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Abstract: In this paper, we present results of ω-order preserving partial contraction mapping generating
a nonlinear Schrödinger equation. We used the theory of semigroup to generate a nonlinear Schrödinger
equation by considering a simple application of Lipschitz perturbation of linear evolution equations. We
considered the space L2(R2) and of linear operator A0 by D(A0) = H2(R2) and A0u = −i∆u for u ∈ D(A0)

for the initial value problem, we hereby established that A0 is the infinitesimal generator of a C0-semigroup
of unitary operators T(t), −∞ < t < ∞ on L2(R2).
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1. Introduction

C onsider the initial value problem for the following nonlinear Schrödinger equation in R2

{
1
i

∂u
∂t − ∆u + k|u|2u = 0, in (0, ∞)×R2,

u(x, 0) = u0(x) in R2,
(1)

where u is a complex valued function and k a real constant. The space in which this problem is considered
is L2(R2). By defining the linear operator A0 by D(A0) = H2(R2) and A0u = −i∆u for u ∈ D(A0) and
A ∈ ω − OCPn, the initial value problem (1) can be rewritten as{

du
dt + A0u + F(u) = 0, for t > 0,
u(0) = u0,

(2)

where F(u) = ik|u|2u.
It follows that the operator A0 is the infinitesimal generator of a C0-semigroup of unitary operators T(t),

−∞ < t < ∞, on L2(R2). A simple application of the Fourier transform gives the following explicit formula
for T(t);

(T(t)u)(x) =
1

4πit

∫
R2

exp
{

i
|x − y|2

4t

}
u(y)dy . (3)

Suppose X is a Banach space, H is Hilbert space, Xn ⊆ X is a finite set, ω − OCPn the ω-order
preserving partial contraction mapping, Mm be a matrix, L(X) be a bounded linear operator on X, Pn a partial
transformation semigroup, ρ(A) a resolvent set, σ(A) a spectrum of A and A is a generator of C0-semigroup.
This paper consists of results of ω-order preserving partial contraction mapping generating a nonlinear
Schrödinger equation.

Akinyele et al., [1], obtained a continuous time Markov semigroup of linear operators and also in [2],
Akinyele et al., established results of ω-order reversing partial contraction mapping generating a differential
operator. Balakrishnan [3], presented an operator calculus for infinitesimal generators of the semigroup.
Banach [4], established and introduced the concept of Banach spaces. Brezis and Gallouet [5] generated a
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nonlinear Schrödinger evolution equation. Chill and Tomilov [6], introduced some resolvent approaches to
stability operator semigroup. Davies [7] deduced linear operators and their spectra. Engel and Nagel [8]
obtained a one-parameter semigroup for linear evolution equations. Omosowon et al., [9], generated some
analytic results of the semigroup of the linear operator with dynamic boundary conditions, and also in [10],
Omosowon et al., introduced dual properties of ω-order reversing partial contraction mapping in semigroup of
linear operator. Omosowon et al., [11], established a regular weak*-continuous semigroup of linear operators,
and also in [12], Omosowon et al., generated quasilinear equations of evolution on semigroup of a linear
operator. Pazy [13] presented the asymptotic behaviour of the solution of an abstract evolution and some
applications and also, in [14], obtained a class of semi-linear equations of evolution. Rauf and Akinyele [15]
obtained ω-order preserving partial contraction mapping and obtained its properties, also in [16], Rauf et
al., introduced some results of stability and spectra properties on semigroup of a linear operator. Vrabie [17],
proved some results of C0-semigroup and its applications. Yosida [18] deduced some results on differentiability
and representation of one-parameter semigroup of linear operators.

2. Preliminaries

Definition 1. (C0-Semigroup) [17] A C0-Semigroup is a strongly continuous one parameter semigroup of
bounded linear operator on Banach space.

Definition 2. (ω-OCPn) [15] A transformation α ∈ Pn is called ω-order preserving partial contraction mapping
if ∀x, y ∈ Domα : x ≤ y =⇒ αx ≤ αy and at least one of its transformation must satisfy αy = y such that
T(t + s) = T(t)T(s) whenever t, s > 0 and otherwise for T(0) = I.

Definition 3. (Evolution Equation) [13] An evolution equation is an equation that can be interpreted as the
differential law of the development (evolution) in time of a system. The class of evolution equations includes,
first of all, ordinary differential equations and systems of the form

u = f (t, u), u = f (t, u, u),

etc., in the case where u(t) can be regarded naturally as the solution of the Cauchy problem; these equations
describe the evolution of systems with finitely many degrees of freedom.

Definition 4. (Mild Solution) [14] A continuous solution u of the integral equation.

u(t) = T(t − t0)u0 +
∫ t

t0

T(t − s) f (s, u(s))ds (4)

will be called a mild solution of the initial value problem{
du(t)

dt + Au(t) = f (t, u(t)), t > t0,
u(t0) = u0,

(5)

if the solution is a Lipschitz continuous function.

Definition 5. (Schrödinger Equation) [19] The Schrödinger equation is a linear partial differential equation
that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and
its discovery was a significant landmark in the development of the subject.

Example 1. 2 × 2 matrix [Mm(Rn)]: Suppose

A =

(
2 0
∆ 2

)
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and let T(t) = etA, then

etA =

(
e2t I
e∆t e2t

)
.

Example 2. 3 × 3 matrix [Mm(C)]: We have for each λ > 0 such that λ ∈ ρ(A) where ρ(A) is a resolvent set
on X. Suppose we have

A =

2 2 I
2 2 2
∆ 2 2


and let T(t) = etAλ , then

etAλ =

e2tλ e2tλ I
e2tλ e2tλ e2tλ

e∆tλ e2tλ e2tλ

 .

Example 3. Let X = Cub(N∪{0}) be the space of all bounded and uniformly continuous function from N∪{0}
to R, endowed with the sup-norm ∥ · ∥∞ and let {T(t); t ∈ R+} ⊆ L(X) be defined by

[T(t) f ](s) = f (t + s) .

For each f ∈ X and each t, s ∈ R+, one may easily verify that {T(t); t ∈ R+} satisfies Examples 1 and 2 above.

3. Main results

This section present results of semigroup of linear operator by using ω-OCPn to generates a nonlinear
Schrödinger equation:

Theorem 1. Suppose A : D(A) ⊆ L2(R2) is the infinitesimal generator of a semigroup {T(t), t ≥ 0} given by (3)
where A ∈ ω − OCPn. If 2 ≤ p ≤ ∞ and 1

q + 1
p = 1, then T(t) can be extended in a unique way to an operator from

Lq(R2) into Lp(R2) and

∥T(t)u∥0,p ≤ (4πt)−( 2
q −1)∥u∥0,q. (6)

Proof. Since T(t) is a unitary operator on L2(R2) we have

∥T(t)u∥0,2 = ∥u∥0,2 f or u ∈ L2(R2).

On the other hand it is clear from (3) that T(t) : L1(R2) → L∞(R2) and that for t > 0, we have

∥T(t)u∥0,∞ ≤ (4πt)−1∥u∥0,1.

The Riesz convexity theorem implies in this situation that T(t) can be extended uniquely to an operator
from Lq(R2) into Lp(R2) and that (6) holds. In order to prove the existence of a local solution of the initial
value problem (2) for every u ∈ H2(R2) and A ∈ ω − OCPn. We note that the graph norm of the operator A0

in L2(R2), that is the norm ∥u∥ = ∥u∥0,2 + ∥A0u∥, for u ∈ D(A0) and A ∈ ω −OCPn is equivalent to the norm
∥ · ∥2,2 in H2(R2). Therefore D(A0) equipped with the graph norm is the space H2(R2). Hence the proof in
competed.

Theorem 2. Assume A : D(A) ⊆ H2(R2) → H2(R2) is the infinitesimal generator of a C0-semigroup {T(t); t ≥ 0}.
The nonlinear mapping Fu = ik|u|2u maps H2(R2) into itself and satisfies for u, v ∈ H2(R2) and A ∈ ω − OCPn, we
have

∥F(u)∥2,2 ≤ C∥u∥2
0,∞∥u∥2,2 , (7)

∥F(u)− F(v)∥2,2 ≤ C(∥u∥2
2,2 + ∥v∥2

2,2)∥u − v∥2,2 . (8)
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Proof. From Sobolev’s theorem in R2, it follows that H2(R2) ⊂ L∞(R2) and that there is a constant C such that

∥u∥0,∞ ≤ C∥u∥2,2 f or u ∈ H2(R2) . (9)

Denoting by D any first order differential operator we have for every u ∈ H2(R2)

|D2(|u|2u)| ≤ C(|u|2|D2u|+ |u||Du|2) ,

and therefore
∥|u|2u∥2,2 ≤ C(∥u∥2

0,∞∥u∥2,2 + ∥u∥0,∞∥u∥2
1,4). (10)

From Gagliardo-Nirenberg inequalities we have

∥u∥1,4 ≤ C∥u∥
1
2
0,∞∥u∥

1
2
2,2. (11)

Combining (10) and (11), we obtain (7). The inequality (8) is proved similarly using Leibnitz formula for the
derivatives of of products and estimates (9) and (11), and this achieved the proof.

Theorem 3. Suppose A : D(A) ⊆ H2(R2) → H2(R2) is the infinitesimal generator of a C0-semigroup {T(t); t ≥ 0}.
Let u0 ∈ H2R2, A ∈ ω − OCPn and u be the solution of initial value problem (2) on [0, T). If K ≥ 0, then ∥u(t)∥2,2 is
bounded on [0, T).

Proof. We will first show that ∥u(t)∥1,2 is bounded on [0, T). To this end we multiply the equation

1
i

∂u
∂t

− ∆u + K|u|2u = 0 , (12)

by u and integrate over R2. Then taking the imaginary part of the result gives d
dt∥u∥2

0,2 = 0 and therefore,

∥u(t)∥0,2 = ∥u0∥0,2 f or 0 ≤ t ≤ T. (13)

Next we multiply (12) by ∂u/∂t, integrate over R2 and consider the real part of the result. This lead to

1
2

∫
R2

|∇u(t, x)|2dx +
K
4

∫
R2

|u(t, x)|4dx =
1
2

∫
R2

|∇u0(x)|2dx +
K
4

∫
R2

|u0(x)|4dx. (14)

Therefore, since K ≥ 0, then ∥u∥1,2 is bounded on [0, T). To prove that ∥u(t)∥2,2 is bounded on [0, T), we first
note that from Sobolev’s theorem it follows that H1(R2) ⊂ Lp(R2) for p > 2 and that

∥v∥0,p ≤ C∥v∥1,2 f or v ∈ H1(R2). (15)

Therefore if u is the solution of (2) on [0, T) it follows from the boundedness of ∥u(t)∥1,2 on [0, T) and (15) that

∥u(t)∥0,p ≤ C f or p > 2, 0 ≤ t < T. (16)

Since u is the solution of (2), it is also the solution of the integral equation

u(t) = T(t)u0 −
∫ t

0
T(t − s)F(u(s))ds. (17)

Denoting by D any first order derivative, we have

Du(t) = T(t)Du0 −
∫ t

0
T(t − s)DF(u(s))ds. (18)
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We fix now p > 2 and let q = p/(p − 1) and r = 4p/(p − 2). Then denoting by C a generic constant and using
Theorem 1, (18) and Hölder’s inequality, we find

∥Du(t)∥0,p ≤ ∥T(t)Du0∥0,p + C
∫ t

0
(t − s)1− 2

q ∥|u(s)|2|Du(s)|∥0,qds

≤ C∥u0∥2,2 + C
∫ t

0
(t − s)1− 2

q ∥u(s)∥0,r∥Du(s)∥0,2ds

≤ C∥u0∥2,2 + C
∫ t

0
(t − s)1− 2

q ds ≤ C(t) ,

where in the last inequality we used the fact that r > 2 and therefore ∥u(s)∥0,r ≤ C by (16) and that

∥Du(s)∥0,2 ≤ C∥u(s)∥1,2 ≤ C.

Therefore, ∥u(t)∥1,p ≤ C and since by Sobolev’s theorem, W1,p(R2) ⊂ L∞(R2) for p > 2, it follows that

∥u(t)∥0,∞ ≤ C f or 0 ≤ t < T.

Finally, since T(t) is an isometry on L2(R2) it follows from (17) that

∥u(t)∥2,2 ≤ ∥T(t)u0∥2,2 +
∫ t

0
∥T(t − s)F(u(s))∥2,2ds

≤ ∥u0∥2,2 + C
∫ t

0
∥u(s)∥2

0,∞∥u(s)∥2,2ds ,

which by Gronwall’s inequality implies the boundedness of ∥u(t)∥2,2 on [0, t) as desired. Hence the proof is
completed.

4. Conclusion

In this paper, it has been established that ω-order preserving partial contraction mapping generates some
results of a nonlinear Schrödinger equation.
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