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Abstract: In this work, we propose a deep learning approach for identifying parameters (initial condition,
a coefficient in the diffusion term and source function) in parabolic partial differential equations (PDEs)
from scattered final observations in space and noisy a priori knowledge. In Particular, we approximate the
unknown solution and parameters by four deep neural networks trained to satisfy the differential operator,
boundary conditions, a priori knowledge and observations. The proposed algorithm is mesh-free, which
is key since meshes become infeasible in higher dimensions due to the number of grid points explosion.
Instead of forming a mesh, the neural networks are trained on batches of randomly sampled time and space
points. This work is devoted to the identification of several parameters of PDEs at the same time. The classical
methods require a total a priori knowledge which is not feasible. While they cannot solve this inverse problem
given such partial data, the deep learning method allows them to resolve it using minimal a priori knowledge.
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1. Introduction

A ccording to J.B. Keller [1], two problems are said to be inverses of each other if the formulation of one
put the other involved. A more operational definition is that an inverse problem is to determine causes

knowing effects. Thus, this problem is the inverse of the one called direct problem, consisting in deducing the
effects, the causes being known.

In a large number of applications based on partial differential equations, we are interested in the
identification of some properties of the system from partial knowledge. We consider the following boundary
problem: 

∂tu− ∂x(a∂xu) = f , ∀x ∈ Ω, ∀t ∈ ]0, T[ ,

u|∂Ω = g(t), ∀t ∈ ]0, T[ ,

u(0, x) = u0(x), ∀x ∈ Ω.

(1)

Heat equation (diffusion equation) is the archetype of parabolic models. In the unidimensional problem
case, (1) models the evolution of the temperature u(t, x) in a conductor bar, the initial temperature distribution
at t = 0 is given by the function u0(x), on the edge the temperature is maintained at g(t), the heat sources are
modeled by the given function f (t, x), the specific heat a(x) of a material is the amount of heat energy that it
takes to raise one unit of mass of the material by one unit of temperature.

There are several inverse problems or identification problems associated with the heat equation. Given
temperature u (some measures of u(t, x)), each question among the following models an inverse problem:

• What are the boundary conditions which we must supply this system to have the temperature u?
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• What is the initial condition to reach the temperature u?
• What is the source we should provide to the system to have u as a solution of (1)?

Sometimes an inverse problem is modeled by a combination of questions above. We should notice that for
other values of observations we can get other parameters. On other hand we can search a(x), which we call
an identification problem, since it is a characterization which identifies the material. Whatever observations
we get the same coefficient value.

The reformulation of an inverse problem as minimization of an error between the real measures and the
solution of the direct problem is the most important step. We seek to identify a parameter P ∈ EP which can
be the initial condition u0, the source f or the coefficient a, from an observed function uobs (measures). The
following equation of state relates implicitly the parameter P and the state u:

F(P, u) = 0. (2)

Let
u = ϕ(P), (3)

be the solution of the problem (2).
The inverse problem consists in identifying P such as:

ϕ(P) = uobs. (4)

The application ϕ is defined implicitly. It is non-linear, even though the equation of state (2) is linear. This
obviously makes it more difficult to solve the inverse problem. We refer the interested reader in inverse
problems to see [2,3].

What we said previously suggests that equation (4) may not have a solution, and even if it does, the
inverse application is not necessarily continuous. We are therefore going to introduce a formulation, a priori
weaker, which has proved its usefulness. We replace equation (4) with the following minimization problem:Find P ∈ Aad such as

JT(P) = min
h∈Aad

JT(h),

where the space Aad is the admissible set of P and the cost function JT is defined as follows:

JT(h) =
1

2T

∥∥∥ϕ(h)− uobs
∥∥∥2

.

This formulation is called a least squares method, and JT is the cost function. The observation being given
once and for all, to evaluate the functional JT in one parameter P, we start by solving the equation of state (2),
then the observation equation 4, and we compare the simulated observation to the measured one. Regarding
the observation, measurements are made for a few points of space and at some points in time. So, we need to
do an interpolation.

The first section is devoted to the presentation of classical methods of resolution, their limitations and our
motivation. In the second section we prove that the minimization problem is well-posed. We will calculate the
gradient of JT in the third section which we will use for classical methods in the fourth one. The fifth section
is devoted to the presentation of our approach. We will prove, under certain conditions, the convergence of
the L2 error defined as (24) using the smoothness of the neural network approximations in the sixth section.
We will present in the following section some numerical results of our algorithm which we will compare with
classical algorithms in the last section.

2. Related work

The mathematical model leads to a non-convex minimization problem. The objective function can have
several local minimums, as a result a descent algorithm ends at the meeting of the first local minimum. To
solve this problem we can apply two different approaches.
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The first approach is Tikhonov regularization which consists in defining the solution of the inverse
problem as being the minimum of one least squares criterion penalized by a quadratic term:

JT(h) =
1

2T

∥∥∥ϕ(h)− uobs
∥∥∥2

+
ε

2

∥∥∥h− hb
∥∥∥2

,

where ε is the regularization coefficient and hb is a priori knowledge (background) of exact parameter h.

An essential difficulty with this approach stems from the fact that it requires a priori knowledge at all
points of the domain of resolution. Moreover, in practice, the knowledge hb is partial (30%), the size of hb is
much less than that of h. This makes it difficult to find the regularization coefficient.

To solve this problem a second approach called hybrid method is proposed in [4,5] . The idea of this
method is to marry the genetic algorithm with a gradient descent method. The individual in the genetic
algorithm is the parameter h. Let’s start with an initial population, we apply the genetic algorithm with
its operators (crossing and mutation) to produce a new population of which each individual serves as a
starting point for the steep descent method. This method is very effective for inverse problems associated with
identifying a single parameter of PDEs for example a or u0 or f . For the identification of several parameters of
the equation this method does not solve the problem of partial knowledge.

However, there are some drawbacks associated with those methods. The gradient of functional JT
is computed by using adjoint method, which requires the resolution of another boundary problem whose
parameters are dependent on u (the solution of the main problem). The first drawback is that they require, in
each descent iteration, resolution of two PDEs by classical methods (finite difference, finite element, .etc).
It means that to solve the inverse problem we should solve direct problem several times and manage its
complexity which makes those methods costly.

The second drawback is that they are not meshfree. Their application for high dimensional problems
and complex domains is difficult since classical methods become infeasible in higher dimensions due to the
explosion in the number of grid points. They also require using interpolation and numerical integrals.

The last drawback is that they require a complete a priori knowledge. The solution reconstruction cannot
be made from partial data.

Recently, deep learning emerged as a powerful technique in many applications. It is used in many works
related to PDEs like [6–8] where authors solve many types of PDEs by deep learning method. This success
inspires us to apply such a technique to identifying parameters of PDEs from final observations.

This work is devoted to the identification of a, u0 and f of (1) from final observations by a new approach
based on deep learning method which is meshfree and does not require solving direct problem, interpolation
or numeric integrals. This new approach requires only partial a priori knowledge.

The sought after solution is driven by the model since the relation between all parameters of the system
(diffusion phenomenon model) is the main information for the resolution.

3. Well-posedness

In this section we consider the case of homogeneous boundary data, i.e.,g(t) = 0.

We specify some notations we shall use.

Sa = Su0 = L2(Ω), S f = L2
(
]0, T[ ; L2(Ω)

)
,

S = Sa × Su0 × S f .

Let P = (a, u0, f ) ∈ S
∥P∥S = ∥a∥Sa

+ ∥u0∥Su0
+ ∥ f ∥S f

.

Definition 1. (Variational formulation [9])
The variational formulation of the problem (1) is the following:
Find u(t) function of ]0, T[ in H1

0(Ω) such as:{
d
dt ⟨u(t), v⟩L2(Ω) + ⟨aux(t), vx⟩L2(Ω) = ⟨ f (t), v⟩L2(Ω) , ∀v ∈ H1

0(Ω), ∀t ∈]0, T[,

u(x, 0) = u0(x), ∀x ∈ Ω.
(5)
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Definition 2. (Weak solution)
A weak solution of (1) is a solution of the variational formulation 5.

Let a ∈ L∞(Ω) where a(x) > γ, γ > 0, ∀ x ∈ Ω.
The existence and uniqueness of the solution are given by the following theorem:

Theorem 1. [10] Let u0 ∈ L2(Ω) and f ∈ L2(]0, T[ ; L2(Ω)), there is only one weak solution of the problem (1) such
as:

u ∈ L2(]0, T[ ; H1
0(Ω)) ∩ C([0, T] ; L2(Ω)),

with the following estimation:

∥u∥L2(]0,T[;H1
0 (Ω)) + ∥u∥C([0,T];L2(Ω)) ≤ C

(
∥ f ∥L2(]0,T[;L2(Ω)) + ∥u0∥L2(Ω)

)
, (6)

the constant C depends only on Ω and T. 2

Theorem 2. Let u a weak solution of (1) with P = (a, u0, f ).
The function

ϕ : S −→ L2(]0, T[ ; H1
0(Ω)) ∩ C([0, T] ; L2(Ω))

P 7−→ u

is continuous, and the functional JT is continuous. Therefore, JT has a unique minimum in Aad.2

Proof. Let δP = (δa, δu0, δ f ) ∈ S be a small variation such that P + δP ∈ Aad. Consider δu = uδ − u, where u
is the weak solution of (1) with P, and uδ is the weak solution of (1) with Pδ = P + δP. We have

∂tu− ∂x(a∂xu) = f (x, t), ∀x ∈ Ω, ∀t ∈]0, T[,

u(0, t) = u(1, t) = 0, ∀t ∈]0, T[,

u(x, 0) = u0(x), ∀x ∈ Ω,

(7)

and 
∂tuδ − ∂x

(
aδuδ

x
)
= f δ(x, t), ∀x ∈ Ω, ∀t ∈]0, T[,

uδ(0, t) = uδ(1, t) = 0, ∀t ∈]0, T[,

uδ(x, 0) = uδ
0(x), ∀x ∈ Ω.

(8)

(8)−(7) yield 
∂tδu− ∂x

(
aδ∂xδu

)
− ∂x (δa∂xu) = δ f , ∀x ∈ Ω, ∀t ∈]0, T[,

δu(0, t) = δu(1, t) = 0, ∀t ∈]0, T[,

δu(x, 0) = δu0(x), ∀x ∈ Ω.

(9)

The variational formulation of (9) is:
∫

Ω
∂tδuv dx +

∫
Ω

(
aδ∂xδu

)
∂xv dx−

∫
Ω

∂x (δa∂xu) v dx =
∫

Ω
δ f v dx, ∀v ∈ H1

0(Ω),

δu(x, 0) = δu0(x), ∀x ∈ Ω.

Take v = δu, then ∫
Ω

∂t(δu)δu dx +
∫

Ω
aδ (∂xδu)2 dx−

∫
Ω

∂x (δa∂xu) δu dx =
∫

Ω
δ f δu dx.

We have ∫
Ω

aδ (∂xδu)2 dx ≥ 0,

this implies that ∫
Ω

∂t(δu)δu dx ⩽
∫

Ω
∂x (δa∂xu) δu dx +

∫
Ω

δ f δu dx,
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and consequently ∫
Ω

∂t(δu)δu dx ⩽
∫

Ω
∂x (δa∂xu) δu dx +

∫
Ω

δ f δu dx,

then ∫
Ω

∂t(δu)δu dx ⩽∥ δa ∥L∞(Ω)

∫
Ω
|∂xu∂xδu| dx +

∫
Ω
|δ f δu| dx.

By integrating between 0 and t with t ∈ [0, T] we obtain

1
2
∥ δu(t) ∥2

L2(Ω) −
1
2
∥ δu0 ∥2

L2(Ω)⩽∥ δa ∥L∞(Ω)

∫ T

0

∫
Ω
|∂xu∂xδu| dxdt +

∫ T

0

∫
Ω
|δ f δu| dx,

since u, δu ∈ H1(0, T; L2(Ω)),
there exist C1 > 0 and C2 > 0, such that

sup
t∈[0,T]

∥ δu(t) ∥2
L2(Ω)⩽ 2C1 ∥ δa ∥L∞(Ω) + ∥ δu0 ∥2

L2(Ω) +C2 ∥δ f ∥L2(]0,T[;L2(Ω)) ,

which give
∥ δu ∥2

C([0,T];L2(Ω))⩽ C
(
∥ δa ∥L2(Ω) + ∥ δu0 ∥2

L2(Ω) + ∥δ f ∥L2(]0,T[;L2(Ω))

)
where C = max(2C1, 1, C2).

We have:
H1(Ω) ↪→

compact
L2(Ω), (10)

H1
0(Ω) ↪→

compact
L2(Ω). (11)

Let
F =

{
g ∈ L2

(
[0, T] ; H1(Ω)

)
/ ∂tg ∈ L2

(
[0, T]; L2(Ω)

)}
,

By Aubin-Lions Lemma [11], :
F ↪→

compact
L2
(
[0, T]; L2(Ω)

)
. (12)

Let
Ar1

u0 =
{

u0 ∈ H1
0(Ω); ∥u0∥H1

0 (Ω) ≤ r1

}
,

Ar2
a =

{
a ∈ H1(Ω); ∥a∥H1(Ω) ≤ r2

}
,

Ar3
f =

{
f ∈ F; ∥ f ∥L2([0,T];H1(Ω)) ≤ r3

}
,

where r1, r2, r3 ∈ R∗+. Let
Aad = Ar

a × Ar
u0
× Ar

f ,

where r = min(r1, r2, r3).
Ar

a, Ar
u0

and Ar
f are bounded in H1(Ω), H1

0(Ω) and F respectively. From, (11) and (12), they are compacts in

L2(Ω), L2(Ω) and L2 ([0, T] ; L2(Ω)
)

respectively. Consequently Aad is compact in S.

The functional JT is continuous. Therefore, J has a unique minimum in Aad.

4. Gradient of JT by adjoint state method

We define the Gâteaux derivative of ϕ at P = (a, u0, f ) in the direction q = (qa, qu0 , q f ) ∈ S, by

û = lim
ε→0

ϕ(P + εq)− ϕ(P)
ε

,

ϕ(P + εq) is the weak solution of (1) with parameters P + εq, and ϕ(P) is the weak solution of (1) with
parameters P.
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The Gâteaux (directional) derivative of ϕ at P in the direction q ∈ S, is the weak solution of the following
tangent linear model: 

∂tû− ∂x(a∂xû)− ∂x(qa∂xu) = q f (x, t), ∀x ∈ Ω, ∀t ∈ ]0, T[ ,

û(t, 0) = û(t, 1) = 0, ∀t ∈]0, T[,

û(0, x) = qu0(x), ∀x ∈ Ω.

We introduce the adjoint variable A, and we integrate:

∫ T

0

∫ 1

0
∂tûA− ∂x (a∂xû) A− ∂x (qa∂xu) A dxdt =

∫ T

0

∫ 1

0
q f A dxdt.

Calculate separately each term :

∫ T

0

∫ 1

0
∂tûA dxdt =

∫ 1

0
[ûA]T0 dx−

∫ 1

0

∫ T

0
∂t Aû dtdx,

∫ T

0

∫ 1

0
∂x (a∂xû) A dxdt =

∫ T

0
[(a∂xû) A]10 dt−

∫ T

0

∫ 1

0
a∂xû∂x A dxdt

=
∫ T

0
[(a∂xû) A]10 dt−

∫ T

0
[aû∂x A]10 dt +

∫ T

0

∫ 1

0
∂x (a∂x A) û dxdt

=
∫ T

0
[(a∂xû) A]10 dt +

∫ T

0

∫ 1

0
∂x (a∂x A) û dxdt,

∫ T

0

∫ 1

0
A (∂x (qa∂xu)) dxdt =

∫ T

0
[qa∂xuA]10 dt−

∫ T

0

∫ 1

0
qa∂xu∂x A dxdt.

We pose A(t, 0) = A(t, 1) = 0 and A(T, x) = 0, we obtain

∫ T

0
⟨û, ∂t A + ∂x(a∂x A)⟩L2(Ω) dt =

〈
qa,
∫ T

0
∂xu∂x A dt

〉
L2(Ω)

− ⟨qu0 , A(0, x)⟩L2(Ω) −
〈

q f , A
〉

L2(]0,T[×Ω)
,

so

∫ T

0
⟨∂t A + ∂x(a∂x A, û)⟩L2(Ω) dt = − ⟨q, h⟩S , (13)

where

h =

(
−
∫ T

0
∂xu∂x A dt, A(0, x), A

)
.

Let

JT(P) =
1

2T

∫ T

0

∥∥∥u(t)− uobs(t)
∥∥∥2

L2(Ω)
dt.

The Gâteaux derivative of J at P in the direction q is given by:

ĴP(q) = lim
ε→0

JT(P + εq)− JT(P)
ε

,

After some computations, we arrive at

ĴP(q) =
1
T

∫ T

0

〈
u− uobs, û

〉
L2(Ω)

dt. (14)

The adjoint model is: 
∂t A + ∂x (a∂x A) = 1

T

(
u− uobs

)
,

A(t, 0) = A(t, 1) = 0, ∀t ∈ ]0, T[ ,

A(T, x) = 0, ∀x ∈ Ω,

(15)
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the problem is retrograde, we make the change of variable t←→ T − t, then
∂t A− ∂x (a∂x A) = 1

T

(
ūobs − ū

)
,

A(t, 0) = A(t, 1) = 0, ∀t ∈ ]0, T[ ,

A(0, x) = 0, ∀x ∈ Ω,

(16)

with ū(t) = u(T − t).
From equations (13), (14) et (15), the gradient of JT is given by

∇P JT = (
∂JT
∂a

,
∂JT
∂u0

,
∂JT
∂ f

) = −h. (17)

By the change of variable we have:

∂JT
∂a

=
∫ T

0
∂xu∂x A dt ;

∂JT
∂u0

= −A(T, x) ;
∂JT
∂ f

= −A ;

5. Approach, Model and Algorithm

Consider a parabolic PDE with d spatial dimensions:
∂tu− divx (a(x)Id∇xu) = f , ∀x ∈ Ω, ∀t ∈ ]0, T[ ,

u|∂Ω = g(t), ∀t ∈ ]0, T[ ,

u(0, x) = u0(x), ∀x ∈ Ω,

(18)

where Ω ⊂ Rd, Id is the identity matrix of order d.

The goal is to find P = (a, u0, f ) ∈ SP such that Uob ∈ Rk are k final observations of u solution of (18) at
K, with

SP = L2(Ω)× L2(Ω)× L2 (]0, T[×Ω) ,

K = {(ti, xi) ∈ {T} ×Ω}0⩽i⩽k

and Pb = (ab, ub
0, f b) ∈ Rh is h a priori knowledge of P at Hb with some bruit b where h = (h1, h2, h3) ∈ N3:

Hb = {xi ∈ Ω}0⩽i⩽h1
× {xi ∈ Ω}0⩽i⩽h2

× {(ti, xi) ∈ ]0, T[×Ω}0⩽i⩽h3

The optimization problem associated is finding P which minimizes the function:

J (v) =
∥∥∥u(t = T)− uob

∥∥∥2

L2(Ω)
+
∥∥∥v− pb

∥∥∥2

SP
, (19)

where uob and pb are interpolations of Uob in L2 (Ω) and Pb in SP.

The deep learning method for inverse problem (DL-IP) approach approximates a, u0, f and u by four
deep neural networks with common inputs and loss function. Figure (1) shows a visualization of the overall
architecture:

a(x) ≃ ã(x) = Na(x; θa),

u0(x) ≃ ũ0(x) = Nu0(x; θu0),

f (x, t) ≃ f̃ (x, t) = N f (x, t; θ f ),

u(x, t) ≃ ũ(x, t) = Nu(x, t; θu),

where θ = (θa, θu0 , θ f , θu) are parameters of neural networks.
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Figure 1. DL-IP’s model architecture.

Our goal now is to find θ such that Uob are observations of Nu, and Pb is the a priori knowledge of
(Na, Nu0 , N f ).

The cost function is constructed as follows:

J̃ (θ) =
∥∥∂tũ + L(ã, ũ)− f̃

∥∥2
L2(]0,T[×Ω)

+
∥∥∥ũob −Uob

∥∥∥2

Rk
+
∥∥∥P̃b − Pb

∥∥∥2

Rh
+

∥ũ|∂Ω − g∥2
L2(]0,T[×∂Ω) + ∥ũ(t = 0)− ũ0∥2

L2(Ω) ,
(20)

where L(a, u) = −divx (a(x)Id∇xu) , ũob are values of ũ at K, P̃b are values of (ã, ũ0, f̃ ) at Hb.

The loss functional J̃ consists of five parts:

1. A measure of how well ũ and P̃ satisfy the differential operator:

J̃1(θ) =
∥∥∂tũ + L(ã, ũ)− f̃

∥∥2
L2(]0,T[×Ω)

2. A measure of how well the approximation ũ satisfies the observation value:

J̃2(θ) =
∥∥∥ũob −Uob

∥∥∥2

Rk

3. A measure of how well P̃ satisfies the a priori knowledge:

J̃3(θ) =
∥∥∥P̃− Pb

∥∥∥2

Rh

4. A measure of how well the approximation ũ satisfies the boundary condition:

J̃4(θ) = ∥ũ|∂Ω − g∥2
L2(]0,T[×∂Ω)

5. A measure of how well the approximation ũ satisfies the approximation of initial condition ũ0:

J̃5(θ) = ∥ũ(t = 0)− ũ0∥2
L2(Ω)

The derivatives of ũ can be evaluated using automatic differentiation (see [12]) since it is parameterizing
as a neural network.

The architecture of a neural network can be crucial to its success. Frequently, different applications
require different architectures. For example, convolution networks are essential for image recognition while
long short-term networks (LSTMs) are useful for modeling sequential data. In DL-IP’s model presented by
Figure (1), we use four neural networks with the same architecture described in figure (2).
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Figure 2. The structure of networks used in figure (1).

Each neural network Nk∈{a,u0, f ,u} uses three types of layers L1, L2 and L3.

• L1 takes as input I = (x, t) or I = x and returns as output C0:

C0 = σ(θ0.I + β0)

• Ln−1
2 takes as inputs I = (x, t) or I = x and the output Cn−1 of the previous layer L1 if n = 1 or Ln−2

2
if n > 1 and returns as output Cn. The inputs are transformed through a series of operations. Below,
we present the architecture in the equations along with a visual representation of a single Ln−1

2 layer in
Figure (3):

Zn−1
1 = σ(θn

1 .I + γn
1 .Cn−1 + βn

1),

Zn−1
2 = σ(θn

2 .I + γn
2 .Cn−1 + βn

2),

Zn−1
3 = σ(θn

3 .I + γn
3 .Cn−1 + βn

3)

Zn−1
4 = θn

4 .I + γn
4 .(Cn−1 ⊙ Zn−1

1 ) + βn
4),

Cn = (1− Zn−1
2 )⊙ Zn−1

4 + Zn−1
3 ⊙ Cn−1,

(21)

where 1 ⩽ n ⩽ L, ⊙ denotes Hadamard multiplication, θn =
{

θn
i , γn

i , βn
i
}

1⩽i⩽4 are parameters of Ln−1
2

layer and L is the total number of L2 layers.

Figure 3. Operations within layerLn−1
2 .

• L3 takes as input the output CL of the last layer LL
2 and returns:

CL+1 = θL+1.I + βL+1.

σ is an activation function such as the tanh function or sigmoidal function, θk are parameters of the Nk
neural network and θ are parameters of the DL-IP’s model, where

θk =
{

θ0, β0, . . . , θn, . . . , θL+1, βL+1
}

1⩽n⩽L

θ = {θk}k∈{a,u0, f ,u}

Algorithm 3. DL-IP Algorithm

1. Define boundary conditions
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2. Define the architecture of neutral networks by setting the number of layers, number of neurons in each layer and
activation functions.

3. Generate random training set:

DM =
{
(ti, xi)0⩽i⩽M̃ ∈ [0, T]×Ω, (ti, xi)0⩽i⩽M ∈ [0, T]× ∂Ω, (x0

i )0⩽i⩽M0 ∈ Ω
}

,

where M = (M̃, M, M0) ∈ N∗3.
4. Initialize the parameter set θ0 and the learning rate α0.
5. Repeat until convergence criterion is satisfied.

1 Randomly sample a mini-batch dm of training examples from DM :

dm =
{
(ti, xi)0⩽i⩽m̃⩽M̃, (ti, xi)0⩽i⩽m⩽M, (x0

i )0⩽i⩽m0⩽M0

}
⊂ DM.

2 Compute the loss functional for the sampled mini-batch dm:

J̃m
1 (θn) =

1
m

m

∑
0

(
∂tũ(ti, xi) + L(ã(ti, xi), ũ(ti, xi))− f̃ (ti, xi)

)2 ,

J̃k
2(θn) =

1
k ∑
(ti ,xi)∈K

(
ũ(ti, xi)−Uob

i

)2
,

J̃h
3 (θn) =

1
h ∑

(ti ,xi)∈B

((
ã(xi)− ab

i

)2
+
(

f̃ (ti, xi)− f b
i

)2
+
(

ũ0(ti, xi)− u0
b
i

)2
)

,

J̃m
4 (θn) =

1
m

m

∑
i=0

(
ũ(ti, xi)− g(xi)

)2 ,

J̃m0

5 (θn) =
1

m0

m0

∑
i=0

(
ũ(0, x0

i )− ũ0(x0
i )
)2

,

J̃(θn, dm) = J̃m
1 (θn) + J̃k

2(θn) + J̃h
3 (θn) + J̃m0

4 (θn) + J̃m
5 (θn). (22)

3 Compute the gradient ∇θn J̃(θn, dm) for the sampled mini-batch dm using backpropagation.
4 Use the estimated gradient to take a descent step at dm with learning rates (23) to update θn+1:

θn+1 = θn − αn∇θn J̃(θn, dm)

αn =



10−4, n ⩽ 5000,

5× 10−4, 5 < n ⩽ 10000,

10−5, 10 < n ⩽ 20000,

5× 10−5, 20 < n ⩽ 30000,

10−6, 5 < 30 ⩽ 40000,

5× 10−6, 40 < n ⩽ 50000,

10−7, 50000 < n.

(23)

6. Save model to be used for any x ∈ Ω and t ∈ ]0, T[ .

6. Convergence of the L2 error J̃ (ũ, P̃)

Let the L2 error J̃ (ũ, P̃) measure how well neural networks ũ and P̃ = (ã, ũ0, f̃ ) satisfy observations,
differential operator, boundary condition, initial condition and a priori knowledge.

J̃ (ũ, P̃) =
∥∥∂tũ + L(ã, ũ)− f̃

∥∥2
L2(]0,T[×Ω)

+
∥∥∥ũ(t = T)− uob

∥∥∥2

L2(Ω)
+
∥∥∥P̃− pb

∥∥∥2

SP
+

∥ũ|∂Ω − g∥2
L2(]0,T[×∂Ω) + ∥ũ(t = 0)− ũ0∥2

L2(Ω) ,
(24)

where uob and pb being interpolations of Uob in L2 (Ω) and Pb in SP.
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J̃ (ũ, P̃) can be directly calculated from the PDE (18) for any approximations (ũ, P̃). The goal is to construct
functions (ũ, P̃) for which J̃ (ũ, P̃) is as close to 0 as possible. Define Cn and Ct

n as classes of neural networks
with a single hidden layer and n hidden units. Let (ũn, P̃n) be neural networks with n hidden units which
minimize J̃ (ũ, P̃). We prove that, under certain conditions,

there exists (ũn, P̃n) ∈ Cn
4 such that J̃ (ũn, P̃n)→ 0, as n→ ∞.

strongly in L2([0, T]×Ω)× S.
The proof requires the joint analysis of the approximation power of neural networks as well as the

continuity properties of partial differential equations. We show that the neural networks can satisfy
observations, the differential operator, boundary condition, and initial condition arbitrarily well for sufficiently
large n,

J̃ (ũn, P̃n)→ 0 as n→ ∞.

In this section, we present a theorem guaranteeing the existence of multilayer feed forward networks
(ũn, P̃n) able to universally approximate solutions (u, P) in the sense that there is (ũn, P̃n) that makes the
objective function J̃ arbitrarily small. To do so, we use the results of [13] on universal approximation of
functions and their derivatives. We denote

ΩT = [0, T]×Ω O[u, P] = ∂tu− divx (a(x)Id∇xu)− f .

Universal approximation results for single functions and their derivatives have been obtained under
various assumptions in [13–15]. In this paper, we use Theorem 3 of [13]. Let us recall the setup appropriately
modified for our case of interest. Let ψ be an activation function, e.g., of sigmoid type, of the hidden units and
define the sets

Ct
n(ψ) =

{
ζt(t, x) : R1+d 7→ R : ζt(t, x) =

n

∑
i=1

βt
iψ

(
αt

0,it +
d

∑
j=1

αt
j,ixj + ct

j

)}
, (25)

where θt = (βt
1, . . . , βt

n, αt
0,1, . . . , αt

d,n, ct
1, . . . , ct

d) ∈ R2n+d(1+n) compose the elements of the parameter space,
and

Cn(ψ) =

{
ζ(x) : Rd 7→ R : ζ(x) =

n

∑
i=1

βiψ

(
d

∑
j=1

αj,ixj + cj

)}
, (26)

where θ = (β1, . . . , βn, α1,1, . . . , αd,n, c1, . . . , cn) ∈ Rn+d(1+n) compose the elements of the parameter space.
We consider the product spaces:

Cn
4 (ψ) = Ct

n(ψ)× Cn(ψ)× Cn(ψ)× Ct
n(ψ) ; C4(ψ) = Ct(ψ)× C(ψ)× C(ψ)× Ct(ψ),

where
Ct(ψ) =

⋃
n≥1

Ct
n(ψ) ; C(ψ) =

⋃
n≥1

Cn(ψ).

Then we have the following result.

Theorem 4. Let Cn(ψ) and Ct
n(ψ) be given by (26) and 25 respectively where ψ is assumed to be in C2(R), bounded

and non-constant. Assume that ΩT is compact. In addition, assume that the problem has a unique solution (u, P). Then,
for every ϵ > 0, there exists a positive constant K > 0 such that there exists a (ũ, P̃) ∈ C4(ψ) that satisfies

J̃ (ũ, P̃) ≤ Kϵ.2

Proof.
By Theorem 3 of [13] we know that there is a function (ũ, P̃) ∈ C4(ψ) that is uniformly dense on compacts

of C4. Where C4 = C2(R1+d)× C2(Rd)× C(Rd)× C(R1+d). This means that for (u, a, u0, f ) ∈ C4 and ϵ > 0,
there is (ũ, ã, ũ0, f̃ ) ∈ C4(ψ) such that

sup
(t,x)∈ΩT

|∂tu(t, x)− ∂tũ(t, x; θu)|+ max
|α|≤2

sup
(t,x)∈ΩT

|∂(α)x u(t, x)− ∂
(α)
x ũ(t, x; θu)| < ϵ
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max
|α|≤2

sup
x∈Ω̄
|∂(α)x a(x)− ∂

(α)
x ã(x; θa)| < ϵ

sup
x∈Ω̄
|u0(x)− ũ0(x; θu0)| < ϵ

sup
(t,x)∈ΩT

| f (t, x)− f̃ (t, x; θ f )| < ϵ

For the objective function (note that O[u, P](t, x) = 0 for (u, P) that solves the PDE)

J̃ (ũ, P̃) =
∥∥O[ũ, P̃]−O[u, P]

∥∥2
L2(ΩT)

+
∥∥∥ũ(t = T)− uob

∥∥∥2

L2(Ω)
+
∥∥∥P̃− pb

∥∥∥2

SP
+

∥ũ|∂Ω − g∥2
L2(]0,T[×∂Ω) + ∥ũ(t = 0)− ũ0∥2

L2(Ω)

≤ ∥∂tu(t, x)− ∂tũ(t, x; θu)∥2
L2(ΩT)

+
∥∥∥ f (t, x)− f̃ (t, x; θ f )

∥∥∥2

L2(ΩT)
+ ∥L(a, u)−L(ã, ũ)∥2

L2(ΩT)
+∥∥∥ũ(t = T)− uob

∥∥∥2

L2(Ω)
+
∥∥∥ f̃ (t, x; θ f )− f b(t, x)

∥∥∥2

L2(ΩT)
+
∥∥∥ã(x; θa)− ab(x)

∥∥∥2

L2(Ω)
+∥∥∥ũ0(x; θu0)− ub

0(x)
∥∥∥2

L2(Ω)
+ ∥ũ|∂Ω − g∥2

L2(]0,T[×∂Ω) + ∥ũ(t = 0)− ũ0∥2
L2(Ω)

≤ Kϵ

7. Numerical results and Analysis

7.1. One dimensional Heat equation

Let us start with the heat equation with Dirichlet boundary conditions. In one space dimension, the
problem reads as: 

∂tu− ∂x(a∂xu) = f , ∀x ∈ ]0, 1[ , ∀t ∈ ]0, 1[ ,

u(t, 0) = u(t, 1) = 0, ∀t ∈ ]0, 1[ ,

u(0, x) = u0(x), ∀x ∈ ]0, 1[ .

(27)

From measures at 50 couples of (T, x) created from 50 space points at final instant, we try to find
P = (a, u0, f ). We represent the solution u and P by four neural networks with 5 L2 layers and 10 neurons
in each sub-layer. As for the activation functions, we use tanh. In general, the choice of a neural network’s
architecture (number of layers, neurons and form of activation functions) is crucial and in many cases still
remains an art that relies on one’s ability to balance the trade off between expressivity and trainability of the
neural network. Our tests indicate that deeper and wider networks are usually more expressive but are often
more costly to train (i.e., a feed-forward evaluation of the neural network takes more time and the optimizer
requires more iterations to converge). The neural networks are trained by minimizing the sum of squared
errors loss of equation (22).

To illustrate the effectiveness of our approach, we applied method of manufactured solution (MMS), i.e.
construct some equations with analytic solutions and then compare the numerical solution with the analytical
solutions..

Consider the analytical solutions of (27):

a(x) =
1 + ex

4
; u(t, x) =

(ex − 1)(x− 1)2

1 + t
,

from a and u below, we can calculate the analytical source f and initial condition u0. The neural network
parameters are initialized using normal initialization and updated using the well-known ADAM algorithm
(see [16]) with a decaying learning rate schedule (23). We use approximately 100 epochs. The data set
of training is generated randomly by uniform distribution. 90 time points and 90 space points are chosen
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randomly to create 8100 couples of (t, x) to train the neural networks. The data is sampled to mini-batches of
size 96. We implement the algorithm using TensorFlow which is a software library for deep learning.

Figure 4. Data generation for training neural networks. Here • represent the sampling points within the domain,
• represent the sampling points on the boundary, • represent the initial sampling points and × represent the
points of observations.

After training, we test the trained model on a testing data of 2916 couples of (t, x) which are uniformly
generated. The results below are calculated on the testing data.

Figure 5. The exact solution u of equation (27) (left panel) is compared to the solution ũ predicted by DL-IP
(right panel). It is hard to distinguish predicted solution and exact solution by eyes.

Figure 6. Absolute space errors between predicted solution and exact solution at all points of time. The maximal
error value is 8.3997e− 04. On the training data points it is 2.0591e− 06.
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Figure 7. The exact coefficient a is presented by − and the coefficient ã predicted by DL-IP is presented by
◦ (left panel). Right panel represents the absolute error between the solutions. It is also hard to distinguish
predicted and exact coefficients by eyes. The maximal error value is 2.0306e− 03. On the training data points it
is 4.3610e− 07.

Figure 8. The exact initial condition u0 is presented by − and the predicted one ũ0 is presented by ◦ (left panel).
Right panel represents the absolute error between the solutions. It is also hard to distinguish predicted and exact
initial conditions by eyes. The maximal error value is 8.3997e− 04. On the training data points it is 8.1583e− 08.

Figure 9. The exact source f of equation (27) (left panel) is compared to f̃ predicted by DL-IP (right panel). It is
hard to distinguish exact and predicted sources by eyes.



Open J. Math. Anal. 2023, 7(1), 10-31 24

Figure 10. Absolute space errors between exact and predicted sources at all time points of testing data. The
maximal error value is 2.2345e− 02. On the training data points it is 3.2232e− 05.

Figure 11. Variation of functional J̃ within 100 epochs which are equivalent to 9200 steps. Across the iterations
the loss is decreasing even if there are some oscillations; its minimal value is 3.1398e− 05.

Furthermore, we performed two systematic studies of the impact of noise levels and a priori knowledge
amounts by keeping the total number of training observations as well as the neural network architectures fixed
to the settings described above. The results of the first study are summarized in table (1) and figure (12). For
the second one we present the results in table( 2) and figure (13).

Table 1. Variation of functional J̃ in terms of b the noise between real value of P and the used one Pb, it means
Pb = P + b. (b = 0) is corresponding to the clear data. Here, the a priori knowledge is kept fixed at 100 points.

Noise b 0 10e− 5 10e− 4 10e− 2
J̃ 4.9279e− 05 3.8593e− 05 4.6976e− 05 5.8740e− 05
errora 1.3595e− 03 3.0966e− 03 2.544641e− 03 1.0210e− 01
erroru0 6.5393e− 04 6.3966e− 04 1.419791e− 03 1.0136e− 01
error f 3.9217e− 02 3.7173e− 02 3.065276e− 02 1.1334e− 01
erroru 6.5393e− 04 2.8137e− 03 1.4197e− 03 1.0136e− 01
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Figure 12. Graph of table (1) results. By increasing noise b minimal value of J̃ increases too.

Table 2. Variation of functional J̃ in terms of h the amount of a priori knowledge. Here, the noise is kept fixed at
0.

h 25 900 2500 3600 6400
J̃ 5.4914e− 05 5.4113e− 05 3.6522e− 05 3.5627e− 05 3.2917e− 05
errora 6.9173e− 03 1.8087e− 03 1.6346e− 03 1.0738e− 03 3.4335e− 03
erroru0 6.9173e− 03 1.6645e− 03 2.0992e− 04 3.5799e− 04 3.3736e− 04
error f 1.5644e− 01 5.8674e− 02 6.7514e− 02 5.3573e− 02 5.1853e− 02
erroru 6.9173e− 03 1.1827e− 03 4.7244e− 04 2.5719e− 04 5.7335e− 04

Figure 13. Graph of table (2) results. By increasing the amount of a priori knowledge h minimal value of J̃
decreases.

The key observation here is that less noise in the data enhances the performance of the algorithm. Our
experience so far indicates that the negative consequences of more noise in the data can be remedied to some
extent by obtaining more data.

7.2. Limitation of DL-IP method

For inverse or identification problem associated to the evolution problem like heat equation, it is
interesting to reconstruct solutions from final observations and without a priori knowledge h = 0. DL-IP
method can reconstruct the solutions from final observations but with at least 25 of a priori knowledge. This is
the main drawback associated with DL-IP method. We present in figures below some results of this limitation.
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Figure 14. The solution ũ predicted by DL-IP without any a priori knowledge. The maximal error value is
0.0423.

Figure 15. The solution f̃ predicted by DL-IP without any a priori knowledge. The maximal error value is
3.4016e + 01.
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Figure 16. The exact coefficient a is presented by− and the coefficient ã predicted by DL-IP without any a priori
knowledge is presented by ◦. The maximal error value is 9.6417e− 01.

Figure 17. The exact initial condition u0 is presented by− and the predicted one without any a priori knowledge
ũ0 is presented by ◦. The maximal error value is 2.9096e− 01.

It should also be noted that from an a priori final knowledge the reconstruction cannot be done. Even if
the coefficient a and the initial condition u0 are well predicted, the source term f is poorly predicted since it is
a spatio-temporal function.

Figure 18. The solution ũ predicted by DL-IP with final a priori knowledge. The maximal error value is 7.2011e−
02.
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Figure 19. The solution f̃ predicted by DL-IP without any a priori knowledge. The maximal error value is
3.1105e + 00.

Figure 20. The exact coefficient a is presented by − and the coefficient ã predicted by DL-IP with final a priori
knowledge is presented by ◦. The maximal error value is 1.1479e− 03.

Figure 21. The exact initial condition u0 is presented by − and the predicted one with final a priori knowledge
ũ0 is presented by ◦. The maximal error value is 3.0998e− 04.

8. Comparison of methods

In this section we make a comparison between DL-IP’s model and classical methods such as Tikhonov
regularization and hybrid approach.

Firstly we make a general comparison of algorithms in table (3) by answering the following questions:

• Is the method meshfree (MF)?
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• Does it require interpolations (I)?
• Does it need Numeric Integration (NI)?
• How many direct problems we need to solve (DP)?

Table 3. General comparison of algorithms.

DL-IP model Tikhonov regularization Hybrid Method
MF No Yes Yes
I No Yes Yes
NI No Yes Yes
DP 0 2 by descent iteration thead2 by descent iteration + 1 by fitness call

Secondly, we consider the example (7.1), we solve the problem by Tikhonov regularization (table 4),
Hybrid Method (table 5), and we make a comparison with results of DL-IP’s model (table 6) by considering
amount of knowledge h, noise b, minimal values of J̃ or JT and errors between exact solution and predicted
one (absolute error erroru and relative error %erroru). We consider 50 observations, the size of mesh is S = MN
with M = N = 100. Parameters of Armijo-Goldstein’s rule are α = 0.3, β = 10e− 4, αi = 0.9. Regularization
coefficient is ε = 0.005. we turn hybrid approach with an initial population of size 10000, 500 individuals and
500 generations.

• Tikhonov regularization.

Table 4. Results of the Tikhonov approach. By increasing noise b or decreasing a priori knowledge h, minimal
values of JT and errors increase. Solution cannot be reconstructed from partial knowledge

h b JT erroru %erroru

100 10e− 2 2.3471e− 05 3.1232e− 01 1.8347e + 00
10e− 5 2.9642e− 05 3.1758e− 01 1.7483e + 00

900 10e− 2 1.8643e− 05 3.0199e− 01 2.0137e + 00
10e− 5 2.7292e− 05 2.9533e− 01 1.8559e + 00

S 10e− 2 1.1090e− 06 1.0162e− 01 2.2864e− 01
10e− 5 1.0894e− 06 3.6399e− 03 2.4319e− 02

• Hybrid method

Table 5. Results given by the hybrid method with b = 10e− 4. By decreasing a priori knowledge h, minimal
values of JT and errors increase. Solution cannot be reconstructed from partial knowledge.

h JT erroru %erroru
100 1.8332e− 05 3.0238e− 01 1.8283e + 00
900 1.6953e− 05 3.0160e− 01 1.9380e + 00
S 1.9603e− 09 2.3773e− 03 2.2907e− 03

• DL-IP’s model

Table 6. Results given by DL-IP’s model.

h b J̃ erroru %erroru

25 10e− 2 2.7900e− 05 1.1098e− 01 2.3676e− 01
10e− 5 3.0141e− 05 2.2934e− 02 1.6950e− 02

100 10e− 2 9.7133e− 05 1.0189e− 01 2.3837e− 01
10e− 5 3.7580e− 05 9.8341e− 04 2.3096e− 03

900 10e− 2 4.0489e− 05 1.0180e− 01 2.3888e− 01
10e− 5 3.6766e− 05 6.7920e− 04 3.1624e− 03

According to the results of tables below (3), (4), (5), (6), we can see that:

• Solutions cannot be reconstructed from partial knowledge by Tikhonov regularization or hybrid
method even from 900 points of a priori data.
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• From 25 points of a priori knowledge we can reconstruct PDE’s solution with erroru = 2.2934e− 02
by deep learning approach.
• With maximal a priori knowledge, DL-IP is more stable to noise b than classical methods. With

b = 10e − 3, we get a solution with erroru = 2.7851e − 05 by DL-IP on testing data, and with
erroru = 2.0916e− 01 by regularization approach.

• For classical methods we should use a percent of a priori knowledge calculated as h% = 100h
S . Since

our tests indicate that to get some precision the amount increases by increasing size of mesh.
• Solution reconstructed by hibrid approach from total data is better than the solution of Tikhonov

regularization.

9. Conclusion

We have presented in this paper a new approach based on deep learning for the determination of
parameters P = (a, u0, f ) in linear parabolic equation from final data observations and partial a priori
knowledge. Since the classical methods are not meshfree and require total a priori knowledge, our algorithm
covers a great need in the domain of inverse problems.

Deep learning could become a valuable approach for solving inverse problems, which are important
in physics, engineering, and finance. The PDE solution and its parameters can be approximated with deep
neural networks, which are trained to satisfy the differential operator, initial condition, final observations, a
priori knowledge, and boundary conditions. Our deep learning algorithm for solving inverse problems is
mesh-free, which is key since meshes become infeasible in higher dimensions. Instead of forming a mesh,
the neural network is trained on batches of randomly sampled time and space points. The algorithm can be
easily modified to apply to hyperbolic, elliptic, and nonlinear equations. The algorithm remains the same
for these other types of PDEs. However, the numerical performance of these other types of PDEs remains to
be investigated. Developing deep learning algorithms that do not require any a priori knowledge or at least
require final a priori knowledge would certainly be interesting. We leave this question for future work.
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