + ε2)−

c
δ

Cε(ε1 + ε2) >
N
2
− c

δ
(ε1 + ε2)−

1
8ε

=
N
4
− c

δ
(ε1 + ε2) > 0.

Thus estimate (30) becomes

L′(t) ≤ −2
l
(1 − l)

(
4 +

3
20

)
∥u′(t)∥2 − (1 − l)

(
4 +

3
20

)
∥A1/2u(t)∥2

+
1
4

(
g ◦ Aα/2u + g ◦ A1/2u

)
(t), ∀ t ≥ 0.

Lemma 9. Assume that (A.1-A.3) hold. Then, the energy functional satisfies, for all t ∈ R+ and for some positive
constant m̃, the following estimate ∫ t

0
E(s)ds < m̃ f (t), (31)

where f (t) = 1 +
∫ t

0 h(s)ds and h = h0 + h1 and h0, h1 are defined in (20) and (21).

Proof. Let F(t) = L(t) + J1(t) + 1
2 J2(t), then we obtain, for all t ∈ R+,

F′(t) ≤− 2
l
(4 +

3
2ω0

)||u′(t)||2 − (1 − l)||A1/2u(t)||2 − 1
4
(g ◦ A1/2u)(t)

+
1
2

∫ +∞

t
g(s)∥Aα/2u(t)− Aα/2u(t − s)∥2dsdx

+
1
2

∫ +∞

t
g(s)∥A1/2u(t)− A1/2u(t − s)∥2dsdx. (32)
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Estimates (18) and (32) yield, for some positive constant λ and for all t ∈ R+,

F′(t) ≤− λE(t) +
1
2

∫ +∞

t
g(s)∥Aα/2u(t)− Aα/2u(t − s)∥2dsdx

+
1
2

∫ +∞

t
g(s)∥A1/2u(t)− A1/2u(t − s)∥2dsdx.

Therefore, using (20) and (21) and integrating both sides of the last inequality, over (0, t), we arrive at

λ
∫ t

0
E(s)ds ≤ F(0)− F(t) +

M0

2

∫ t

0
h(s)ds ≤ F(0) +

M0

2

∫ t

0
h(s)ds. (33)

Hence, we get ∫ t

0
E(s)ds ≤ F(0)

λ
+

M0

2λ

∫ t

0
h(s)ds ≤ m̃

(
1 +

∫ t

0
h(s)ds

)
, (34)

where m̃ = max
{ F(0)

λ , M0
2λ

}
.

Corollary 1. There exists 0 < q0 < 1 such that, for all t ≥ 0, we have the following estimate:

∫ t

0
g(s)

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds ≤ 1
q(t)

G−1
(

q(t)µ(t)
ξ(t)

)
(35)

where

µ(t) := −
∫ t

0
g′(s)

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds, (36)

q(t) :=
q0

f (t)
, (37)

G is defined in Remark 4 and f (t) is defined in (31).

Proof. We introduce a functional η defined by

η(t) := q(t)
∫ t

0

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds, ∀ t ≥ 0,

and observe, from inequality (12), that

E(t) ≥ l
2

∥∥∥A1/2u(t)
∥∥∥2

and E(t) ≥ l
20

∥∥∥Aα/2u(t)
∥∥∥2

, ∀ t ≥ 0. (38)

Use of (15), (17) and (38) yields

η(t) ≤ 2q(t)
∫ t

0

(∥∥∥Aα/2u(t)
∥∥∥2

+
∥∥∥Aα/2u(t − s)

∥∥∥2
+

∥∥∥A1/2u(t)
∥∥∥2

+
∥∥∥A1/2u(t − s)

∥∥∥2
)

ds

≤ 4q(t)
l

(1 + 0)
∫ t

0

(
E(t) + E(t − s)

)
ds

≤ 8q(t)
l

(1 + 0)
∫ t

0
E(s)ds, ∀ t ≥ 0.

Thanks to (31), we can pick 0 < q0 < min
{

1, l
8m̃(1+ω0)

}
so that

η(t) < 1, ∀ t ≥ 0. (39)

To prove (35), we define another functional µ by

µ(t) := −
∫ t

0
g′(s)

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds

≤ −c
(
E′(t) + E ′(t)

)
.

(40)
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Also, the strict convexity of G and the fact that G(0) = 0 entail that

G(sτ) ≤ sG(τ), for 0 ≤ s ≤ 1 and τ ∈ (0, r].

Combining this with the hypothesis (A.2), Jensen’s inequality and (39), we obtain, for any t ≥ 0,

µ(t) = − 1
η(t)

∫ t

0
η(t)g′(s)

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds

≥ 1
η(t)

∫ t

0
η(t)ξ(s)G(g(s))

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds

≥ ξ(t)
η(t)

∫ t

0
G(η(t)g(s))

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds

≥ ξ(t)
q(t)

G
(

q(t)
∫ t

0
g(s)

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds
)

,

where G is a C2 extension of G which is strictly increasing and strictly convex on (0, ∞). For simplicity, in the
rest of this paper, we use G instead of G. Then we have for any t ≥ 0,

∫ t

0
g(s)

(∥∥∥Aα/2(u(t)− u(t − s))
∥∥∥2

+
∥∥∥A1/2(u(t)− u(t − s))

∥∥∥2
)

ds ≤ 1
q(t)

G−1
(

q(t)µ(t)
ξ(t)

)
.

5. The main result

In this section, we state and prove our decay result. We introduce the following functions:

G2(t) = tG′(ε0t), G3(t) = tG′−1(t), G4(t) = G∗
3(t). (41)

It is not difficult to show that the above functions are convex and increasing on (0, r]. Now we state our main
result.

Theorem 2. Assume that hypotheses (A.1)–(A.3) hold and the initial data satisfy

(u0, u1) ∈
[
D

(
A1−α/2

)
×D

(
A(1−α)/2

)]
∩
[
D

(
A1/2

)
× H

]
.

Then, for all 0 ≤ s ≤ t and for strictly positive constant C, we have the following decay results

E(t) ≤ C
(

E(0)
q(t)

)
G−1

2

[
C +

∫ t
0 ξ(s)G4

[ c
d q(s)h(s)

]
ds,∫ t

0 ξ(s)ds

]
, (42)

where q is defined in (37), h = h0 + h1 where h0, h1 are defined in (20) and (21) and the functions G2(s) and G4(s) are
defined in (41).

Proof. We start by combining (15), (20), (21), (29) and (35); then, for some m > 0 and for any t ≥ 0, we have

L′(t) ≤ −mE(t) +
c

q(t)
G−1

(
q(t)µ(t)

ξ(t)

)
+ ch(t), ∀ t ≥ 0. (43)

Let 0 < ε0 < r, then define a functional F by

F (t) := G′
(

ε0q(t)E(t)
E(0)

)
L(t), ∀ t ≥ 0.

Using the facts that E′ ≤ 0, G′ > 0 and G′′ > 0, we get for any t ≥ 0,

F ′(t) =
ε0q(t)E′(t)

E(0)
G′′

(
ε0q(t)E(t)

E(0)

)
L(t) + G′

(
ε0q(t)E(t)

E(0)

)
L′(t)
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≤ −mE(t)G′
(

ε0q(t)E(t)
E(0)

)
+

c
q(t)

G′
(

ε0q(t)E(t)
E(0)

)
G−1

(
q(t)µ(t)

ξ(t)

)
+ ch(t)G′

(
ε0q(t)E(t)

E(0)

)
. (44)

Let G∗ be the convex conjugate of G in the sense of Young (see [28]), then

G∗(s) = s(G′)−1(s)− G
[
(G′)−1(s)

]
, if s ∈ (0, G′(r)] (45)

and it satisfies the following generalized Young inequality

AB ≤ G∗(A) + G(B), if A ∈ (0, G′(r)], B ∈ (0, r]. (46)

So, with A = G′
(

ε0
E(t)q(t)

E(0)

)
, B = G−1

(
q(t)µ(t)

ξ(t)

)
, and using (17), (18), and (44)-(46), we arrive at

F ′(t) ≤− mE(t)G′
(

ε0
E(t)q(t)

E(0)

)
+

c
q(t)

G∗
(

G′
(

ε0
E(t)q(t)

E(0)

))
+ c

(
µ(t)q(t)

ξ(t)

)
+ ch(t)G′

(
ε0

E(t)q(t)
E(0)

)
≤− mE(t)G′

(
ε0

E(t)q(t)
E(0)

)
+ cε0

E(t)
E(0)

G′
(

ε0
E(t)q(t)

E(0)

)
+ c

(
µ(t)q(t)

ξ(t)

)
+ ch(t)G′

(
ε0

E(t)q(t)
E(0)

)
. (47)

So, multiplying (47) by ξ(t) and using (40) and the fact that ε0
E(t)q(t)

E(0) < r, we obtain

ξ(t)F ′(t) ≤− mξ(t)E(t)G′
(

ε0
E(t)q(t)

E(0)

)
+ cξ(t)ε0

E(t)
E(0)

G′
(

ε0
E(t)q(t)

E(0)

)
+ cµ(t)q(t) + cξ(t)h(t)G′

(
ε0

E(t)q(t)
E(0)

)
≤− ε0(

mE(0)
ε0

− c)ξ(t)
E(t)
E(0)

G′
(

ε0
E(t)q(t)

E(0)

)
− c

(
E′(t) + E ′(t)

)
(t)

+ cξ(t)h(t)G′
(

ε0
E(t)q(t)

E(0)

)
.

Consequently, recalling the definition of G2 and choosing ε0 so that k = (mE(0)
ε0

− c) > 0, we obtain, for all
t ∈ R+,

F ′
1(t) ≤ −kξ(t)

(
E(t)
E(0)

)
G′

(
ε0

E(t)q(t)
E(0)

)
+ cξ(t)h(t)G′

(
ε0

E(t)q(t)
E(0)

)
≤ −k

ξ(t)
q(t)

G2

(
E(t)q(t)

E(0)

)
+ cξ(t)h(t)G′

(
ε0

E(t)q(t)
E(0)

)
, (48)

where F1 = ξF + c(E + E). Since G′
2(t) = G′(t) + tG′′(t), then, using the strict convexity of G on (0, r], we

find that G′
2(t), G2(t) > 0 on (0, r].

Using the general Young inequality (46) for the last term in (48) with A = G′
(

ε0
E(t)q(t)

E(0)

)
and B = [ c

d h(t)],
we have for any d > 0,

ch(t)G′
(

ε0
E(t)q(t)

E(0)

)
=

d
q(t)

[ c
d

q(t)h(t)
] (

G′
(

ε0
E(t)q(t)

E(0)

))
≤ d

q(t)
G3

(
G′

(
ε0

E(t)q(t)
E(0)

))
+

d
q(t)

G∗
3

[ c
d

q(t)h(t)
]

≤ d
q(t)

(
ε0

E(t)q(t)
E(0)

)(
G′

(
ε0

E(t)q(t)
E(0)

))
+

d
q(t)

G4

[ c
d

q(t)h(t)
]

≤ d
q(t)

G2

(
ε0

E(t)q(t)
E(0)

)
+

d
q(t)

G4

[ c
d

q(t)h(t)
]

, (49)

where G2, G3 and G4 are given in (41). Now, combining (48) and (49) and choosing d small enough so that
k1 = (k − d) > 0, we arrive at

F ′
1(t) ≤ −k1

ξ(t)
q(t)

G2

(
ε0

E(t)q(t)
E(0)

)
+

dξ(t)
q(t)

G4

[ c
d

q(t)h(t)
]

. (50)
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Since E′ < 0 and q′ < 0, then (qE)(t) is decreasing function. Using this fact and since G2 is increasing, we
have, for 0 ≤ t ≤ T,

G2

(
ε0

E(T)q(T)
E(0)

)
≤ G2

(
ε0

E(t)q(t)
E(0)

)
(51)

Combining (50) with (51) and multiplying by q(t), we get

q(t)F ′
1(t) + k1ξ(t)G2

(
ε0

E(T)q(T)
E(0)

)
≤ dξ(t)G4

( c
d

q(t)h(t)
)

. (52)

Since q′ < 0, then for all 0 ≤ t ≤ T,(
q(t)F1

)′
(t) + k1ξ(t)G2

(
ε0

E(T)q(T)
E(0)

)
≤ dξ(t)G4

( c
d

q(t)h(t)
)

. (53)

Integrating (53) over [0, T] and using the fact q(0) = q0, we have

G2

(
ε0

E(T)q(T)
E(0)

) ∫ T

0
ξ(t)dt ≤ q0F1(0)

k1
+ d

∫ T

0
ξ(t)G4

( c
d

q(t)h(t)
)

dt. (54)

Hence,

G2

(
ε0

E(T)q(T)
E(0)

)
≤

[ F1(0)
c + d

∫ T
0 ξ(t)G4

( c
d q(t)h(t)

)
dt,∫ T

0 ξ(t)dt

]
. (55)

Thus (
ε0

E(T)q(T)
E(0)

)
≤ G−1

2

[ F1(0)
c + d

∫ T
0 ξ(t)G4

( c
d q(t)h(t)

)
dt,∫ T

0 ξ(t)dt

]
, (56)

which yields

E(T) ≤ C
(

E(0)
q(T)

)
G−1

2

[
C +

∫ T
0 ξ(t)G4

( c
d q(t)h(t)

)
dt,∫ T

0 ξ(t)dt

]
, (57)

where C = max
{

1, F1(0)
c , c

d , 1
ε0

}
.

Example 1. Let g(t) = a
(1+t)ν , where ν > 1 and 0 < a < ν − 1. In this case ξ(t) = νa

−1
ν and G(t) = t

ν+1
ν . Then

G′(t) = a0t
1
ν . We will discuss two cases:

Case 1: if m0 ≤ 2 + ||Aα/2u0 + A1/2u0||2 ≤ m1. Then we have the following:

G4(t) = a1t
ν+1

ν , G2(t) = a2t
ν+1

ν ,

a3(1 + t)−ν+1 ≤ h(t) ≤ a4(1 + t)−ν+1,

∫ T
0 ξ(t)G4

( c1
d q(t)h(t)

)
dt < +∞,

G−1
2

[
C+

∫ T
0 ξ(t)G4(

c1
d q(t)h(t))dt,∫ T

0 ξ(t)dt

]
≤ a5T−( ν

ν+1 ),

(58)

q0

q(T)
≤ a6


1 + ln(1 + T), ν = 2;
2, ν > 2;
(1 + T)−ν+2+r, 1 < ν < 2 .

(59)

Then

E(T) ≤ a7


(

1 + ln(1 + T)
)

t−( ν
ν+1 ), ν = 2;

T−( ν
ν+1 ), ν > 2;

(1 + T)−(ν−2+ ν
ν+1 ), 1 < ν < 2 .

(60)

Thus for ν ≥ 2 or
√

2 < ν < 2 we have limT→+∞ E(T) = 0.
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Case 2: if m0(1 + t)r ≤ 2 + ||Aα/2u0 + A1/2u0||2 ≤ m1(1 + t)r, where 0 < r < ν − 1, then we have the
following: 

a3(1 + t)−ν+1+r ≤ h(t) ≤ a4(1 + t)−ν+1+r,

∫ T
0 ξ(t)G4

( c1
d q(t)h(t)

)
dt < +∞,

(61)

q0

q(T)
≤ a6


1 + ln(1 + T), ν − r = 2;
2, ν − r > 2;
(1 + T)−ν+2+r, 1 < ν − r < 2 .

(62)

Then,

E(T) ≤ a7


(

1 + ln(1 + T)
)

t−( ν
ν+1 ), ν − r = 2;

T−( ν
ν+1 ), ν − r > 2;

(1 + T)−(ν−2−r+ ν
ν+1 ), 1 < ν − r < 2 .

(63)

Thus for ν − r ≥ 2 or 1
2
(
r +

√
r2 + 4r + 8

)
< ν < r + 2 we have limT→+∞ E(T) = 0.
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