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1. Introduction

C onsider the following initial-boundary value problem for the Navier-Stokes equations in two
dimensions with non-local viscosity. It means, find a vector function

u : Ω × [0, T] → R2,

and a scalar function
p : Ω × [0, T] → R,

satisfying

du(x, t)
dt

− c(l(u1(x, t)), l(u2(x, t)))∆u(x, t) + (u(x, t) · ∇)u(x, t) +∇p(x) = f (x, t) in Ω × (0, T), (1)

div(u(x)) = 0 on Ω, (2)

u(x, t) = g on ∂Ω, (3)

u(x, 0) = u0(x) in Ω, (4)

where Ω is a domain sufficiently regular, ∂Ω its boundary well regular, and we have that
c(l(u1(x, t)), l(u2(x, t))) satisfies these hypotheses: Given x = (x1, x2), y = (y1, y2) ∈ R2,

(A1) 0 < c− ≤ c(x1, x2) ≤ c+,
(A2) |c(x)− c(y)| ≤ A1|x1 − y1|+ A2|x2 − y2|, for some A1, A2 > 0,

and l : L2(Ω) → R is a continuous linear functional, defined by u 7→
∫

Ω udΩ.
We mentioned that the existence, uniqueness and exponential decay of the solution to the problem (1)-(4)

were studied by Ferreira, Shahrouzi, Andrade and Panni in [9].
The motivation to study this kind of problem is we can describe motion of fluids which viscosity depends

of time and satisfies the hypotheses (A1)− (A2), and, when c(l(u1(x, t)), l(u2(x, t))) = µ, constant, we obtain
the regular Navier-Stokes equations in two dimensions. This non-local term was introduced by Chipot [1],
and it arrives naturally when we study the growth of a bacteria population, one kind of this problem was
suggested by Ladyzhenskaya [2] where c(t) := µ0 + µ1∥u(t)∥2 when µ0 and µ1 are positive constants.
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The rest of the paper is organized as follows. In §2, we recall some notations, the weak formulation,
lemmas and theorems. In §3, we study the existence of strong solutions to the problem (1)-(4). In §4, we
introduce the existence of periodic solutions using Brouwer’s fixed point theorem. The conclusions of the
paper are presented in §5.

2. Preliminaries

In this section we introduce some notations, achieve weak formulation and enunciate some important
results.

2.1. Notations

Let Ω ⊂ R2 be a regular domain with ∂Ω a well regular boundary. We denote the inner product in H1
0(Ω)

by ((·, ·)) and (·, ·) in L2(Ω), and norms respectively by ∥ · ∥ and | · |. By H1
0 (Ω) we denote (H1

0(Ω))2 and,
L2(Ω) by (L(Ω))2. The set V is the set of all distributions u : (D(Ω))2 7→ R2, which its divergent is null, in
other words, V(Ω) := {u ∈ (D(Ω))2; div(u) = 0}. Also, we denote the closure of V(Ω) in H1

0 (Ω) by V and
the closure of V(Ω) in (L(Ω))2 by H.

A well known propriety of non-local term, see [3–7], is that this term commutes with spatial integral sign∫
Ω

c(l(u1), l(u2))udΩ = c(l(u1), l(u2))
∫

Ω
udΩ.

2.2. Weak formulation

Consider v ∈ V . Doing inner-product in L2(Ω) with Eq. (1) we get,(
du(x, t)

dt
, v(x)

)
− c(l(u1), l(u2))(∇u(x, t), v(x)) + ((u(x, t) · ∇)u(x, t), v(x)) + (∇p(x), v(x)),= ( f (x, t), v).

By green first identity and integration by parts,

d
dt

(u(x, t), v(x)) + c(l(u1), l(u2))((u(x, t), v(x))) + ((u(x, t) · ∇)u(x, t), v(x)) = ( f (x, t), v(x)).

Now we define a bilinear form a(u, v) := ((u, v)) and a trilinear form b(u, v, w) := ((u · ∇)v, w), and then we
obtain the weak form of Eq. (1),

d
dt

(u, v) + c(l(u1), l(u2))a(u, v) + b(u, u, v) = ( f , v).

2.3. Some results

Lemma 1. [8] Let u ∈ L2(0, T; V), then the function Bu defined by,

⟨Bu(t), v⟩ := b(u, v, w), ∀v ∈ V , for a.e. t ∈ [0, T],

belongs to L1(0, T; V ′).

Lemma 2. Let Ω ⊂ Rn be an bounded Lipschitz open set in R2.

1. If a distribution p has all its first-order derivatives Di p in L2(Ω), then p ∈ L2(Ω) and

∥p∥L2(Ω)\R ≤ c(Ω)|∇p|L2(Ω).

2. If a distribution p has all its first-order derivatives in H−1(Ω). Then p ∈ L2(Ω) and

∥p∥L2(Ω)\R ≤ c∥∇p∥H−1(Ω),

where L2(Ω)\R :=
{

p ∈ L2(Ω)
∣∣ ∫

Ω p(x)dx = 0
}

.

Problem 1. For f and u0 given, with
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f ∈ L2(0, T; V ′), (5)

u0 ∈ H, (6)

to find u satisfying,

u ∈ L2(0, T; V), u′ ∈ L1(0, T; V ′),

d
dt

(u(x, t), v(x)) + c(l(u1), l(u2))((u(x, t), v(x))) + ((u(x, t) · ∇)u(x, t), v(x)) = ( f (x, t), v(x)),

for any v ∈ V .

3. Existence of strong solutions

Suppose the existence of weak solutions to the problem (1)-(4). Our goal in this section is recover the
pressure and prove the existence of strong solutions.

Theorem 2. Given f and u0 satisfying (5) and (6). Suppose that u is a solution of the Problem 1 and

f − c(l(u1), (u2))Au − Bu − u′ ∈ L2(0, T; V′),

then the solution u is also strong.

Proof. Let,

U(t) :=
∫ t

0
u(s)ds, F(t) :=

∫ t

0
f (s)ds and β(t) :=

∫ t

0
B(u(s), u(s))ds ∈ V′.

Since u, f , Bu ∈ L2(0, T; V′) then,

U, F and β ∈ C0(0, T; V′) these are absolute continuous. (7)

Integrating c(l(u1), (u2))Au + Bu + u′ = f , and, by (7), we get

u(t)− u(0) + c(l(u1), l(u2))
∫ t

0
Au(s)ds +

∫ t

0
Bu(s)ds =

∫ t

0
f (s)ds in V’.

Then,
u(t)− u0 + c(l(u1), l(u2))AU(t) + β(t) = F(t) in V′, ∀t ∈ [0, T].

So, for each ϕ ∈ V,
⟨u(t)− u(0) + c(l(u1), l(u2))AU(t) + β(t)− F(t), ϕ⟩ = 0. (8)

Define,
S(t) := u(t)− u0 + c(l(u1), l(u2))AU(t) + β(t)− F(t) ∈ V′. (9)

For each t ∈ [0, T] it is possible to extend S(t) on a functional T(t) ∈ H−1(Ω) such as,

⟨T(t), v⟩ = ⟨S(t), v⟩, ∀v ∈ V. (10)

But, from (8) and (10) we can conclude that,

⟨T(t), ϕ⟩ = 0, ∀ϕ ∈ V.

From Lemma 2 results that ∃P(t) ∈ L2(Ω) satisfying,

T(t) = ∇P(t) in H−1(Ω). (11)
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So, from (10) and (11) we get,
∇P(t)

∣∣
V ≡ S(t) in V′, ∀t ∈ [0, T]. (12)

Replacing (12) in (9),

u(t)− u0 + c(l(u1), l(u2))AU(t) + β(t)− F(t) = ∇P(t) in V′, ∀v ∈ [0, T].

As the expression on the left belongs to the space C0(0, T; V′) we have ∇P ∈ C0(0, T; V′), and hence we can
derive the above equation in the sense of distributions, with this:

u′ + c(l(u1), l(u2))Au − f + Bu = ∇∂P
∂t

in L2(0, T; V′).

Therefore is possible to say that equality above is given a.e. in (0, T). Setting p(x, t) = −∂P
∂t

, results in,

u′ + c(l(u1), l(u2))Au + Bu = f −∇p ∈ L2(0, T; V′).

4. Existence of periodic solutions

The purpose of this section is to prove the existence of periodic solutions to the Navier-Stokes equations.

Theorem 3. Let Ω ⊂ R2 a bounded open set with boundary ∂Ω well regular and Q := [0, T] × Ω. Consider the
following problem,



∂u
∂t

− c(l(u1), l(u2))∆u + (u · ∆)u +∇p = f in Q,

div(u) = 0 in Q,

u = 0 on ∂Ω,

u(x, 0) = u(x, T), ∀x ∈ Ω,

(13)

where f ∈ L2(0, T; V′). This problem admits weak solution in u : Q → R2, u ∈ L2(0, T; H) ∩ L∞(0, T; H) and
u′ ∈ L2(0, T; V′).

Proof. The weak formulation of (13) is given by,

{
⟨u′(t), v⟩+ c(l(u1), l(u2))((u(t), v)) + b(u(t), u(t), v) = ⟨ f (t), v⟩ in D′(0, T), ∀v ∈ V,

u(0) = u(T).
(14)

Consider {w1, · · · , wn, · · · } a base of V. We truncate the series in m-th term, which leads to the
approximate solution space Vm. Setting um(t) := gim(t)wi,

{
(u′

m(t), wj) + c(l(u1), l(u2))((um(t), wj)) + b(um(t), um(t), wj) = ⟨ f (t), wj⟩,
um(0) = v ∈ Vm,

(15)

where j = 1, · · · , m.
The approximate system above has a global solution, since by similar procedure to the case of the existence

of solutions [9], we obtain the following inequality,

|u(t)|2 +
∫ t

0
∥um(s)∥2ds ≤ |v|+ 1

c−
∥ f∥L2(0,T;V′) ≤ c(m),
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as m is fixed, we can extend u(t) in [0, T]. Our goal is to show that, among all solutions of the approximate
equation, there is at least one um solution that satisfies periodicity,

um(0) = um(T).

To do this, just prove that for every m ∈ N, the application,

τm : Vm → Vm

v 7→ τm(v) = um(T),

has a single fixed point, because in this case there will be a single function v ∈ Vm such that

um(T) = τm(v) = v = um(0), ∀m ∈ N. (16)

Thus (16) we have a (um) sequence of approximate solutions such that they all satisfy the periodicity condition.

Lemma 3. Exists ρ0 > 0 such as τm(Bρ0(0)) ⊂ Bρ0(0).

Proof. Using the H induced topology in Vm, it suffices to prove that

∃ ρ0 > 0 such that |τm(v)|H ≤ ρ0; ∀v ∈ Vm, where |v|H ≤ ρ0.

Applying the energy method,

1
2

d
dt
|um(t)|2 + c−∥um(t)∥2 + b(um(t), um(t), um(t))

≤ 1
2

d
dt
|um(t)|2 + c(l(u1), l(u2))∥um(t)∥2 + b(um(t), um(t), um(t))

= ⟨ f (t), um(t)⟩
≤ ∥ f (t)∥V′ |um(t)|,

implies that,

1
2

d
dt
|um(t)|2 + c−∥um(t)∥2 ≤ 1

2c−
∥ f (t)∥2

V′ +
c−
2
∥um(t)∥2,

then,
1
2

d
dt
|um(t)|2 +

c−
2
∥um(t)∥2 ≤ 1

c−
∥ f (t)∥2

V′ . (17)

As V ↪→ H, exists c0 > 0 such as,
c2

0|um(t)|2 ≤ ∥um(t)∥2. (18)

Thus from (17) and (18) we get,

d
dt
|um(t)|2 + c2

0c−|um(t)|2 ≤ 1
c−

∥ f (t)∥2
V′ .

Multiplying both sides by ec2
0c−t:

d
dt
(|um(t)|2ec2

0c−t) ≤ 1
c−

∥ f (t)∥2
V′ ec2

0c−t.

Integrating from 0 to T we get,

|um(t)|2ec2
0c−t ≤ |um(0)|2 +

1
c−

∫ T

0
∥ f (t)∥2

V′ ec2
0c−tdt,
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which means,

|um(t)|2 ≤ e−c2
0c−T |um(0)|2 +

1
c−

∫ T

0
∥ f (t)∥2

V′dt,

then,

|um(t)|2 ≤ e−c2
0c−T |um(0)|+

1
c−

∥ f∥2
L2(0,T;V′).

Denoting θ = e−c2
0c−T and c = 1

c− ∥ f∥2
L2(0,T;V′)

, we can write

|um(t)|2 ≤ θ|um(0)|2 + c,

so,
|τm(v)|2 ≤ θ|v|2 + c, ∀v ∈ Vm.

Now, how 0 < θ < 1 then 0 < 1 − θ < 1. That way there is a ρ0 > 0, big enough that c < (1 − θ)ρ2
0. So if

|v| < ρ0 then,
θ|v|2 + c ≤ θρ2

0 + (1 − θ)ρ2
0 = ρ2

0 ,

where,
|τm(v)|2 ≤ ρ2

0, ∀m ∈ N,

which proves this lemma.

Lemma 4. The application τm : Vm 7→ Vm defined in (15) is continuous.

Proof. Let v1, v2 ∈ Vm and um, zm solutions of the approximate problem with initial data v1 and v2,
respectively. Our goal is to show that the solutions are Lipschitz-continuous, |τm(v1)− τm(v2)| ≤ cm|v1 − v2|
for some cm > 0.

(u′
m(t), wj) + c(l(u1), l(u2))((um(t), wj)) + b(um(t), um(t), wj) = ⟨ f (t), wj⟩,

(z′m(t), wj) + c(l(z1), l(z2))((zm(t), wj)) + b(zm(t), zm(t), wj) = ⟨ f (t), wj⟩.

Doing the difference between these equations and defining ηm = zm − um,

(ηm, wj) + c(l(u1), l(u2))((um(t), wj))− a(l(z1), l(z2))((zm(t), wj))

+ b(um(t), um(t), wj)− b(zm(t), zm(t), wj) = 0,

we proceed as in [9]
d|ηm|2

dt
− |ηm|2

(
2

c−
∥u2m(t)∥2 +

K2

c−
∥zm∥2

)
≤ 0.

Defining θm(t) =
(

2
c− ∥u2m(t)∥2 + K2

c− ∥zm∥2
)

, we get,

d|ηm|2
dt

− |ηm|2θm(t) ≤ 0.

Multiplying both sides of inequality e−
∫ t

0 θm(s)ds,

d
dt

(
|ηm(t)|2e−

∫ t
0 θm(s)ds

)
≤ 0.

Integrating the inequality from 0 to T,

|ηm(T)|2e−
∫ t

0 θm(s)ds − |ηm(0)|2 ≤ 0.

Defining cm = e−
∫ t

0 θm(s)ds,
|ηm(T)|2 ≤ cm|ηm(0)|2.
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By other hand,
ηm(s) = um(s)− zm(s),

so,
|um(T)− zm(T)|2 ≤ cm|um(0)− zm(0)|2.

Then,
|τm(v1)− τm(v2)| ≤ cm|v1 − v2|,

which is what we want to prove.

The hypotheses of Brouwer’s fixed point theorem are satisfied by virtue of Lemmas 3 and 4, so we have

τm : Bρ0(0) → Bρ0(0),

admits a fixed point, which means, there is a v ∈ Bρ0(0) such as τm(v) = v, so, um(0) = um(T).
Then, for each m ∈ N, there is a least one um(t) such as um(0) ∈ Bρ0(0) and, ∀j = 1, · · · , m,{

(u′
m(t), wj) + c(l(u1), l(u2))((um(t), wj)) + b(um(t), um(t), wj) = ⟨ f (t), wj⟩,

um(0) = um(t).

From the fact that um(0) ∈ Bρ0(0) we can repeat the estimates getting a subsequence (uν) of (um) such as

uν
⋆→ u in L∞(0, T; H), (19)

uν → u in L2(0, T; V), (20)

u′
ν → u′ in L2(0, T; V′). (21)

From the convergence results (19) - (21), by passing the limit in the approximate equation desired in (14).
Similarly to the proof of the initial condition in the previous case, we prove that u(0) = u(T), which concludes
the statement.

5. Conclusions

We studied the Navier-Stokes equations with non-local viscosity, considering a bounded domain Ω ⊂ R2

with smooth boundary ∂Ω. Using Faedo-Galerkin’s method and Brouwer’s fixed point theorem, we proved
the strong solutions and periodic solutions.
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