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1. Introduction

T he h-derivative, q-derivative, q − h-derivative and (p, q)-derivative are given by the following notions
and quotients:

• the h-derivative of g: Dhg(t) = dhg(t)
dht = g(t+h)−g(t)

h ,

• the q-derivative of g: Dqg(t) = dqg(t)
dqt = g(qt)−g(t)

(q−1)t ,

• the q − h-derivative of g: ChDq f (t) = hdq f (t)
hdqt = g(q(t+h))−g(t)

(q−1)t+qh ,

• the (p, q)-derivative of g: Dp
q g(t) =

dp
q g(t)
dp

q t
= g(qt)−g(pt)

(q−p)t ,

respectively.
The equations; dhg(t) = g(t + h)− g(t), dqg(t) = g(qt)− g(t), hdqg(t) = g(q(t + h))− g(t) and dp

q g(t) =
g(qt) − g(pt) provide h-differential, q-differential, q − h-differential and (p, q)-differential for the function g
respectively.

As an example h-derivative, q-derivative, q − h-derivative and (p, q)-derivative of tn can be computed
in the forms (t+h)n−tn

h = ntn−1 + n(n−1)
2 tn−2h + ... + hn−1, qn−1

q−1 tn−1 = (qn−1 + ... + 1)tn−1, qn(t+h)n−pntn

(q−p)t+qh and
(qn−pn)tn

(q−p)t = (qn−1 + ...+ pn−1)tn−1 respectively. For the sake of simplicity the notations [n]q and [n]q,p are used

instead of qn−1
q−1 and qn−pn

q−p . Then Dqtn = [n]qtn−1 and Dp
q tn = [n]q,ptn−1. Since lim

q→1
Dqg(t) = lim

h→0
Dhg(t) = dg(t)

dt ,

h-derivative, q-derivative, q − h-derivative and (q, p)-derivative are generalized notions of ordinary derivative
provided that g is differentiable function, therefore, these notions of derivatives are used to generalize the
theory based on ordinary derivatives. Especially, the q-derivative leads to the subject of q-calculus, for detailed
study one can see [8]. In the following we give rules of the q-derivative and the h-derivative as follows:

The formulae of q-derivative of sum and product of two functions g1 and g2 are given by;

Dq{g1(t) + g2(t)} = Dqg1(t) + Dqg2(t) , (1)

and
Dq{g1(t)g2(t)} = g1(qt)Dqg2(t) + g2(t)Dqg1(t) , (2)
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respectively.
Since g1(t)g2(t) = g2(t)g1(t), the above formula is equivalent to the following one

Dq{g1(t)g2(t)} = g1(t)Dqg2(t) + g2(qt)Dqg1(t). (3)

Using (2), the q-derivative of quotient of two functions g1 and g2 is given by the formula

Dq

(
g1(t)
g2(t)

)
=

g2(t)Dqg1(t)− g1(t)Dqg2(t)
g2(t)g2(qt)

. (4)

While, by using (3), the q-derivative of quotient of two functions g1 and g2 is given by the formula

Dq

(
g1(t)
g2(t)

)
=

g2(qt)Dqg1(t)− g1(qt)Dqg2(t)
g2(t)g2(qt)

. (5)

The formulae of h-derivative of sum and product of two functions g1 and g2 are given by;

Dh{g1(t) + g2(t)} = Dhg1(t) + Dhg2(t) , (6)

and
Dh{g1(t)g2(t)} = g1(t)Dhg2(t) + g2(t + h)Dhg1(t), (7)

respectively.
The h-derivative of quotient of two functions g1 and g2 is given by the formula

Dh

(
g1(t)
g2(t)

)
=

g2(t)Dhg1(t)− g1(t)Dhg2(t)
g2(t)g2(t + h)

. (8)

The above h-derivative and q-derivative formulas are unified in the following q − h-derivative formulas:
The q − h-derivative is linear, i.e., the following equation holds:

ChDq(α f (t) + βg(t)) = α ChDq f (t) + β ChDqg(t).

The q − h-derivative of product of two functions is given by the following equation:

ChDq( f (t)g(t)) = hdq( f (t)g(t))

hdqx
= f (q(t + h))ChDqg(t) + g(t)ChDq f (t). (9)

The q − h-derivative of quotient of two functions is given by the following equation:

ChDq

(
f (t)
g(t)

)
=

ChDq( f (t))g(q(t + h))− f (q(t + h))ChDq(g(t))
g(q(t + h))g(t)

. (10)

One can note, the q − h-derivative formulas generate both q-derivative and h-derivative formulas.
Next, we give the definitions of q-derivative, (p, q)-derivative and q − h-derivative on a finite interval.

Definition 1. [2] Let 0 < q < 1. For a continuous function f : I = [a, b] → R the q-derivative on I denoted by
aDq f is defined by

aDq f (x) :=
f (qx + (1 − q)a)− f (x)

(q − 1)(x − a)
, x ̸= a, aDq f (a) = lim

x→a aDq f (x). (11)

Definition 2. [3,4] Let 0 < q < p ≤ 1. For a continuous function f : I = [a, b] → R the (p, q)-derivative on I
denoted by aDp,q f is defined by

aDp,q f (x) :=
f (qx + (1 − q)a)− f (px + (1 − p)a)

(q − p)(x − a)
, x ̸= a,

aDp,q f (a) = lim
x→a aDp,q f (x).
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Definition 3. [5] Let 0 < q < 1, h ∈ R and x ∈ I. For a continuous function f : I → R the left and right
q − h−derivatives on I denoted by ChDa+

q f and ChDb−
q f are defined with the following equations respectively;

ChDa+
q f (x) :=

f ((1 − q)a + q(x + h))− f (x)
(1 − q)(a − x) + qh

; x ̸= qh + (1 − q)a
1 − q

:= u, (12)

ChDb−
q f (x) :=

f ((1 − q)x + q(b + h))− f (b)
(1 − q)(x − b) + qh

; x ̸= −qh + (1 − q)b
1 − q

:= v, (13)

provided that (1 − q)a + q(x + h) ∈ [a, x] and (1 − q)x + q(b + h) ∈ [x, b]. Also, ChDa+
q f (u) = lim

x→u
ChDa+

q f (x)

and ChDb−
q f (v) = lim

x→v
ChDb−

q f (x).

The definitions of q-integral, (p, q)-integral and q − h-integral of function f on interval [a, b] are given as
follows:

Definition 4. [2] Let 0 < q < 1 and function f : I = [a, b] → R. The q-definite integral on I is defined by the
following formula:

∫ x

a
f (t) adqt = (1 − q)(x − a)

∞

∑
n=0

qn f (qnx + (1 − qn)a), x ∈ [a, b]. (14)

Definition 5. [3] Let 0 < q < p ≤ 1 and function f : I = [a, b] → R. The (p, q)-definite integral on I is defined
by the following formula:

∫ x

a
f (t) adp

q t = (p − q)(x − a)
∞

∑
n=0

qn

pn+1 f
(

qn

pn+1 b +
(

1 − qn

pn+1

)
a
)

, x ∈ [a, b]. (15)

Definition 6. [5] Let 0 < q < 1 and f : I = [a, b] → R be a continuous function. Then the left and right
q − h-integrals on I denoted by Ia+

q−h f and Ib
q−h f are defined as follows:

Ia+
q−h f (x) :=

∫ x

a
f (t) hdqt = ((1 − q)(x − a) + qh)

∞

∑
n=0

qn f (qna + (1 − qn)x + nqnh), x > a, (16)

Ib−
q−h f (x) :=

∫ b

x
f (t) hdqt = ((1 − q)(b − x) + qh)

∞

∑
n=0

qn f (qnx + (1 − qn)b + nqnh), x < b. (17)

In (15), if a = 0, then the Jackson q-definite integral on [0, x] is obtained as follows [8]:

∫ x

0
f (t) 0dqt =

∫ x

0
f (t)dqt = (1 − q)x

∞

∑
n=0

qn f (qnx), x ∈ [a, b]. (18)

The aim in this paper is to define a generalize notion of derivative that includes q-derivative (quantum
derivative), h-derivative (plank derivative), (p, q)-derivative and q− h-derivative (quantum-plank-derivative).
This will be called (q, p − h)-derivative. We derive formulas for q − h-derivative of sum/difference, product
and quotient of two functions. We will give the definition of (q, p − h)-integral, moreover the definitions of
(q, p − h)-derivative as well as (q, p − h)-integral are given on a finite interval of the real line.

2. (q, p − h)-Derivatives

Let we define the (q, p − h)-differential of a real valued function f as follows:

hdp
q f (x) = f (q(x + h))− f (px). (19)
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Then for “h = 0”, “p = 1”, “h = 0, p = 1” and “p = 1, q → 1” in (19), we get (q, p)-differential, (q, p −
h)-differential, q-differential and h-differential respectively as follows:

0dp
q f (x) = f (qx)− f (px) = dp

q f (x),

hd1
q f (x) = f (q(x + h))− f (x) = hdq f (x),

0d1
q f (x) = f (qx)− f (x) = dq f (x)

and

hd1
1 f (x) = f (x + h)− f (x) = hdq f (x).

In particular,

hdp
q (x) = qx + qh − px = (q − p)x + qh. (20)

Then for “h = 0”, “p = 1”, “h = 0, p = 1” and “p = 1, q → 1” in (20), we have
0dp

q (x) = (q − p)x = dp
q (x),

hd1
q(x) = (q − 1)x + qh = hdq(x),

0d1
q(x) = (q − 1)x = dq(x),

hd1
1(x) = h = dh(x),

(21)

respectively.
For S(x) = f (x) + g(x) the (q, p − h)-differential of S is given by;

hdp
q (S(x)) = hdp

q ( f (x) + g(x)) = ( f + g)(q(x + h))− ( f + g)(px) = hdp
q f (x) + hdp

q g(x). (22)

For β ∈ R, the (q, p − h)-differential of β f is given by;

hdp
q (β f )(x) = (β f )(q(x + h))− (β f )(px) = β hdp

q f (x). (23)

From (22) and (23), it can be concluded that (q, p − h)-differential is linear. For the product function P of
f and g i.e. P(x) = f (x)g(x), the (q, p − h)-differential is calculated as follows:

hdp
q (P(x)) = hdp

q (( f g)(x)) = ( f g)(q(x + h))− ( f g)(px)

= f (q(x + h))g(q(x + h)) + f (q(x + h))g(px)

− f (q(x + h))g(px)− f (px)g(px)

= f (q(x + h))[g(q(x + h))− g(px)]

+ g(px)[ f (q(x + h))− f (px)].

Hence we have the following formula for (q, p − h)-differential of product of two functions:

hdp
q (P(x)) = hdp

q ( f (x)g(x)) = f (q(x + h))hdp
q g(x) + g(px)hdp

q f (x). (24)

For “h = 0”, “p = 1”, “h = 0, p = 1” and “p = 1, q → 1” in (24), we get (q, p)-differential,
(q, p− h)-differential, q-differential and h-differential of product P of functions f and g, respectively as follows:

0dp
q (P(x)) = 0dp

q ( f (x)g(x)) = dp
q ( f (x)g(x))

= f (qx)0dp
q g(x) + g(px) 0dp

q f (x)

= f (qx)dp
q g(x) + g(px)dp

q f (x)

hd1
q(P(x)) = hd1

q( f (x)g(x)) = hdq( f (x)g(x))

= f (q(x + h))hd1
qg(x) + g(x)hd1

q f (x)

= f (q(x + h))hdqg(x) + g(x)hdq f (x),



Open J. Math. Anal. 2022, 6(2), 130-138 134

0d1
q(P(x)) = 0d1

q( f (x)g(x)) = dq( f (x)g(x))

= f (qx)0dqg(x) + g(x) 0dq f (x)

= f (qx)dqg(x) + g(x)dq f (x),

hd1
1(P(x)) = hd1

1( f (x)g(x)) = dh( f (x)g(x))

= f (x + h)hd1
1g(x) + g(x)hd1

1 f (x)

= f (x + h)dhg(x) + g(x)dh f (x),

respectively.
Now, we define composite derivative as follows:

Definition 7. Let 0 < q < p ≤ 1, h ∈ R and f : I → R be a continuous function. Then the (q, p − h)-derivative
of f is defined by 

ChDp
q f (x) = hDp

q f (x)

hdp
q x

= f (q(x+h))− f (px)
(q−p)x+qh , x ̸= qh

p−q := x◦

Chdp
q f (x◦) = lim

x→x◦
ChDp

q f (x).
(25)

For h = 0 and q → 1 in (25), we have

C0Dp
q f (x) = Dp

q f (x) =
dq f (x)

dqx
=

f (qx)− f (px)
(q − p)x

, (26)

and

ChD1 f (x) = Dh f (x) =
dh f (x)

dhx
=

f (x + h)− f (x)
h

, (27)

respectively.
If f is differentiable and h = 0, q → 1 in (25), we get the ordinary derivative of f .

Remark 1. It is notable that if we put p = 1, h = ω
q where ω > 0, the Wolfgang Hahn difference operator

given in [6] is obtained.

Example 1. The (q, p − h)-derivative of xn, n ∈ N is calculated as follows:

ChDp
q (xn) =

qn(x + h)n − pnxn

(q − p)x + qh
=

(qn − pn)xn

(q − p)x + qh
+

qn(nxn−1h + ... + hn)

(q − p)x + qh
. (28)

For “p = 1”, “h = 0”, “h = 0, p = 1” and “p = 1, q → 1” in (28), we get quantum-plank derivative,
(p, q)-derivative, quantum-derivative and plank-derivative of function xn respectively as follows:

ChD1
q(xn) =

qn(x + h)n − xn

(q − 1)x + qh
=

(qn − 1)xn

(q − 1)x + qh
+

qn(nxn−1h + ... + hn)

(q − 1)x + qh
, (29)

C0Dp
q (xn) =

qnxn − pnxn

(q − 1)x
=

qn − pn

q − p
xn−1 = [n]p,qxn−1 = Dp

q (xn), (30)

C0D1
q(xn) =

qnxn − xn

(q − 1)x
=

qn − 1
q − 1

xn−1 = [n]xn−1 = Dq(xn), (31)

and

ChD1
1(xn) =

(x + h)n − xn

h
= nxn−1 +

n(n − 1)
2

xn−2h + ..... + hn−1. (32)

In particular, we have lim
h→0

ChD1
1(xn) = nxn−1.
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2.1. Linearity of (q, p − h-derivative

The (q, p − h)-derivative is linear, for real valued functions f , g and α, β ∈ R one can have linearity from
the linearity of (q, p − h)-differentials as follows:

ChDp
q (α f (x) + βg(x)) = α ChDp

q f (x) + β ChDp
q g(x).

2.2. Product formula for (q, p − h)-derivatives

By using the q − h-differential of product of functions from (24), the product formula is stated as follows:

ChDp
q ( f (x)g(x)) = hdp

q ( f (x)g(x))

hdp
q x

=
f (q(x + h))hdp

q g(x) +h dp
q f (x)g(x)

hdp
q x

= f (q(x + h))ChDp
q g(x) + g(x)ChDp

q f (x). (33)

It generates both q-derivative product formula and h-derivative product formula simultaneously as
follows:

For h = 0 we have q-derivative formula for products of functions is obtained as follows:

C0Dq( f (x)g(x)) =
dq( f (x)g(x))

dqx

= Dq( f (x)g(x))

= f (qx)C0Dqg(x) + g(x)C0Dp
q f (x)

= f (qx)Dqg(x) + g(x)Dq f (x).

For q → 1 we have h-derivative formula for products of functions is obtained as follows:

ChD1( f (x)g(x)) =
dh( f (x)g(x))

dhx

= Dh( f (x)g(x))

= f (x + h)ChD1g(x) + g(x)ChD1 f (x)

= f (x + h)Dhg(x) + g(x)Dh f (x).

By using symmetry we can have from (33):

Chdp
q (g(x) f (x)) = g(q(x + h))ChDp

q f (x) + f (x)Chdp
q g(x). (34)

Both (33) and (34) are equivalent.

Remark 2. It is notable that if we put p = 1, h = ω
q for ω > 0, equation (33) provides the product formula for

(q, ω)-derivatives given in [6].

2.3. Quotient formula for (q, p − h)-derivatives

The quotient formula of (q, p − h)-derivatives for quotient of two functions by using (33) and (34) are
given as follows: We have for g(x) ̸= 0

g(x)
f (x)
g(x)

= f (x). (35)

By taking q − h-derivative on both sides, we have

Chdp
q

(
g(x)

f (x)
g(x)

)
= Chdp

q ( f (x)). (36)



Open J. Math. Anal. 2022, 6(2), 130-138 136

By using (33), one can get

g(q(x + h))Chdp
q

(
f (x)
g(x)

)
+

f (x)
g(x)

Chdp
q g(x) = Chdp

q ( f (x)).

Now

Chdp
q

(
f (x)
g(x)

)
=

Chdp
q ( f (x))− f (x)

g(x)Chdp
q (g(x))

g(q(x + h))

=
g(x)Chdp

q ( f (x))− f (x)Chdp
q (g(x))

g(q(x + h))g(x)
. (37)

By using (34), one can get

f (q(x + h))
g(q(x + h))

Chdp
q

(
g(x)

)
+ g(x)Chdp

q

(
f (x)
g(x)

)
= Chdp

q

(
f (x)

)
,

that is:

Chdp
q

(
f (x)
g(x)

)
=

Chdp
q ( f (x))g(q(x + h))− f (q(x + h))Chdp

q (g(x))
g(q(x + h))g(x)

.

Remark 3. It is notable that if we put p = 1, h = ω
q for ω > 0, equation (37) provides the quotient formula for

(q, ω)-derivatives given in [6].

If f is the (q, p − h)-derivative of F that is f (x) = Chdp
q F(x), then F will be called the (q, p −

h)-anti-derivative of f . The (q, p − h)-anti-derivative will be denoted by
∫

f (x) hdp
q x.

3. (q, p − h)-derivative on a finite interval

In this section we consider a finite interval I := [a, b] for a, b real numbers. We define (q, p − h)-derivative
on this interval in the following definition.

Definition 8. Let 0 < q < p ≤ 1, h ∈ R and x ∈ I. For a continuous function f : I → R the left and right
q − h−derivatives on I denoted by ChDa+

q f and ChDb−
q f are defined with the following equations respectively;

ChDa+
p,q f (x) :=

f ((1 − q)a + q(x + h))− f ((1 − p)a + px)
(p − q)(a − x) + qh

; x ̸= qh + (p − q)a
p − q

:= u, (38)

ChDb−
p,q f (x) :=

f ((1 − q)x + q(b + h))− f ((1 − p)x + pb)
(p − q)(x − b) + qh

; x ̸= −qh + (p − q)b
p − q

:= v, (39)

provided that (p − q)a + q(x + h) ∈ [a, x] and (p − q)x + q(b + h) ∈ [x, b]. Also, ChDa+
p,q f (u) = lim

x→u
ChDa+

p,q f (x)

and ChDb−
p,q f (v) = lim

x→v
ChDb−

p,q f (x).

The function f will be called left (q, p − h)-differentiable on (a, x + h), if ChDa+
p,q f (x) exists for each of its

points, on the other hand f will be called right (q, p − h)-differentiable on (x + h, b), if ChDb−
p,q f (x) exists at

each of its points. It is noted that ChDa+
p,q f (b) = ChDb−

p,q f (a). In (38), the value h = 0 gives the (p, q)-derivative

on interval I stated in Definition 2, i.e., C0Da+
p,q f (x) = aDp,q f (x); the setting h = 0, p = 1 gives the q-derivative

on interval I stated in Definition 1, i.e., C0Da+
1,q f (x) = aDq f (x); the value p = 1 gives the q − h-derivative on

interval I stated in Definition 3, i.e., ChDa+
1,q f (x) = ChDa+

q f (x). Also for a = 0 one can have ChD0+
p,q f (x) =

ChDp
q f (x), i.e., the (q, p − h)-derivative given in (25) is recovered; for h = 0 = a one can have C0D0+

p,q f (x) =

Dp
q f (x), i.e., the (p, q)-derivative is recovered; for a = 0, q = p = 1 one can have ChD0+

1,1 f (x) = Dh f (x) i.e.,

the h-derivative is recovered; for a = 0, p = 1 one can have ChD0+
1,q f (x) = ChDq f (x) i.e., the q − h-derivative

is recovered; for h = 0 = a = p and taking limit q → 1 one can get the usual derivative for a differentiable
function f i.e., lim

q→1
C0D0+

1,q f (x) = d
dx f (x). The similar consequences can be found from the equation (39). We

give the definition of left and right q−derivatives on I as follows:
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Definition 9. Let 0 < q < p ≤ 1, h ∈ R and x ∈ I. For a continuous function f : I → R the left and
right composite (p, q)-derivatives on I denoted by Da+

p,q f and Db−
p,q f are defined with the following equations

respectively;

Da+
p,q f (x) :=

f (qx + (1 − q)a)− f (px + (1 − p)a)
(p − q)(a − x)

; x > a, (40)

Db−
p,q f (x) :=

f (qb + (1 − q)x)− f (pb + (1 − p)x)
(p − q)(x − b)

; x < b. (41)

From (40) we have D0+
p,q f (x) = Dp,q f (x). Next, we give the definition of left and right (q, p − h)-integrals

as follows:

Definition 10. Let 0 < q < p ≤ 1 and f : I = [a, b] → R be a continuous function. Then the left and right
q, p − h-integrals on I denoted by Ia+

q,p−h f and Ib
q,p−h f are defined as follows:

Ia+
q,p−h f (x) : =

∫ x

a
f (t) hdp

q t

= ((p − q)(x − a) + qh)
∞

∑
n=0

qn

pn+1 f
(

qn

pn+1 a +
(

1 − qn

pn+1

)
x +

nqnh
pn+1

)
, x > a, (42)

Ib−
q,p−h f (x) : =

∫ b

x
f (t) hdp

q t

= ((p − q)(b − x) + qh)
∞

∑
n=0

qn

pn+1 f
(

qn

pn+1 x +

(
1 − qn

pn+1

)
b +

nqnh
pn+1

)
, x < b. (43)

Example 2. Let f (t) = t − a and g(t) = b − t. Then we have

Ia+
q,p−h f (x) =

∫ x

a
(t − a) hdp

q t =
(p − q)(x − a) + qh

p − q

×
(
(p + q − 1)(px − a)

p + q
+

h(p − q)
p2

∞

∑
n=0

n
(

q
p

)2n
)

(44)

and

Ib−
q,p−hg(x) =

∫ b

x
(b − t) hdp

q t =
(p − q)(b − x) + qh

p − q

×
(

b − x
p + q

− h(p − q)
p2

∞

∑
n=0

n
(

q
p

)2n
)

. (45)

Example 3. Let f (t) = x − t and g(t) = t − x. Then we have

Ia+
q,p−h f (x) =

∫ x

a
(x − t) hdp

q t

=
(p − q)(x − a) + qh

p − q

(
x − a
p + q

− h(p − q)
p2

∞

∑
n=0

n
(

q
p

)2n
)

(46)

and

Ib−
q,p−hg(x) =

∫ b

x
(t − x) hdp

q t

=
(p − q)(b − x) + qh

p − q

(
(p + q − 1)(b − x)

p + q
+

h(p − q)
p2

∞

∑
n=0

n
(

q
p

)2n
)

. (47)

By considering h = 0 the corresponding left and right (p, q)-integrals are defined as follows:
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Definition 11. Let 0 < q < p ≤ 1 and f : I = [a, b] → R be a continuous function. Then the left and right
(p, q)-integrals on I denoted by Ia+

p,q f and Ib
p,q f are defined as follows:

Ia+
q,p−0 f (x) : = Ia+

p,q f (x) =
∫ x

a
f (t)dp

q t

= (p − q)(x − a)
∞

∑
n=0

qn

pn+1 f
(

qn

pn+1 a +
(

1 − qn

pn+1

)
x
)

, x > a, (48)

Ib−
q,p−0 f (x) : = Ib−

p,q f (x)

=
∫ b

x
f (t)dp

q t = (p − q)(b − x)
∞

∑
n=0

qn

pn+1 f
(

qn

pn+1 x +

(
1 − qn

pn+1

)
b
)

, x < b. (49)

The left (p, q)-integral is equivalent to the (p, q)-definite integral defined in [3]. For p = 1; the left
(p, q)-integral is equivalent to the qa-definite integral defined in [2], while the right (p, q)-integral is defined in
[1] which is called qb-definite integral.

Example 4. Let f (t) = t − a and g(t) = b − t. Then from Example 2 for h = 0 we have Ia+
q,p−0 f (x) = Ia+

p,q f (x) =∫ x
a (t − a)dp

q t = (p+q−1)(px−a)(x−a)
p+q and Ib−

q,p−0g(x) = Ib−
p,q f (x) =

∫ b
x (b − t)dp

q t = (b−x)2

p+q .

By considering p = 1, q → 1 the corresponding left and right h-integrals are defined as follows:

Definition 12. Let f : I = [a, b] → R be a continuous function. Then the left and right h-integrals on I denoted
by Ia+

h f and Ib
h f are defined as follows:

Ia+
h f (x) = lim

q→1
Ia+
q,1−h f (x), x > a, (50)

Ib−
h f (x) = lim

q→1
Ib−
q,1−h f (x), x < b. (51)

It is noted from Definition 10 that Ia+
q,p−h f (b) = Ib−

q,p−h f (a) =
∫ b

a f (t) hdp
q t.

Conflicts of Interest: The author declares no conflict of interest.

Data Availability: All data required for this research is included within this paper.

Funding Information: This research is funded by Higher Education Commission of Pakistan.

References

[1] Bermudo, S., Kórus, P., & Nápoles Valdés, J. E. (2020). On q−Hermite-Hadamard inequalities for general convex
functions. Acta Mathematica Hungarica, 162, 364-374.

[2] Tariboon, J., & Ntouyas, S. K. (2014). Quantum integral inequalities on finite intervals. Journal of Inequalities and
Applications, 2014, Article No. 121. https://doi.org/10.1186/1029-242X-2014-121.

[3] Tunç, M., & Göv, E. (2016). (p, q)-integral inequalities. RGMIA, 19, 1-13.
[4] Tunç, M., & Göv, E. (2021). Some integral inequalities via (p, q)-calculus on finite intervals. Filomat, 35(5), 1421-1430.
[5] Farid, G., Anwar, M., & Shoaib, M., (2023). On generalizations of q− and h−integrals and some related inequalties.

Preprint.
[6] Hahn, W. (1983). Ein beitrag zur theorie der orthogonalpolynome. Monatshefte Für Mathematik, 95(1), 19-24.
[7] Farid, G. (2019). Some Riemann-Liouville fractional integral inequalities for convex functions. The Journal of Analysis,

27(4), 1095-1102.
[8] Kac, V., & Cheung, V. (2002). Quantum Calculus. Springer, New York, NY.

© 2022 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1186/1029-242X-2014-121
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	(q,p-h)-Derivatives
	Linearity of (q,p-h-derivative
	Product formula for (q,p-h)-derivatives
	Quotient formula for (q,p-h)-derivatives

	(q,p-h)-derivative on a finite interval

