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Abstract: This manuscript proposed high-precision methods for obtaining solutions for nonlinear models.
The method uses the Newton method as its predictor and an iterative function that involves the perturbed
Newton method with the quotient of two power series as the corrector function. The theoretical analysis
of convergence indicates that the methods class is of convergence order four, requiring three functions
evaluation per cycle. The computation performance comparison with some existing methods shows that
the developed methods class has perfect precision.
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1. Introduction

any physical sciences and engineering problems are reduced to nonlinear models (NLM) of f(s) =0,
M where s € R. Their solutions are often required to understand better and study these problems.
Because there is no generic analytic formula for solving NLM, iterative methods (IM) are utilized. An iterative
approximation technique is the use of a recursion formula or procedure to approximate the solution ¢ € R
of the target NLM such that for every subsequent evaluation of the complete cycle of the recursion formula,
a better and improved approximation of ¢ is achieved until exact or desired solution is attained. Since the

discovery of the classical convergent order (CO), two Newton iterative method (NIM) [1] that is put forward
as:

S]'+1 = S]' — t(S]'),' ] = 0, 1,2,' ey, (1)

where t(s;) = %, the development of its modifications has attracted the interest of several scholars. These
j

modifications are either one, two or more point iteration methods developed with the primary motivation of
scaling the convergence order (CO) of the NIM from two to higher orders and, in another case, improving
its efficiency index. For instance, in Weerakoon and Fernando [2], the function derivative f'(s;) was replaced
by the arithmetic mean of f’(s;) and f’ (s]- - %) to obtain a CO three method with better efficiency index
compared to the NIM. One can find many modiﬁéd forms of the NIM where different types of means were used
other than the arithmetic mean in the literature [3-7] and some reference therein. Different weight functions
were utilized in another modification form to develop several one-point and multi-point modified NIM. For
instance, Chun in [8] used a power series-like expression attached to the second step of modified NIM to
develop a family of two-point iterative methods (TPIM) of CO four. Also, Khattri and Abbasbandy [9] used
another type of power series involving a function different from the one used in Chun [8] in the second step
of the modified NIM to develop a class of TPIM. Babajee and Khatrri in [10] further studied the dynamic
behaviour of the generalized class of methods put forward in Khattri and Abbasbandy [9]. In the works of
Ahmad [11], Babajee [12] and Mahdu [13], the power series of different forms were utilized as weight functions
in the modification of the NIM to develop CO eight iterative methods.

In line with the research trend that involves the use of the power series to modify the NIM, this work put
forward a class of two-point modified NIM of CO four that is an improvement of Khattri and Abbasbandy
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[9] with the advantage of high precision for approximation of NLM solution. In the succeeding sections,
the formation of the method, its convergence investigation and the applicability of its concrete members are
presented.

2. Method Formation and Convergence Investigation

We begin by acknowledging the two-step power series based class of CO four modified NIM presented
in Khattri and Abbabandy [9] as:

2
yj=si=3ts),
2

Sjit1 =Yy —t(s

1+szv]

where v = f ( ) and «; € R are free parameters. To establish the convergence of a sequence of approximations
of (2), the case of m = 4 was considered. This resulted in constructing a class of four CO methods that are very
effective for solving NLM. In like manner, Chun in [8] considered the method:

yi=sj—t(sj),

f ( ®)
Sjit1 = Yj— f/ 1+ Z
where u; = J;((—Z]; Chun utilized a few first terms of the power series in (3) to construct good CO order
j

four methods. Recently, Ogbereyivwe and Izevbizua [14] contributed to the literature by putting forward an
extended family of Chun [8], Ahmad[11], Babajee[12] and Jarratt [15] as

(14X w(o(s >—1>1‘>], @

Sk+1 = Sk — £(s)) .
: (1+ X Ai(o(se) — 1))
where 7; and A;,i = 1,2,3, ... are real, free and dispensable parameters.
Motivated by the works above, a class of methods similar to the methods in Chun [8] and Khattri and
Abbabandy [9] but better in precision is put forward as:

yi=si—t(sj),

Sj+1 = Sj — i’(S]‘)

T+ el | ©)
iz1 Biu' |

where Y, a;u and Y7 | B;u’ are power series that are converging, aj, Bj € R are free parameters to be
determined and are responsible for ensuring the IM’s sequence of approximations converge to the solution of
NLM with a desired order. We note here that for ; = 0, Vi, a variant class of the TPIM in Chun [8] is obtained.
The TPIM (5) require three functions evaluations in an iteration cycle and if it converge with order four for any
choice of m(i < m < o0), then its efficiency index E, £f is 1.5874. The next theorem establishes the conditions
imposed on the parameters a; and f8; so as the method in (5) and for m = 3, its sequence of approximations
converge to o the solution of NLM with CO four.

The following definitions of basic concepts are required in the proof of the next theorem.

Definition 1. (Asymptotic error and constant and Convergence order) Let d; = s; — ¢ be IM error at jth iteration
and suppose an equation d; 1 = 176 + O(df“) is obtained from an IM by using the Taylor expansions on
the functions f(-), then d;; is referred to as Asymptotic error equation, 7 is Asymptotic constant and p is

Convergence order.

Definition 2. (Efficiency) Suppose the equation d;, 1 = d‘o + O dp 1) holds for an IM as described in
Y PP q j+ n

Definition 1, then the value E,¢f = pr (where 7 is total number of drstrnct functions f(-) in one IM cycle) is
called the Efficiency index of the IM.
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Theorem 1. Suppose f : D C R — R is a real valued function that is at least three times differentiable in the domain
D, such that o C D and |f' ()| # 0in D. If dy is close to o and m = 3, then the sequence {Sf}jzo’ (sj e D) of
approximations, generated by the class of IM in (5) converges to o with CO four so long the free parameters w; and B;

satisfies the conditions B1 — a1 +1=0,B2 —as+a1+1=0and B3 —az+ap + a1 +2 =0.

Proof. Let s=s; in the Taylor series expansion of f (s) and f’ (s) about o, then
/ < 5
f(sj) = f (o) (d; + Z;chd;? +0 (7)),
n=
and

4
f'(s5) = f (o) (1+ ;ncnd;’fl +0 (d?)),j:O, 1,2,

where ¢, = %f;j)(g;;),j > 2.

—

By substituting (6) and (7) in the first step of (5), the following expression is obtained:
yi =0+ czdj2 + (=2c3 + 2ca)d}?’ + (4¢3 — 7cocs + 364)d;-1 + O(d]“r»’)

and
fly;) = czdjz + (=2c3 + 2C3)d? + (5¢5 — 7caes + 3C4)d;1 + O(d]S-)

The expansion of the function u(s) is obtained using (6) and (9) as:

u(sj) = codj + (—3c3 + ZC3)¢:I]2 + (8¢5 — 10cac3 + BC4)d]3 + O(d?).

The Taylor expansion of the quotient power series in the second step of (5) is obtained as:

M =1+ (t1c2 — B1)d; + (2a103 + c3(—3a1 + ap) + w165 — 2By
— a1y + B — /32(:%)0112 + (Baycq + cpc3(—10aq + 4ay)
+ c3(8ay — 6z + a3) — 8c3B1 + 10B1cacs — 3B1cy
— co(2a1c3 + c5(—3a1cs + a))B1 — 6B3C5 + 4B3cacs
— Bic3 + 6Bacs — 4Bacacs + 2B1Bach + a1c2(3B1c3
—2B1¢3 + B163 — Pacs) — Bac3)d; +O(d})

The substitution of (11) in the second step of (5), resulted to the expression

Siy1 =0+ (1 —ag + ,81)61]2 4+ (2c3(1 —ay 4+ B1) + 3(—2 —ay — 4B
— Bl +a1(4+B1) + B2))di + (Bea(1 — a1 + 1) + cac3(—=7 — 4az
— 1+ ay —4a? + 21 (7 +201) +4B2) +c3(4 — a3 + 1381 +7B% + B3
+ar(7+ar) — ay (134 7By + PIB — P2) — 7B2 — 2B1B2 + B3))di
5
10 (dj).

(6)

@)

®)

)

(10)

(11)

(12)

From the error equation (12), the iterative scheme (5) converge to J with order four if the coefficients of

dj, djz- and d;’ vanishes. To achieve this, the following system of equations must be satisfied.

Br=wa1—1;
Br=ar—wa1 —1;
‘33:0(3—062—061—2.

By substituting (13) into (12), the expression below is obtained.

Sji+1 = 6— (12C3d}L + O(djs)

(13)

(14)
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From Definition 1, the equation in (14) is the asymptotic error of the iterative scheme (5) and its CO is
four. This end the proof.
O

Remark 1. By substituting the values of the parameters f; in terms of free parameters «; in (5) as satisfied in
the conditions (13), a class of TPIM of CO four can be obtained. Consequently, the following TPIM of CO four
is obtained.

Yj=sj— f(S]'), (15)

Y :Sif(x]) 1+Zz 1““
LT f(si) |14 (ag =) u+ (ap — g — 1) u? + (a3 — ap — g — 2) u3

(16)

3. Formation of some concrete members of the method

In this section, some members of the class of the TPIM put forward in (15) that are of CO four are
presented for illustration. In fact, some existing IM are concrete members of the class (15). In presenting the
concrete methods, the denotation M} is used to read "Method j with CO 4"

Method 1 (M‘ll): For instance, when «#; = —1,a4p = 0 and a3 = 2 in (15), the following method is
constructed :

f(y) F\®
fG) [T 76 )+2<f(s/))

Zit1 =8 — 17
P (s 1_ ot (f(y,))3 an
f(sj) f(sj)
Method 2 (M ): For a1 = ap = a3 = 0in (15), the method denoted M4 is constructed as:
f(sj) 1
Zj+1 = 5 — F(s;) 3 (18)
j _fy) _ (f) f)
-8 - () -2(5)
Method 3 (Mg): By substituting #; = a = 0 and a3 = 2 in (15), the following IM is obtained:
=i f(sj) G0 (19)
PP | ) (f(y;))z
f(s)) f(sj)
Method 4 (Mfi): For oy = ap =1 and a3 = 4 in (15), an IM is designed as:
e [ (s .
T FG) L (f(y ))
f(s)
Method 5 (M ): Forag = %,0&2 = % and a3 = % in (15), the IM is obtained:
2 W) 2 (f) 1 (fu)\?
s [ 3G )) +3(75)
Zj-l-l = S]‘ = L. . 3 (21)
f1Gi) 1 1t : ( <yj>) s (f(y]))
3fG6s) 3\ fs) 3\ f(s9)
Method 6 (Mg): For oy = 1,ap = 0, and a3 = 3 in (15), the method denoted M‘Z1 is constructed as:
) fw)?
fis) |1+ 3 (7)) )

Zj41 =S5 —
! T fsp)

-2’
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Remark 2. For a#y =1, ay = 2 and a3 = 1in (15), we obtain the method in Kuo et al., [16] (Equation (27))
Remark 3. We note here that if m = 1 and a4 = —1 in (3), then the famous Ostrowski method [17] is
rediscovered as follows:
Yj=sji—tj
f)
N (C) 8 b il @)
AR ]_f’(s) flyp) |7
11 —25
f(s))
Remark 4. Again, for m = 2 in (15), a subset class of the TPIM (15) is obtained as following
Yj=sj—tj
s-+1:s._f<xf) L+ B2 it 24)
/ J f'(s) 1+(a1—1)u+(2—041—1)u2
with asymptotic error equation
i1 =0— (chg—cg 2+x +zx2)) d}l+O (dS) (25)
Some new methods can be formed by arbitrarily assigning real values to a;,i = 1,2,--- in (23). To
illustrate this, the following examples were considered
Method 7 (M%). For a1 = ap = 0in (23) produced the IM
f(s)) 1
PSR (s)) ) (f(y,>>2
f(s) f(s)
Method 8 (Mg): For a1 = 0 and ay = —2in (23) yields the IM:
fs) | 125
Ziy1=S; — . (27)
T PGs) ) )

Remark 5. When #; = 1 and a3 = 2 in (23), a method in Kuo et al., [16] (Equation 25) is rediscovered

Method 9 (M3): For a; = 0 and ap = 1 in (23), the method in Kuo et al., [16] (Equation 21) given as

F)\?
N {C) 1+ (7e) 28
LT (s)) )
U I ()
is rediscovered.

4. Numerical test on the method

This section of the work presents the numerical test conducted on the concrete members of the class of
methods put forward herein, with the motivation of establishing its potency in determining the solution J of
NLM. Also, their performance were compared with some existing methods in literature that are of equal CO
Some of these methods includes:

Chun method (CM1) [8],
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() fu) . (Fon\’
+1 =Y F(sp) 1+2f(5j) + <f(5j)> ]
Chun method (CM2) [8],

R ) f(y))

i+1 = Yj F(s7) 1 +2f(s]-)1 )

Khattri and Abbasbandy (KAM) [9],

2
yj =sj— 3t(s5),

£(5) {1 L2 FW)

9
TN Ty |8 s 2

]

Maheshwari method (MM) [18]

ORI AN L)
Sj+1 = §j f/(S]) [(f(sj)> +f(5]) —f(]/])] .

The nonlinear models taking from [3,7,19] and used for the test are:

Model 1: (System projectile motion).
f(s) = s> — 9s + 1, with required root ¢ ~ 2.942820057795838 . ...

Model 2: (Concentration of pollutant bactaria).
f(s) = 2s — Ins — 7, with required root o ~ 4.21990648378038 . . .

Model 3: (Anti-symmetric buckling of a beam).
f(s) =€ +s—20, with required root o ~ 2.842438953784447 . ..

Model 4: (Mass of a jumper).
f(s) = sin(s) —s+ 1, with required root o ~ 1.934563210752024 . ..

Model 5: (Gas volume depending on temperature).
f(s) = e — 4s, with required root o ~ 0.357402956181389 . ...

Model 6: (Population growth equation).
f(s) = 1586000 — 435000 (¢s — 1) — 1000000¢°,
with required root o ~ 2.620641345791234 . . .

Model 7: (Real gas Van der Waals equation).
f(s) = 0.986s> — 5.181s2 + 9.067s — 5.289 ,
with required root o ~ 1.929846242847862 . . .

Model 8: (Mixed reactor chemical concentration equation).
f(s) = f(s) =1 —0.75¢79%5  with required root ¢ ~ 5.753641449035618 . ...

o\ L 5w
f'(s5) 8 \f'(sp) ) |

(29)

(30)

D)

(32)

All computations herein were done using the software MAPLE 2017 version, with 2000 digits numeric
precision on 2GB RAM processor, Intel Celeron(R) with CPU 1.6GHz. The stopping criteria |f (s ])| < 107200
was used for all programs. The measures used for comparison are: Number of Iterations required by method
to achieve convergence (IT), norm of functions of each iteration point value | f(s;) | and function of last iteration

value | f (sjﬂ)‘ and the convergence order p., due to Petkovic [20] given as:
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co —

. log ’f(5j+1)’

log |f(s)|

(33)

The compared numerical results are presented in Table 1-3. Observe that for all the NLM used for the test, the

developed methods obtained their solutions with higher precision than the existing methods compared.

Table 1. Methods results comparison for Models 1-3

Methods ~ Models sg  IT  |f (Sk+1)|  peo
CM1 5 426e—640 4.03
CM2 5 7.26e—591 4.02
KAM 5 75e—472  4.03
MM 5 9.1le—633 4.01

M} 4  1.16e—235 4.05
M; 5 525¢—762 4.02
M} 1 27 4 3.69—215 4.06
M; 5 7.58¢—786 4.03
Mz 5 53le—800 4.02
M 5 1.27e—803 4.02
M3 5 525¢—762 4.1
Mg 5 207¢—624 4.03
CM1 6 157¢—581 4.03
CM2 6 7.15e—531 4.02
KAM 6 247¢—767 4.2
MM 6 819¢—488 4.03
Mi 5 4.98¢—201 4.10
M; 7  1.65e—261 4.08
M; 2 01 6 233¢—767 4.02
Mj 5 247e—342 4.02
Mz 7  31le—228 4.07
M 6 6.0le—405 4.05
M3 7  1.65¢—261 4.07
Mg 6 314c—497 4.04
CM1 4 3.63¢—374 4.00
CM2 4 497e—364 4.01
KAM 4 469 —344 4.00
MM 4 270e—372 4.0
Mi 4 354e—455 4.00
M; 4 833¢—394 4.02
YE 3 20 4 319¢—450 4.02
Mj 4 53le—446 4.02
Mz 4 4.66e—399 4.00
M 4 1.19e—447 4.00
M3 4 833¢—394 4.02
Mg 4 2,54e—454 4.2
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Table 2. Methods results comparison for Models 4-6

Methods _so  |f(s)|  |f(s2)]  [f(s3)|  |f(sa) HEI
CM1 3le—2 62¢—8 1.1e—30 94e—122 55¢—482
CM2 48¢—2 4le—7 25e—27 32¢—108 9.8¢—432
KAM 12e—1 26e—5 75¢—20 50e—78 1.0e—310
MM 35e—2 9.6e—8 620—30 1le—48 9.5¢—474

M; 1.6e—2 7.6e—10 34e—39 15e—156 4.8¢—626

M; ld4e—2 15e—9 17¢—37 3.6e—149 6.4¢ —5%

M; 15 14e—2 19e—10 9.0e—42 4le—167 1.6e— 668

M; 32e—2 47¢e—9 3.0e—36 5.le—145 4.1e—580

Mz 1.0e—2 44-10 12¢—39 82¢—158 1.5¢—630

Mg 92e—2 55e—6 97¢—23 93e—90 7.8¢— 358

M ld4e—2 15e—9 17¢—37 35e—149 6.4e —5%
Mg 50e—3 38¢—12 13e—48 1.6e—194 4.0e—778

M1 58¢—4 75¢—16 20e—63 1.2¢—253 -
CM2 6.6e—4 15e—15 39e—62 1.9e—248 -
KAM 1.0e—3 1.6e—14 89¢—58 8.4e— 231 -
MM 58¢—4 72e—16 18¢—63 7.le—254 -

M} 12¢—4 56e—20 26e—81 1.1e—326 -

M; 40e—4 10e—16 4le—67 1.2¢—278 -

M; 01 23e—4 39¢—18 38e—73 3.2¢—293 -

M; 25e—4 58:—18 17e—72 1.2¢e—290 -

Mz 37¢—4 65e—17 65e—68 6.9¢—272 -

Mg 73¢—4 25¢—15 37e—61 1.7e—244 -

M 37e—4 10e—16 4.le—67 1.2¢—268 -
Mg 2le—4 27e—18 89e—74 9.5¢ —296 -
CM1 2285856  186.6  13¢e—10 3.6e—59 1.9¢ —253
CM2 5117039 33687 18¢—5 1.6e—38 1.le—170
KAM 2.3 229265.6 4456 12¢—8  52e—51
MM 325544 624 17¢e—8 88e—51 6.5¢— 220

M} 1924157 1349  18¢—11 6.4e—63 9.7¢ — 269

M; 1002124 370  7.8¢—18 1.7e—88 3.8¢—371

M5 20 2482318 2665 1le—10 3.6e—60 3.8¢—258

M; 1924157 1349  18¢—11 650 —63 9.7¢ —269

Mz 82375.9 1.3 9.7e —20 29¢—96 23e—402

Mg 7177259 98295  16e—3 12¢—30 3.5¢—139

M 100212.4 3.7 79¢—18 1.7e—88 3.8¢— 371
Mg 156023 205  40e—15 55e—78 2.1e—329
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Table 3. Methods results comparison for Models 7-8

Methods s |f(s)l  [f(s2)|  If(sa)l  |f(s4)l |f (s5)]

M1 5le—2 53¢—3 12e—4 34e—10 22e-—32
CM2 49e—2 46e—3 78¢—5 46e—11 6.0e —36
KAM 64e—2 9.0e—3 54e—4 19 —-78 42¢-21
MM 47¢—2 44e—-3 67¢—5 25e—11 4.8¢—37
M‘l1 21le—2 24e—4 13e—9 12e—30 84e—-115
M‘Z1 37e—-2 24e—-3 6le—6 82—16 27¢—55
Mg 1.5 30e—2 13¢—-3 53¢—8 85e—25 5.6e—92
Mﬁ 36e—2 22¢—3 18 -6 120—-18 21le—67
Mé 35¢e—-2 20-3 326 -6 48¢—17 24e—60
Mg 5le—2 52¢—3 13¢—4 44e—10 54e—32
M‘} 37e—2 23¢—-3 6le—6 82—16 27¢—55
M4g 20e—2 27¢e—4 42e—10 34e—33 14e—-125
M1 56e—3 41e—10 1.2e—-38 7.5¢—153 1.3e —609
CM2 84e—3 27¢—9 28e—35 32¢—139 5.7e—555
KAM 21le—2 20e—7 17¢e—27 9.6e—108 9.5e—429
MM 6.le—3 56e—10 41e—38 12¢—150 9.6e— 601
M‘l1 36e—3 36e—11 37¢—43 3.8¢—171 4.2¢—683
M‘z1 21le—3 33e—12 21le—47 3.1e—188 1.5¢—751
Mg 03 27¢—3 46e—12 39¢e—47 2.0e—187 1.5e—748
Mﬁ 50e -3 56e—11 84e—43 41e—170 2.0e —679
M‘S1 15¢—-3 61—-13 17¢—-50 1.1e—200 1.9¢—801
M‘é l4e—2 24e—8 22e—31 17¢e—123 5.4e¢—492
Mf} 21le—3 33e—12 21e—47 3.1e—188 1.5e—751
M4g 156 —3 39¢—13 19e—51 1.3e—204 —

5. Conclusion

This manuscript has successfully put forward a class of CO four IM for determining the solution of scalar
nonlinear models. The class of methods was constructed using the classical NIM as a predictor and corrector
iterative function involving two power series’ quotients. The famous Ostrowski method [17] and many
methods in Kuo et al., [16] are concrete members of the class of methods put forward herein. The numerical
experimentation with the developed methods on some standard NLM obtained from recent literature indicates
that they have better precision than many other optimal CO four methods. For this reason, the developed
methods can be used as good predictor iterative functions in developing multi-point, high-precision methods
with higher CO. This can be considered for future work.
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this paper.
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