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1. Introduction

I f we chose two functions u and v, and went around asking mathematicians to compute the n-th derivative
of their product, the first idea that would come to their mind is to use Leibniz’s formula. However, what

if we asked them to compute the n-th derivative of the quotient instead? What formula would come to their
mind? For many, the answer is none. Therefore, a large portion of the mathematical community needs to be
made aware of the existence of such a formula.

This is because, while Leibniz’s formula is a subject studied in practically all calculus courses, the topic
is rarely discussed when it comes to talking about an analogous formula for the quotient of two functions.
Although many wonders if such a formula exists, little work has been done on the subject. In 1967 [1], the
first step was taken as a more straightforward question was answered; that is, a recursive formula for the n-th
derivative of 1/ f (x) was presented. Later, in 1980, F. Gerrish [2] noticed an interesting pattern linking the
n-th derivative of a quotient to a notable determinant. In 2008, this special connection was used to establish
a recursive formula for such a derivative. So if such a formula exists, why do most of us not know about
it? There are two primary reasons: The first is that the existing formulas could be more practical as they are
recursive rather than explicit. The second is that such a formula was thought to be useless.

F. Gerrish [2] even went as far as calling it the “Useless Formula”. However, since then, this formula has
found various applications and has been used to deal with a multitude of topics [3–9]. Hence, in this article,
we propose revisiting the subject and developing an explicit formula for the n-th derivative of a quotient
analogous to the generalized product rule. We hope this formula will become a standard like Leibniz’s rule.

More precisely, it will be analogous to the generalized product rule for the product of several functions.
Note that we mean by analogous that the formula will be explicit and have the same form (that is, it will be
in terms of a sum over partitions). Let us begin by noting that, in the same way, Leibniz’s formula is often
referred to as the product rule; in this article, for simplicity, we will refer to the formula for the n-th derivative
of a quotient as the quotient rule.

We will begin by deriving a new formula for the n-th derivative of 1/ f (x) (§2). Although such a formula
already exists, the formula presented in [1] is rather complicated. Therefore, we propose a simpler formula
involving partitions. The formula we will present also has the advantage of being explicit rather than recursive.
We will refer to this particular case as the common rule.

Similarly, although a recursive formula already exists for the quotient rule, no explicit formula exists.
Therefore, in §3, by combining the reciprocal formula with Leibniz’s formula, we develop an explicit formula
for the n-th derivative of the quotient of two functions. Finally, in §4, we apply the reciprocal and quotient
rules developed to derive new partition identities and expressions for some special n-th derivatives.
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2. n-th derivative of 1/v(x) (Reciprocal rule)

We begin by introducing the concept of partitions as partitions are an essential part of the quotient rule
we will develop. As defined by the author in [10,11], a partition can be defined as follows:

Definition 1. A partition of a non-negative integer m is a set of positive integers whose sum equals m. We can
represent a partition of m as an ordered set (yk,1, . . . , yk,m) that verifies

yk,1 + 2yk,2 + · · ·+ myk,m =
m

∑
i=1

i yk,i = m. (1)

The coefficient yk,i is the multiplicity of the integer i in the k-th partition of m. Note that 0 ≤ yk,i ≤ m while
1 ≤ i ≤ m. Also note that the number of partitions of an integer m is given by the partition function denoted
p(m) and hence, 1 ≤ k ≤ p(m). In the remainder of this text, the subscript k will be added to indicate that a
given parameter is associated with a given partition. Similarly, for simplicity, we will omit the bounds of i and
write ∑ iyk,i = m and ∑ yk,i. Furthermore, we define the following partition notation:

πk = ∑ iyk,i, (2)

rk = ∑ yk,i. (3)

As partitions are not the main focus of this article, we will not go into more details. For readers interested in a
more in-depth explanation about partitions, see [12].

Before we begin proving the main results of this section, let us introduce the following notation: In the
remainder of this article, the letters u and v will be used to indicate a function of x. In other words, u represents
u(x) and v represents v(x).

Definition 2. Let us define the following shorthand notation:

(v)(n) = v(n) =
dn

dxn (v(x)) . (4)

In order to prove the reciprocal rule, we need to first prove the following lemma.

Lemma 1. We have that

n−1

∑
j=0

(
∑ Yk,i − 1

Yk,1, . . . , Yk,n−j − 1, . . . , Yk,n

)
=

n

∑
j=1

(
∑ Yk,i − 1

Yk,1, . . . , Yk,j − 1, . . . , Yk,n

)
=

(
∑ Yk,i

Yk,1, . . . , Yk,n

)
.

Proof.

n−1

∑
j=0

(
∑ Yk,i − 1

Yk,1, . . . , Yk,n−j − 1, . . . , Yk,n

)
=

n−1

∑
j=0

(∑ Yk,i − 1)!
Yk,1! · · ·Yk,n−j! · · ·Yk,n!

(Yk,n−j)

=
(∑ Yk,i − 1)!
Yk,1! · · ·Yk,n!

n

∑
j=1

(Yk,j)

=
(∑ Yk,i)!

Yk,1! · · ·Yk,n!
=

(
∑ Yk,i

Yk,1, . . . , Yk,n

)
.

Using the recursive formula for the quotient rule [13], we derive the reciprocal rule.
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Theorem 1 (Reciprocal rule). Let v be an n times differentiable function of x, for any n ∈ N and at every point where
v ̸= 0, we have that (

1
v

)(n)
=

dn

dxn

(
1
v

)
= n! ∑

∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

v∑ yk,i+1

n

∏
i=1

[
v(i)

i!

]yk,i

.

Remark 1. A very interesting and compact way of rewriting this theorem is as follows:

(
1
v

)(n)
= n! ∑

∑ iyk,i=n
Ck

n

∏
i=1

1
yk,i!

[
v(i)

i!

]yk,i

where

Ck =
d∑ yk,i

dv∑ yk,i

(
1
v

)
=

(∑ yk,i)!(−1)∑ yk,i

v∑ yk,i+1 =
(−1)rk rk!

vrk+1 . (5)

As we can see, the general reciprocal rule using the Ck notation is simple and easy to memorize.

Remark 2. Let us define the notation {a}b corresponds to writing b times the value a. Let Ik = ({1}yk,1 , . . . , {n}yk,n).
Similarly, let Pk = (yk,1, . . . , yk,n). Other interesting ways of writing the theorem are:

(
1
v

)(n)
= ∑

∑ iyk,i=n

(
n
Ik

)
Ck

n

∏
i=1

[
v(i)
]yk,i

yk,i!
=

1
v ∑

∑ iyk,i=n

(
n
Ik

)(
∑ yk,i

Pk

) n

∏
i=1

[
−v(i)

v

]yk,i

.

Proof. 1. Base case: verify true for n = 1.

1! ∑
∑ iyk,i=1

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

v∑ yk,i+1

n

∏
i=1

[
v(i)

i!

]yk,i

=

(
1
1

)
(−1)1

v2

[
v
′

1!

]1

= − v′

v2 =
d

dx

(
1
v

)
.

Remark 3. We can also verify true for n = 0. It is important to note that the partition assumed to correspond to zero is
(0, 0, . . .). Hence,

0! ∑
∑ iyk,i=0

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

v∑ yk,i+1

n

∏
i=1

[
v(i)

i!

]yk,i

=

(
0

0, 0, . . .

)
(−1)0

v1 (1) =
1
v
=

(
1
v

)(0)
.

2. Induction hypothesis: assume the statement is true until (n − 1) ∈ N.

(
1
v

)(n−1)
= (n − 1)! ∑

∑ iyk,i=n−1

(
∑ yk,i

yk,1, . . . , yk,n−1

)
(−1)∑ yk,i

v∑ yk,i+1

n−1

∏
i=1

[
v(i)

i!

]yk,i

.

3. Induction step: we will show that this statement is true for n.
We have to show the following statement to be true:

(
1
v

)(n)
= n! ∑

∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

v∑ yk,i+1

n

∏
i=1

[
v(i)

i!

]yk,i

.

Using the recursive formula developped in [13] with u = 1, we have

(
1
v

)(n)
=

(−1)n!
v

n

∑
j=1

v(n+1−j)

(n + 1 − j)!

(
1
v

)(j−1)

(j − 1)!
=

(−1)n!
v

n−1

∑
j=0

v(n−j)

(n − j)!

(
1
v

)(j)

j!
.
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Applying the induction hypothesis, we get

(
1
v

)(n)
=

(−1)n!
v

n−1

∑
j=0

v(n−j)

(n − j)! ∑
∑ iyk,i=j

(
∑ yk,i

yk,1, . . . , yk,j

)
(−1)∑ yk,i

v∑ yk,i+1

j

∏
i=1

[
v(i)

i!

]yk,i

= n!
n−1

∑
j=0

v(n−j)

(n − j)! ∑
∑ iyk,i=j

(
∑ yk,i

yk,1, . . . , yk,j

)
(−1)∑ yk,i+1

v∑ yk,i+2

j

∏
i=1

[
v(i)

i!

]yk,i

.

Let us define an extension (yk,1, . . . , yk,n) of (yk,1, . . . , yk,j) where yk,j+1 = · · · = yk,n = 0. Hence, we can write
that (

1
v

)(n)
= n!

n−1

∑
j=0

v(n−j)

(n − j)! ∑
∑ iyk,i=j

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i+1

v∑ yk,i+2

n

∏
i=1

[
v(i)

i!

]yk,i

= n!
n−1

∑
j=0

∑
∑ iyk,i+(n−j)·1=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i+1

v∑ yk,i+2

[
v(n−j)

(n − j)!

]
n

∏
i=1

[
v(i)

i!

]yk,i

.

Notice that 1 ≤ n − j ≤ n as 0 ≤ j ≤ n − 1. Now, for all (n − j) ∈ [1, n], let us associate with each partition
(yk,1, . . . , yk,n), the partition (Yk,1, . . . , Yk,n) such that{

Yk,i = yk,i + 1, for i = n − j,

Yk,i = yk,i, otherwise.

Notice that ∑ Yk,i = ∑ yk,i + 1 and that ∑ iYk,i = n. Hence, we can write

(
1
v

)(n)
= n!

n−1

∑
j=0

∑
∑ iYk,i=n

(
∑ Yk,i − 1

Yk,1, . . . , Yk,n−j − 1, . . . , Yk,n

)
(−1)∑ Yk,i

v∑ Yk,i+1

n

∏
i=1

[
v(i)

i!

]Yk,i

= n! ∑
∑ iYk,i=n

(−1)∑ Yk,i

v∑ Yk,i+1

 n

∏
i=1

[
v(i)

i!

]Yk,i
 n−1

∑
j=0

(
∑ Yk,i − 1

Yk,1, . . . , Yk,n−j − 1, . . . , Yk,n

)
.

Applying Lemma 1 to the inner sum, we obtain

(
1
v

)(n)
= n! ∑

∑ iYk,i=n

(
∑ Yk,i

Yk,1, . . . , Yk,n

)
(−1)∑ Yk,i

v∑ Yk,i+1

n

∏
i=1

[
v(i)

i!

]Yk,i

.

This concludes our proof by induction.

Remark 4. As we can see, the reciprocal rule derived (Theorem 1) is very similar to the product rule for the product of
several functions:

(u1 · · · um)
(n) = ∑

ℓ1+···+ℓm=n

(
n

ℓ1, . . . , ℓm

) m

∏
i=1

u(ℓi)
i (6)

There exists other alternatives for proving Theorem 1. In what follows, we will present a few propositions
that will be useful for doing so.

First, let us prove the following useful proposition for the derivative of a product.

Proposition 1. Let u1, . . ., un be differentiable functions of x, we have that

d
dx

(
n

∏
i=1

ui

)
=

(
n

∏
i=1

ui

)
n

∑
j=1

u
′
i

ui
.
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Proof. Let f (x) = u1 · · · un. Taking the logarithm of both sides, we get

ln f (x) = ln

(
n

∏
i=1

ui

)
=

n

∑
i=1

ln ui.

Differentiating both sides, we get

− f ′(x)
f (x)

= −
n

∑
i=1

u
′
i

ui
.

Canceling the minus sign, we obtain the desired formula.

Now we prove the following partition identity involving a special sum of multinomial coefficients. This
expression is equivalent to Lemma 1 that we used to prove Theorem 1.

Proposition 2. We have that

∑
∑ φi=∑ Yi−1

φi≤Yi

(
∑ Yi − 1

φ1, . . . , φn

)
=

(
∑ Yi

Y1, . . . , Yn

)
.

Proof. Let Zi = Yi − φi for 1 ≤ i ≤ n.

∑
∑ φi=∑ Yi−1

φi≤Yi

(
∑ Yi − 1

φ1, . . . , φn

)
=

(∑ Yi − 1)!
Y1! · · ·Yn! ∑

∑ φi=∑ Yi−1
φi≤Yi

Y1! · · ·Yn!
φ1! · · · φn!

=
(∑ Yi − 1)!
Y1! · · ·Yn! ∑

∑ Zi=1
Zi≥0

Y1! · · ·Yn!
(Y1 − Z1)! · · · (Yn − Zn)!

.

Knowing that the Zi’s are non-negative integers, the only way for their sum to be equal to 1 is if one of them is
equal to 1 and the others are equal to 0. Hence, we have that

∑
∑ Zi=1
Zi≥0

Y1! · · ·Yn!
(Y1 − Z1)! · · · (Yn − Zn)!

=
n

∑
i=1

Yi!
(Yi − 1)!

=
n

∑
i=1

Yi.

Substituting back, we obtain the proposition.

3. n-th derivative of u(x)/v(x) (Quotient rule)

In this section, we combine Theorem 1 with Leibniz’s rule to obtain the general quotient rule.

Theorem 2 (Quotient rule). Let u and v be n times differentiable functions of x, for any n ∈ N and at every point
where v ̸= 0, we have that

(u
v

)(n)
=

dn

dxn

(u
v

)
= n!

n

∑
ℓ=0

u(n−ℓ)

(n − ℓ)! ∑
∑ iyk,i=ℓ

(
∑ yk,i

yk,1, . . . , yk,ℓ

)
(−1)∑ yk,i

v∑ yk,i+1

ℓ

∏
i=1

[
v(i)

i!

]yk,i

= n!
n

∑
πk=0

u(n−πk)

(n − πk)!

(
∑ yk,i

yk,1, . . . , yk,πk

)
(−1)∑ yk,i

v∑ yk,i+1

πk

∏
i=1

[
v(i)

i!

]yk,i

.

Proof. Applying Leibniz’s rule to Theorem 1, we obtain this theorem.

Remark 5. A much more compact way of expressing this theorem is as follows:

(u
v

)(n)
= n!

n

∑
ℓ=0

∑
∑ iyk,i=n−ℓ

Ck

[
u(ℓ)

ℓ!

]
n−ℓ

∏
i=1

1
yk,i!

[
v(i)

i!

]yk,i

= n!
n

∑
πk=0

Ck
u(n−πk)

(n − πk)!

πk

∏
i=1

1
yk,i!

[
v(i)

i!

]yk,i
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where Ck is as defined in Eq. (5) and πk is as defined in Eq. (2).
Using the Ck and πk notation, we obtain a simple and easy to memorize expression for the general quotient rule that
could potentially be taught to university students at the same time as the general product rule.

Remark 6. Let Ik = ({1}yk,1 , . . . , {πk}yk,πk
) and Pk = (yk,1, . . . , yk,πk

). We can write the following interesting but not
very practical expressions:

(u
v

)(n)
=

n

∑
πk=0

Ck

(
n

Ik, n − πk

)
u(n−πk)

πk

∏
i=1

[
v(i)
]yk,i

yk,i!

=
n

∑
πk=0

(
n

Ik, n − πk

)(
∑ yk,i

Pk

)
u(n−πk)

v

πk

∏
i=1

[
−v(i)

v

]yk,i

.

4. Applications

Let us first define some notation to simplify the expressions we will derive. For a given partition
(yk,1, . . . , yk,n) of n, we define the following notation:

ck =
n

∏
i=1

1
iyk,i yk,i!

, ck =
n

∏
i=1

(−1)yk,i

iyk,i yk,i!
. (7)

pk =
n

∏
i=1

1
i!yk,i yk,i!

, pk =
n

∏
i=1

(−1)yk,i

i!yk,i yk,i!
. (8)

qk =
n

∏
i=1

1
i!yk,i

, qk =
n

∏
i=1

(−1)yk,i

i!yk,i
. (9)

4.1. Partition identities

In this section, we will show how the quotient rule developed can be used to derive partition identities.
In particular, we will derive a few special partition identities.

Proposition 3. For any n ∈ N, we have that

∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

n

∏
i=1

1
i!yk,i

=
(−1)n

n!
.

Using the notation, this proposition can be expressed as

∑
∑ iyk,i=n

(
rk

yk,1, . . . , yk,n

)
(−1)rk qk = ∑

∑ iyk,i=n

(
rk

yk,1, . . . , yk,n

)
qk =

(−1)n

n!
.

Remark 7. We can also rewrite it as follows:

∑
∑ iyk,i=n

rk!(−1)rk
n

∏
i=1

1
i!yk,i yk,i!

=
(−1)n

n!
.

Using the notation, this proposition can be expressed as

∑
∑ iyk,i=n

rk!(−1)rk pk = ∑
∑ iyk,i=n

rk!pk =
(−1)n

n!
.
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Proof. From Theorem 1 with v(x) = ex and knowing that v(i)(x) = ex for all i, we get

dn

dxn

(
1
ex

)
= n! ∑

∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

(ex)∑ yk,i+1

n

∏
i=1

[
ex

i!

]yk,i

= n!e−x ∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

n

∏
i=1

1
i!yk,i

.

Noticing that
dn

dxn

(
1
ex

)
=

dn

dxn

(
e−x) = (−1)ne−x,

we obtain the proposition.

Proposition 4. For any n ∈ N and any m ∈ N∗, we have that

∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

n

∏
i=1

[(
m
i

)]yk,i

= (−1)n
(

n + m − 1
m − 1

)
.

Proof. Let v(x) = xm, then v(i) = i!(m
i )xm−i. Hence, from Theorem 1, we have

dn

dxn

(
1

xm

)
= n! ∑

∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

xm ∑ yk,i+m

n

∏
i=1

[
xm−i

(
m
i

)]yk,i

= n! ∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

xm ∑ yk,i+m (xm ∑ yk,i−n)
n

∏
i=1

[(
m
i

)]yk,i

= n!x−m−n ∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

n

∏
i=1

[(
m
i

)]yk,i

.

Noticing that
dn

dxn

(
1

xm

)
=

dn

dxn

(
x−m) = (−1)nn!

(
n + m − 1

m − 1

)
x−m−n,

we obtain the proposition.

Corollary 1. Setting m = n, we get

∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

n

∏
i=1

[(
n
i

)]yk,i

= (−1)n
(

2n − 1
n − 1

)
.

Proposition 5. For any n ∈ N and any m ∈ N∗, we have that

∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

n

∏
i=1

[(
i + m − 1

m − 1

)]yk,i

= (−1)n
(

m
n

)
.

Proof. Let v(x) = x−m, then v(i) = (−1)ii!(i+m−1
m−1 )x−(m+i). Hence, from Theorem 1, we have

dn

dxn

(
1

x−m

)
= n! ∑

∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

x−m ∑ yk,i−m

n

∏
i=1

[
(−1)i

(
i + m − 1

m − 1

)
x−(m+i)

]yk,i

= n!(−1)n ∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i (x−m ∑ yk,i−n)

x−m ∑ yk,i−m

n

∏
i=1

[(
i + m − 1

m − 1

)]yk,i

= (−1)nn!xm−n ∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

n

∏
i=1

[(
i + m − 1

m − 1

)]yk,i

.
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Noticing that
dn

dxn

(
1

xm

)
=

dn

dxn

(
x−m) = n!

(
m
n

)
xm−n,

we obtain the proposition.

An extremely interesting result that can be derived from Proposition 5 is that for the alternating sum over
partitions of multinomial coefficients.

Corollary 2. Setting m = 1, we get

∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i = (−1)n

(
1
n

)
=

{
(−1)n, n = 0, 1,

0, n ≥ 2.

4.2. Special n-th derivatives

Because of the absence of a general quotient rule, there were many n-th derivatives for which we could
not obtain an explicit expression. In this section, we will use the quotient rule derived to develop an expression
for some of these derivatives.

The first special n-th derivative is that of logx a as well as that of the reciprocal of ln x. In 2014, Feng Qi
[14] introduced the following expression for the reciprocal of ln x:(

1
ln x

)(n)
=

(−1)n

xn

n+1

∑
i=2

an,i

(ln x)i , (10)

where
an,2 = (n − 1)! (11)

and, for n + 1 ≥ i ≥ 3,

an,i = (i − 1)!(n − 1)!
n−1

∑
ℓ1=1

1
ℓ1

ℓ1−1

∑
ℓ2=1

1
ℓ2

· · ·
ℓi−4−1

∑
ℓi−3=1

1
ℓi−3

ℓi−3−1

∑
ℓi−2=1

1
ℓi−2

. (12)

The expression seems simple, however, the an,i terms correspond to a kind of multiple harmonic sum. Such
sums are very tedious to compute, thus, making Eq. (10) a bit tedious to use. In what follows, using the general
reciprocal rule, we will derive a simpler expression.

Proposition 6. For any a ∈ N∗, the n-th derivative of logx a is given by

(logx a)(n) =
(

ln a
ln x

)(n)
= (logx a)

(−1)nn!
xn ∑

∑ iyk,i=n

(∑ yk,i)!
(ln x)∑ yk,i

n

∏
i=1

1
iyk,i yk,i!

.

Using the notation, we can rewrite it as follows:

(logx a)(n) =
(

ln a
ln x

)(n)
= (logx a)

(−1)nn!
xn ∑

∑ iyk,i=n
ck

rk!
(ln x)rk

.

Proof. From Theorem 1 with v = ln x, we have

(logx a)(n) =
(

ln a
ln x

)(n)
= n!

ln a
ln x ∑

∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

(ln x)∑ yk,i

n

∏
i=1

[
(ln x)(i)

i!

]yk,i

.

Knowing that, for i ≥ 1,

(ln x)(i) =
(−1)i−1(i − 1)!

xi ,
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hence, by substituting back and simplifying, we get

(logx a)(n) = n!(logx a) ∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i

(ln x)∑ yk,i

n

∏
i=1

[
(−1)i−1

ixi

]yk,i

=
(−1)nn!

xn (logx a) ∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
1

(ln x)∑ yk,i

n

∏
i=1

[
1
i

]yk,i

.

Replacing the multinomial coefficient by its factorial definition, we obtain this proposition.

Another special n-th derivative is that of ln v(x).

Proposition 7. The n-th derivative of ln v(x) is given by

(ln v)(n) = n! ∑
∑ iyk,i=n

(
∑ yk,i

yk,1, . . . , yk,n

)
(−1)∑ yk,i−1

(∑ yk,i)!v∑ yk,i

n

∏
i=1

[
v(i)

i!

]yk,i

= n! ∑
∑ iyk,i=n

(∑ yk,i − 1)!(−1)∑ yk,i−1

v∑ yk,i

n

∏
i=1

1
yk,i!

[
v(i)

i!

]yk,i

.

Proof. From Theorem 2, we have

(ln v)(n) =
(

v′

v

)(n−1)

= (n − 1)!
n−1

∑
ℓ=0

(v′)(ℓ)

ℓ! ∑
∑ iyk,i=n−ℓ−1

(
∑ yk,i

yk,1, . . . , yk,n−ℓ−1

)
(−1)∑ yk,i

v∑ yk,i+1

n−ℓ−1

∏
i=1

[
v(i)

i!

]yk,i

= (n − 1)!
n−1

∑
ℓ=0

v(ℓ+1)(ℓ+ 1)
(ℓ+ 1)! ∑

∑ iyk,i=n−ℓ−1

(
∑ yk,i

yk,1, . . . , yk,n−ℓ−1

)
(−1)∑ yk,i

v∑ yk,i+1

n−ℓ−1

∏
i=1

[
v(i)

i!

]yk,i

= (n − 1)!
n

∑
ℓ=1

v(ℓ)

ℓ!
ℓ ∑

∑ iyk,i=n−ℓ

(
∑ yk,i

yk,1, . . . , yk,n−ℓ

)
(−1)∑ yk,i

v∑ yk,i+1

n−ℓ

∏
i=1

[
v(i)

i!

]yk,i

.

Similar to what was done in the proof of Theorem 1, we defined an extension (yk,1, · · · , yk,n) of each partition
(yk,1, · · · , yk,n−ℓ) such that yk,n−ℓ+1 = · · · = yk,n = 0. Now, for every ℓ ∈ [1, n], let us associate with each
partition (yk,1, . . . , yk,n), the partition (Yk,1, . . . , Yk,n) such that{

Yk,i = yk,i + 1, for i = ℓ,

Yk,i = yk,i, otherwise.

Notice that ∑ Yk,i = ∑ yk,i + 1 and that ∑ iYk,i = n. Hence, we can write

(ln v)(n) = (n − 1)!
n

∑
ℓ=1

ℓ ∑
∑ iYk,i=n

(
∑ Yk,i − 1

Yk,1, . . . , Yk,ℓ − 1, . . . , Yk,n

)
(−1)∑ Yk,i−1

v∑ Yk,i

n

∏
i=1

[
v(i)

i!

]Yk,i

= (n − 1)! ∑
∑ iYk,i=n

(−1)∑ Yk,i−1

v∑ Yk,i

n

∏
i=1

[
v(i)

i!

]Yk,i n

∑
ℓ=1

ℓ

(
∑ Yk,i − 1

Yk,1, . . . , Yk,ℓ − 1, . . . , Yk,n

)

= (n − 1)! ∑
∑ iYk,i=n

(
∑ Yk,i

Yk,1, . . . , Yk,n

)
(−1)∑ Yk,i−1

(∑ Yk,i)!v∑ Yk,i

n

∏
i=1

[
v(i)

i!

]Yk,i n

∑
ℓ=1

ℓYk,ℓ

= n! ∑
∑ iYk,i=n

(
∑ Yk,i

Yk,1, . . . , Yk,n

)
(−1)∑ Yk,i−1

(∑ Yk,i)!v∑ Yk,i

n

∏
i=1

[
v(i)

i!

]Yk,i

.
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