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1. Introduction

T he study of operators has continued to attract the attention of many researchers. Of special interest is the
determination of derivations implemented by self-adjoint operators. Let B(H) denote the algebra of all

bounded linear operators on an infinite-dimensional complex separable Hilbert space H. For operators A, B in
B(H), the generalized derivation δA,B on B(H) is given as δA,B(X) = AX − XB while the inner derivation is
δA(X) = AX − XA. Let H be a Hilbert space. We denote its inner product by ⟨., .⟩, which is another common
notation for inner products that is often reserved for Hilbert spaces. Therefore, if x, y are vector spaces in
a Hilbert space H, then we say that x and y are orthogonal, written as x⊥y if and only if ⟨x, y⟩ = 0. Two
subsets A and B are said to be orthogonal, written A⊥B, if x⊥y for every x ∈ A and y ∈ B. The orthogonal
complement A⊥ of a subset A is the set orthogonal to A, written A⊥={x ∈ H|x⊥y for all y ∈ A}, We also define
orthogonal direct sum of subspaces of a Hilbert space. If M and N are orthogonal closed linear subspaces
of a Hilbert space, then we define orthogonal direct sum of M N by M

⊕
N . If M is a closed subspace

of a Hilbert space H, then H = M
⊕

M⊥. Thus, every closed subspace M of a Hilbert space has a closed
complementary subspace M⊥. In a general Banach space, there may be no element of a closed subspace that
is closest to a given element of a Banach space, and a closed linear subspace of a Banach space may have
no complementary subspace. A subset U of a non-zero vectors in a Hilbert space is orthogonal if any two
distinct elements in U are orthogonal. A set of vectors is orthonormal if it is orthogonal and ∥u∥ = 1 for all
u ∈ U, in which case the vectors u are said to be normalized. An orthonormal basis of a Hilbert space is an
orthonormal set such that every vector in the space can be expanded in terms of the basis. Every Hilbert space
has an orthonormal basis, which may be finite, countably infinite, or uncountable. Two Hilbert spaces whose
orthonormal bases have the same cardinality are isomorphic. A bounded linear operator A : H → H on a
Hilbert space H is self-adjoint if A∗ = A. Equivalently, a bounded linear operator A on H is self-adjoint if and
only if ⟨x, Ay⟩ = ⟨Ax, y⟩ for all x, y ∈ H. A linear map on Rn with the matrix A is self-adjoint if and only
if A is symmetric, meaning that A = AT , where AT is the transpose of A. A linear map Cn with matrix A is
self-adjoint if A is Hermitian. Given a linear operator A : H → H,we define a sesquilinear form a : H × H → C
by a(x, y) = ⟨x, Ay⟩. If A is self-adjoint, then this form is a Hermitian symmetric, or symmetric, meaning that
a(x, y) = a(y, x). It follows that the associated quadratic form q(x) = a(x, x), or q(x) = ⟨x, Ax⟩, is real valued.
We say that A is a nonnegative if it is self-adjoint and ⟨x, Ay⟩ ≥ 0 for all x ∈ H. We say that A is positive
or positive definite, if it is self-adjoint and ⟨x, Ax⟩ > 0 for every nonzero x ∈ H, If A is positive, bounded
operator, then (x, y) = ⟨x, Ay⟩ defines the inner product on H. If in addition, there is a constant c > 0 such that
⟨x, Ax⟩ ≥ c∥x∥2 for all x ∈ H, then we say that A is bounded from below, and the norm associated with (., .)
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is equivalent to the norm associated with ⟨., .⟩. The concept of norms of derivation has been studied by quite a
number of researchers. This has been done under Elementary operators in which normal derivations belong.
For instance, Cabrera and Rodrigues [18] proved that for JD∗-algebras, ∥MC,D + MD,C∥ ≥ 1

20412∥C∥∥D∥, while
Stacho and Zalar [61] proved that for standard operator algebras on Hilbert spaces ∥MC,D + MD,C∥ ≥ 2(

√
2 −

1)∥C∥∥D∥. Nyamwala [49] dealt with norm of a C∗-algebra and established that ∥CYD − DYC∥ = 2∥C∥∥D∥.
Timoney [67] investigated norms of elementary operators and in [68] he focussed on computing the norm of
elementary operators where he showed that ∥MC,D + MD,C∥ ≥ ∥C∥∥D∥. Mathieu [43] prove that for prime
C∗-algebras, ∥MC,D + MD,C∥ ≥ 2

3∥C∥∥D∥. Seddik [58] used injective norm to characterize nomaloid operators
and determined their lower norm estimates as, ∥C∥∥D∥ ≤ ∥CYD + DYC∥ ≤ 2∥C∥∥D∥. Okelo, Agure and
Ambogo [51] determined the norm of an elementary operator and characterized these norms when they are
implemented by norm-attainable operators. In their study they showed that ∥JN,C,D|B(H)∥ ≥ ∥C∥∥D∥, in
which C, D ∈ B(H) and JN,C,D is a norm-attainable Jordan elementary operator. Others who studied this topic
include [12,36,48]. Through all these studies, it remains that there is no known formula for computing the norm
of a derivation in terms of its coefficients. Orthogonality in normed spaces and derivations is also a concept that
has been analyzed through the norm property of elementary operators. In relation to orthogonality involving
elementary operators, Anderson [1] studied orthogonality of range and kernel of normal derivations in which
he showed that if A, B ∈ B(H) such that A is normal and AB = BA then for all Y ∈ B(H), ∥δA(Y) + B∥ ≥
∥B∥. Kittaneh [37] established that ∥δA(Y) + B∥2

2 = ∥δA(Y)∥2
2 + ∥B∥2

2, for a Hilbert-Schmidt operator.Micheri
[44] characterized orthogonality in the sense of Birkhoff and established that for a general bounded linear
operator A on a normed linear space Z, RanA⊥KerA =⇒ RanA

⋂
KerA = {0} and RanA

⋂
KerA = {0}. Okelo

[53] focused on elementary operators and their orthogonality in normed spaces where he showed that for all
A, B, X ∈ B(H) and for a generalized derivation δA,B = AX − XB, RanδA,B⊥KerδA,B =⇒ RanδA,B

⋂
KerδA,B =

{0}. For details see [6,9,16,31] We investigated lower and upper norm estimates of a derivation. Lastly, we
investigated orthogonality of the range and kernel of derivations. Several methods such as numerical ranges,
tensor products approach and limits have been employed in attempting to solve the norm and orthogonality
problems of derivations.

2. Basic Concepts and Preliminaries

In this section we give basic concepts and definitions useful in the sequel.

Definition 1. A Hilbert space is an inner product space ⟨., .⟩ such that the induced Hilbertian norm is complete.

Definition 2. An operator is a linear map of a Hilbert space onto itself. If T is an operator, then T is such that
T : H → H.

Definition 3. Let A : H → H be a bounded linear operator. The adjoint of A, denoted as A∗, is unique operator
A∗ : H → H, such that ⟨Ax, y⟩ = ⟨x, A∗y⟩. The operator A is self-adjoint or Hermitian if A = A∗.

Definition 4. A normed vector space is a pair (X, ∥.∥) consisting of a vector space X over R or C and a norm
∥.∥ such that

(i) ∥x∥ ≥ 0, for all λ ∈ C if and only if ∥x∥ = 0
(ii) ∥λx∥ = |λ|∥x∥ for all λ ∈ C and x ∈ X

(iii) ∥x + y∥ ≤ ∥x∥+ ∥y∥, ∀ x, y ∈ X (triangle inequality)

⇐⇒ The mapping ∥.∥ is called a norm and ∥x∥ is called the norm of x

Definition 5. If T is an operator on a Hilbert space H then

(i) T is normal if TT∗ = T∗T
(ii) T is self-adjoint or Hermitian if T = T∗

(iii) T is positive if ⟨Tx, x⟩ ≥ 0 ∀ x ∈ H
(iv) T is unitary if TT∗ = T∗T = I.

Definition 6. Let (H, ⟨., .⟩) be an inner product space, we say x, y ∈ H are orthogonal and write x⊥y if and
only if ⟨x, y⟩ = 0.
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Definition 7. An orthogonal projection on a Hilbert space is a linear map P : H −→ H that satisfies P2 =

P, ⟨Px, y⟩ = ⟨x, Py⟩∀ x, y ∈ H. An orthogonal projection is necessarily bounded. If P is non-zero orthogonal
projection then ∥P∥ = 1.

Definition 8. The numerical range of an operator T is a complex Hilbert space H given by W(T) = {⟨Tx, x⟩ :
x ∈ H, ∥x∥ = 1}

Definition 9. A Banach space is a complete normed vector space with respect to the metric d(x, y) = ∥x − y∥.

Definition 10. A Banach algebra is a complex Banach space A together with an associative and distributive
multiplication such that λ(ab) = (λa)b = a(λb) and ∥ab∥ ≤ ∥a∥∥b∥, ∀ a, b ∈ C.

Definition 11. Let A be a subset of R. We say that M ∈ R is an upper bound of A if x ≤ M for all x ∈ A, and
m ∈ R is a lower bound of A if m ≤ x for all x ∈ A. The set A is bounded from above if it has an upper bound,
bounded from below if it has a lower bound and bounded if it has both an upper and a lower bound.

3. Main results

3.1. Introduction

In this chapter we study norms of derivations implemented by self-adjoint operators. Here we determine
the lower norm estimate and upper norm estimates of derivations implemented by self-adjoint operators.

3.2. Norms of Derivations

A derivation on a Banach algebra X is a linear transformation δ : X → X which satisfies δ(uv) =

uδ(v) + δ(v)a for all u, v ∈ X. If for a fixed u, δ : v → ab − ba, then δ is called an inner derivation. In
[53], Rosenblum determined spectrum of inner derivation. Norm of a derivation has been studied by quite
a number of researchers including Anderson, Stampfli and many others. We establish norm of a derivation
using the following lemma.

Lemma 1. Let V be an essential left ideal in C∗-algebra B. Let p : N → B be a linear mapping defined on a subspace N
of B. If, for some derivation δ : B → B, the identity.

p(a)b = −aδ(b)(a ∈ N, b ∈ V).

holds, then p is bounded with a norm atmost ∥δ∥.

Proof. Let µ be an irreducible representation of B. By hypothesis,

µ(p(a)h)µ(r)µ(b) = −µ(a)δµ(µ(hrb))

for all a ∈ N, h, r ∈ B and b ∈ V, where δµ denotes the induced derivation on µ(B). Hence

∥Gµ(p(a)h)µ(b)µ(r)∥ ≤ ∥µ(a)∥∥δµ∥∥µ(h)∥∥µ(r)∥∥µ(b)∥
≤ ∥a∥∥δ∥∥h∥∥µ(b)∥,

whereby,
∥Gµ(p(a)h)µ(b)∥ ≤ ∥a∥∥δ∥∥h∥∥µ(b)∥,

for all a ∈ N h ∈ B and b ∈ V. Let J be the closed ideal YY∗. If ker µ does not contain J, there is b ∈ V such that
µ(b) ̸= 0.
Then

∥Gµ(p(a)h)µ(b)∥ = ∥µ(p(a)h)∥∥µ(b)∥,
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hence the above inequality entails that

∥µ(p(a)h)∥ ≤ ∥a∥∥δ∥∥h∥.

Since each irreducible representation of J extends to an irreducible representation of B not vanishing on J, it
follows that

∥p(a)h∥ ≤ ∥a∥∥δ∥∥h∥.

for all a ∈ N and h ∈ J. Since J is essential, we conclude that

∥p(a)∥ = sup ∥p(a)h∥|h ∈ J, ∥h∥ ≤ 1 ≤ ∥δ∥∥a∥

for all a ∈ N as required.

Theorem 1. Let δ be a derivation of a C∗-algebra B. Suppose there exists an essential left ideal J of B and an element
b ∈ B satisfying bδJ = 0 and (1 − eb)δJ = 0. Then there is n ∈ Tl(B) such that δ = δn, bn = 0, Jn = 0 and
∥n∥ ≤ ∥δ∥.

Proof. For all r ∈ J and d ∈ B, we have

bdδr + b(δd)r = bδ(dr) = 0

by assumption, we have

Gb,δr + Gb,u ◦ δ = 0, (r ∈ J) (1)

On the ideal N = BbB, we define p : N → B by ∑i uibvi → ∑i uibδvi whenever ui, vi are finitely many elements
in B. Note that,

∑
i

uib(δvi)r = −∑
i

uibviδr

hence
p(u)r = −uδr(u ∈ N, r ∈ J) (2)

and
p(u)vr = −uδ(vr)(u ∈ N, v ∈ B, r ∈ J) (3)

By (2),
(p(ui + αu2)− p(u1)− αp(u2)r = 0

for all ui, u2 ∈ N, α ∈ C and r ∈ J whereby u = 0 implies that p(u)r = 0 for all r ∈ J. Since J is essential, it
follows that p is a well-defined linear mapping on N.
Applying the lemma 5.1 to (2), we conclude that p is bounded with norm atmost ∥δ∥. Hence replacing N
in B, we may assume that N is closed. Let N⊥ be annihilator of N in B If u1 ∈ N and u2 ∈ N⊥, we put
p(u1 + u2) = p(u1). Then, as (1 − eb)δJ = 0,

p(u1 + u2)v = p(u1)v = −u1δr = −(u1 + u2)ebδr(r ∈ J)

Hence, replacing N by N + N⊥ and p by p, we may assume that N is essential closed ideal in B.
By (2),

(p(vu)− vp(u))r = (vu − vu)δr = 0, (u ∈ N, v ∈ B, r ∈ J),
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hence p is a left B-module map. Put h = p − δ, then

h(uv)r = p(uv)r − δ(uv)r

= uvδr − δ(uv)r

= −δ(uvr)

= −(δu)vr − uδ(vr)

= h(u)r

for all u ∈ N, v ∈ B and v ∈ J so that h a right B-module map from N into B. Moreover, if u, v ∈ N, then by (3),

p(u)vr = −uδ(vr) = −uvδr = u((p)− δv)r = uh(v)r, (r ∈ J),

and thus p(u)v = uh(v). As a result, (p,h) is a double centralizer of N represented by an element a ∈ G(N). By
definition, δ = p − h = Ma − Ja = δa on N. From this, we infer that

(δv)u = δ(vu)− v(δu)

= p(vu)− h(vu)− vp(u) + vh(h)

= vh(u)− h(vu)

= vau − avu

= [v, a]u

for all u ∈ N and v ∈ B. Since N is essential, this yields δ = δa on B. The identity

b(vra − avr) = bδ(vr) = 0

implies that
Gb, ra = Gba, r (4)

Therefore the mapping

∑
i

u1bvi + x → ∑
i

uibavi, (ui, vi, x ∈ (BbB)⊥

is a well defined B-bimodule map from the essential ideal BbB + (BbB)⊥ into B which gives rise to an element
α ∈ C with the property αb = ba. This together with (4) entails that

Gb,ra−αr = Gb,ra − αGb,r = 0

hence 0 = ebr(a − α) = r(a − α) as eba = a and ebα = α. Replacing a by a − α, we thus obtain δ = δa as well as
ba = 0 and Ja = 0. In particular, uar = −uδr for all u in the domain of a and r ∈ J, thus the same reasoning
shows that a still bounded with ∥a∥ ≤ ∥δ∥.

Proposition 1. Let C ∈ B(H) where H is a complex Hilbert space and let λ0 be the center of C.

(i) ∥δC∥ = 2∥C − λ0∥ = 2in f ∥C − λ∥, λ ∈ C
(ii) if β ∈ W0(C), then ∥δC∥ ≥ 2(∥C∥2 − β2)

1
2 .

Proof. (i) If dim H = 1 the proof is evident. Suppose dim H ≥ 1. We establish that
0 ∈ W0(C) ⇐⇒ [0 is the center of

C : ∥C∥ ≤ ∥C + λ∥,

for all λ ∈ C. Which is equivalent to

sup ∥CY − YC∥, ∥y∥ = 1 = 2∥C∥.

Since
δC = δC−λI ,
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the second equivalence fix the value of ∥δC∥ with the choice of λ imposed by the first equivalence.
(ii) For β ∈ W0(C) we associate a sequence {yk} with

∥yk∥ = 1, lim
k

∥Cyk∥ = ∥C∥, β = lim
k
(Cyk, yk)

and Gk = Vect{yk, y′k}, where yk, y′k is an orthonormal basis of Gk and

(Cyk, y′k) ≥ 0,

where Cyk ∈ Gk.
Let

Yk = yk ⊗ yk − y′k ⊗ y′k.

Then
(δCYk)yk = Cyk − (Cyk, yk)yk + (Cyk, y′k)y

′
k = 2(Cyk, y′k)y

′
k

= 2(∥Cyk∥2 − (|(Cyk, yk)|2)
1
2 y′k.

Hence
∥δC∥ ≥ lim

k
∥(δCYk)yk∥ = 2(∥C∥2 − |β|2)

1
2 .

Proposition 2. Let C, D be two elements of B(E), where E is a complex Hilbert space. Then

(i) ∥δC,D∥ = in f ∥C − λ∥+ ∥D − λ∥, λ ∈ C,
(ii) WN(C)

⋃
WN(D) ̸= Φ ⇐⇒ ∥δC,D∥ = ∥C∥+ ∥D∥.

Proof. In the study of WN(A) we established that

∥C∥+ ∥D∥ ≤ ∥C − λ∥+ ∥D − λ∥ ⇐⇒ ∃ {Yk}, ∥Yk∥ = 1,

such that
lim

k
∥CYk − YkD∥ = ∥C∥+ ∥D∥.

Since
δC,D(Y) = δC−λ,D−λ

hence
∥δC,D(Y)∥ ≤ ∥C − λ∥+ ∥D − λ∥,

for all, Y ∈ B(H), ∥Y∥ = 1.
Then

∥δC,D∥ ≤ in f ∥C − λ∥+ ∥D − λ∥, λ ∈ C.

Proposition 3. Let C ∈ B(H) Then,
W0(C) = {z ∈ C : z = limk(Cyk, yk), ∥yk∥ = 1, limk(∥C∗C∥ − C∗C)yk}.

Proof. Since

∥C∗C∥ − C∗C ≥ 0, lim
k
(∥C∗C∥ − C∗C)yk = 0 ⇔ lim

k
(∥C∗C∥ − C∗C)yk, yk = 0

We also know that
((∥A∗A∥ − A∗A)xn, xn) = ∥A∥2 − ∥Axn∥2

and
lim

k
(∥C∥2 − ∥Cyk∥2) = 0 ⇔ lim

k
(∥C∥ − ∥Cyk∥) = 0
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we have
lim

k
(∥C∗C∥ − C∗C)yk = 0 ⇔ lim

k
(∥C∥ − ∥Cyk∥) = 0.

Proposition 4. W0(C) is a non empty closed convex set included in W(C).

Proof. We establish this as follows: (a) There exists {y′k} such that ∥y′k∥ = 1 and

lim
k
(∥C∗C∥ − C∗C)y′k, y′k = 0.

Then sequence (Cy′k, y′k) is then bounded sequence in C, it a convergent subsequence f = limk(Cyk, yk) and

lim
k
(∥C∗C∥ − C∗C)yk = 0.

Hence V(C) is a non empty set
(b) We prove that W0(C) is convex. Let

f = lim
k
(Cyk, yk), s = lim

k
(Czk, zk)

be two disjoint points of W0(C). For r ∈ [0, 1], we show that

r f + (1 − r)s ∈ W0(C).

We construct an associated sequence {tk}. We extract two subsequences yk and zk. We assume that

|(Cyk, yk)− (Czk, zk)| ≥
| f − s|

2
.

This implies in particular that yk and zk are not collinear.

Lemma 2. Let α ∈ W0(A). Then ∥δA∥ ≥ 2(∥A∥2 − |α|2) 1
2

Proof. Note that ∥δA∥ = sup{∥AX − XA∥ : X ∈ B(H) and ∥x∥ = 1}. Since α ∈ W0(A), there exists un ∈ H
such that ∥un∥ = 1, ∥Aun∥ → ∥A∥ and (Aun, un) → α. Set Aun = µun + βvn where (un, vn) = 0. Set Rnun =

un, Rnvn = −vn and Rn = 0 on {un, vn}. Then ∥(ARn − Rn A)un∥ = 2|βn| ≥ 2(∥T∥ − |bn|2)
1
2 − λn where

λ → 0. Since bn → α hence the proof.

Theorem 2. ∥δA∥ = 2∥A∥ if and only if 0 ∈ W0(A).

Proof. It follows from the above lemma that ∥δA∥ ≥ 2∥A∥ if 0 ∈ W0(A). Since ∥δA∥ ≤ 2∥A∥ sufficiency is
proved. Suppose ∥δA∥ ≤ 2∥A∥ and so there exist un and Xn such that

∥un∥ = ∥Xn∥ = 1

and
∥AXnun∥ → ∥A∥.

Moreover, since
∥(AXn − Xn A)un∥ → 2∥A∥, AXnun = −Xn Aun + λn

where ∥λ∥ → 0. Let (Aun, un) → α by choosing subsequence if necessary i.e α ∈ W0(A). Observe that

(AXnun, Xnun) = −(Xn A, X∗
nXnun) = −(Aun, un) + λ′

n.

Thus
lim

n→∞
(AXnun, Xnun) = −α.

Since α and −α ∈ W0(A), it implies that 0 ∈ W0(A).
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Theorem 3. Let ∥T − A∥ ≤ δ. Then

|CT − CA| ≤
(δ + [δ2 + 8δ]∥T − CT∥

1
2 )

2

where CA is the center of mass of operator A. In this sense, the map A → CA is continuous in the uniform operator
topology.

Proof. We let CA = 0, then

∥A∥2 ≥ |CA|2 + ∥A − CA∥2

≥ |CA|2 + ∥T − CA∥2 − 2δ∥T − CA∥+ δ2

≥ 2|CA|2 + ∥T∥2 − 2δ(∥T∥+ |CA|) + δ2

≥ ∥A∥2 + (2|CA|2 − 2δ|CA| − 4δ∥T∥).

Solving for CA in the last expression on the right,we conclude that

(δ + [δ2 + 8δ∥T∥ 1
2 ])

2
.

Lemma 3. W0(A)
⋂

W0(A + β) = ϕ, for any β ∈ C, β = 0.

Proof. Let
α ∈ W0(A)

⋂
W0(A + β).

Then
∥A∥+ |λ|2 + 2Reλβ ≤ ∥A + λ∥

for λ ∈ C, and
∥A + β∥2 + |λ|2 + 2Reλα ≤ ∥A + β + λ∥2, λ ∈ C.

Letting λ = β in the first inequality, we obtain

∥A + β∥2 + |β|2.

Let λ = −β in the second inequality, we obtain

∥A + β∥2 + |β|2 − 2Reβα ≤ ∥A∥2.

Combining these yields |β|2 ≤ 0, which completes the proof.

Theorem 4. Let δA be a derivation on B(H). Then,

∥δA∥ = sup{∥AX − XA∥ : X ∈ B(H), ∥X∥ = 1} = inf
λ∈C

2∥A − λ∥.

Proof. Since
∥AX − XA∥ = ∥(A − λ)X + X(A − λ)∥ ≤ 2∥A − λ∥∥X∥,

it follows that
∥δT∥ ≤ inf

λ∈C
2∥A − λ∥.

On the other hand, ∥A − λ∥ is large for λ large, so inf ∥A − λ∥ must be taken at some point, say s0. But

∥A − s0∥ ≤ ∥(A − s0)∥ ≤ ∥(A − s0) + λ∥,
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for all λ ∈ C implies that 0 ∈ W0(A − s0).
Hence,

∥δA∥ = ∥δA−s0∥ = 2∥A − s0∥.

Proposition 5. Let 0 ≤ C ≤ I and 0 ≤ D ≤ I. Then ReCD ≥ −1
8 . More generally,

ReCD ≥ l1l2 − (L1 − l1)(L2 − l2)/8

for 0 ≤ l1 ≤ C ≤ L1 and 0 ≤ l2 ≤ D ≤ L2.

Proof. Let
Cu = βu + λv,

where (u, v) = 0 and ∥u∥ = ∥v∥ = 1.
Let (Cv, v) = µ. Then, |λ| ≤ βµ, since C ≥ 0 and

|λ|2 ≤ (1 − β)(1 − µ),

since I − C ≥ 0. Combining these yields,
|λ| ≤ β(1 − β).

Let
Du = γu + τs

where (u,s)=0.
By a similar argument,

|τ|2 ≤ γ(1 − γ).

Since,
(CDu, u) = βγ + τλ(s, v),

it follows that
Re(CDu, u) = βγ − [βγ(1 − β)(1 − γ)]

1
2

and a standard argument shows that the last term has a minimum of −1
8

for 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1.
These estimates are sharp. For instance, if

C =

(
1 0
0 0

)
, D =

(
1/4

√
3/4√

3/4 3/4

)
,

then Re(CDu, u) = −1
8 for suitable chosen u.

Lemma 4. ReW0(T) ≤ b. Then, given δ > 0, there exists a δ > 0, there a ε > 0, such that

ReW0(T + λ) < b + δ, |λ| < ε.

Proof. Assume, without loss of generality, that ∥T∥ = 1. Let

γ = sup{∥Tu∥ : ∥u∥ = 1, Re(Tu, u) ≥ b + δ}.

It is clear that
∥T + λ∥ ≥ 1 − |λ|.

However, for v ∈ H when ∥v∥ = 1 and
Re(Tv, v) ≥ b + δ,

we see that,
∥(T + λ)v∥2 ≤ γ2 + 2|λ|+ |λ|2.
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Thus for
|λ| < (1 − γ2),

it follows that
ReW0(T + λ) < b + δ.

Theorem 5. Let G be an irreducible C∗-algebra on H. Let A ∈ G(H). Then

∥δA|G∥ = sup{∥AX − XA∥ : X ∈ G, ∥X∥ = 1} = inf
λ∈C

2∥A − λ∥.

Proof. We use the fact that B(H) contains an operator T such that Tu = u, Tv = −v and ∥T∥ = 1 for any
u, v ∈ H where ⟨u, v⟩ = 0. However, if G is an irreducible C∗-algebra then there exists a unitary operator
R ∈ G such that Ru = u and Rv = −v whenever ⟨u, v⟩ = 0.The rest of the proof carries over with only trivial
modifications which we shall omit.

Corollary 6. Let GB be an irreducible C∗-algebra on the Hilbert space Hβ for β in the index set N. Let G = ∑β ⊕Gβ

on H = ∑β ⊕Hβ where ∥X∥ = supβ ∥Xβ∥ for X ∈ G. for X ∈ G. Let A ∈ B(H), and let δA : G − G. Then

∥δA∥ = sup ∥AX − XA∥ : X ∈ H, ∥X∥ = 1 = inf{2∥A − N∥ : N ∈ B(G)}

where B(G) is the centre of G.

Proof. Since δA : G − G then A = ∑⊕Aβ where A ∈ B(Hβ). For each β choose λβ such that

∥δAβ
∥ = 2∥A − λβ∥.

Then Note that the corollary is not true if we hold our conditions on G. For instance let G contains an operator

valued 2 × 2 matrices on H ⊕ H of the form

(
0 I
I 0

)
, where X ∈ B(H). Then, δA : G → G. Indeed, δA = δ0,

and so ∥δA∥ = 0. But, infλ∈C{∥A − N∥ : N ∈ B(G)} = 1.

Lemma 5. Suppose that neither S nor T is a scalar multiple of the identity. Then

inf{∥S − λ∥+ ∥T − λ∥} = ∥S − λ0∥+ ∥T − λ0∥

if and only if
WN(S − λ0)

⋂
WN(−(T − λ0)) ̸= ϕ.

Proof. Let WN(S − λ0)
⋂

WN(−(T − λ0)) ̸= ϕ. Then

∥δST∥ = ∥δ(S−λ0),(T−λ0)
∥

= ∥S − λ0∥+ ∥T − λ0∥

Since

∥SK − KT∥ = ∥(S − λ)K − K(T − λ)∥
≤ ∥S − λ∥+ ∥T − λ∥
≤ inf

λ∈C
{∥S − λ∥+ ∥T − λ∥}

hence the necessity is shown.
For sufficiency, we assume without loss of generality that λ0 = 0. This means there is λ, ε ≥ 0 such that there
exists u, v ∈ H of unit norm, so that

∥(S + λ)u∥+ ∥(T + λ)v∥ ≥ ∥S∥+ ∥T∥ − ε.
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After some algebra, we find that

Reλ[(Su, u)/∥S∥+ (Tv, v)/∥T∥] ≤ B(|λ|2 + ε)

where B is a constant, independent of λ and ε. Suppose

WN(S)
⋂

WN(−T) ̸= ϕ.

Then the distinct
[WN(S), WN(−T)] = δ > 0

and by continuity,

dist[WN(S + λ), WN(−(T + λ))] >
δ

2
,

for small λ. Thus by convexity and continuity, any choice of u, v which satisfies the above conditions, must
satisfy the inequality |(Su, u)/∥S∥+ (Tv, v)/∥T∥| ≥ δ

4 for λ small. But then we are lead to the inequality

|λ| ≤ B(|λ|2 + ε)

for a suitable choice of arg λ and a small |λ|, which is impossible. Thus it is a contradiction since λ was not
minimal, hence the proof.

Proposition 6. Let B ∈ J(E) where E is a complex Hilbert space of dim ≥ 2. Then

0 ∈ W0(B) ⇐⇒ sup{∥BY − YB∥, ∥y∥ = 1} = 2∥B∥.

Proof. Let 0 ∈ W0 and let {yn} be a sequence such that

yk = 1, lim
k

∥Byk∥ = ∥B∥, lim
k
(Byn, yn) = 0.

Associate to each k a subspace Fk of dim = 2. Let {yk, y′k} be orthonormal basis of Fk and

Yk = yk ⊗ yk − y′k ⊗ y′k

Then we have
Ykyk = yk, Yky′k = −yk, Ykx = (x, yk)yk − (x, y′k)yk, ∥yk∥ = 1, ∀x ∈ J.

Then
(Byk − YkB)yk = 2(Byk − (Byk, yk)yk

and
sup{∥BY − YB∥, ∥Y∥ = 1} ≥ sup

k
∥(BYk − YkB)yk∥ = 2∥B∥.

Since
∥BY − YB∥ ≤ 2∥B∥, ∀Y ∈ J,

we have
sup{∥BY − YB∥, ∥Y∥ = 1} = 2∥B∥.

Let
2∥B∥ = sup{∥BY − YB∥ : ∥y∥ = 1}

and let {Xk} be a normal sequence of J(E) such that

0 ≤ 2∥B∥ − ∥BXk − XkB∥ ≤ 1
k

.

For each k there exists yn ∈ H with ∥xk∥ = 1 and

0 ≤ ∥BXk − XkB∥ − ∥(BXkXk A)xk∥ ≤ 1
k

.
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Put
rk = (BXk)xk, Sk = (XkB)xk.

Then
∥rk∥ ≤ ∥B∥, ∥sk∥ ≤ ∥B∥

and
0 ≤ 2∥B∥ − ∥rk − sk∥ ≤ 2

k
.

It results that
lim

k
∥rk∥ = ∥B∥, lim

k
∥XkXk∥ = 1, lim

k
∥sk∥ = ∥B∥, lim

k
∥Bxk∥ = 1.

Remark that

lim
n
(rk, sk) + (sk, rk) = lim

k
(∥rk − sk∥2 − ∥rk∥2 − ∥sk∥2)

= −2∥B∥2.

We deduce that
lim

k
(rk + sk) = 0.

Proposition 7. Let C, D ∈ B(E) such that C ̸= 0, D ̸= 0 with dim ≥ 2, where E is a Hilbert space. Then the following
conditions are equivalent
(i)WN(C)

⋂
WN(−D) ̸= ϕ,

(ii) There exists a sequence of operators {Uk} in B(E) such that

∥Uk∥ = 1, lim
k

∥CUk − UkD∥ = ∥C∥+ ∥D∥,

(iii) ∥C∥+ ∥D∥ ≤ ∥C + λ∥k + ∥D + λ∥.

Proof. (i)⇒ (ii): Let β ∈ WN(C)
⋂

WN(−D). Let’s consider two sequences uk, vk in E satisfying

∥uk∥, lim
k

∥Cuk∥ = ∥C∥, lim
k
(Cuk, uk) = β∥C∥

∥vk∥ = 1, lim
k

∥ − Dvk∥ = ∥D∥, lim
k
(−Dvk, vk) = β∥C∥.

We construct normed U′
ks of rank atmost equal to two such that

lim
k

∥CUk − UkD∥ = ∥C∥+ ∥D∥

by the same way as studied for W0(C). Let Fk = Vect{uk, xk}, where {uk, xk} ≥ 0 and let Jk = Vect{vk, yk}
where {vk, xk} is an orthonormal sequence,

Dvk ∈ Jk, (−Dvk, yk) ≥ 0.

If we take U = uk ⊗ vk + xk ⊗ yk, then

(CUk − UkD)vk = Cuk + ((−Dvk, vk)vk + (−Dvk, yk)vk))

= ((uk, uk) + (−Dvk, vk))uk + (Cuk, xk) + (−Dvk, yk)xk.

Since
lim

k
(Cuk, uk) = β∥C∥, lim

k
∥Cuk∥ = ∥C∥,

hence
lim

k
(Cuk, uk) = (1 − β2)

1
2 ∥D∥.
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Then

lim
k

∥(CUk − UkD)vk∥2 = β2(∥C∥+ ∥D∥)2 + (1 − β2)(∥C∥+ ∥D∥)2

= (∥C∥+ ∥D∥)2

Therefore
∥C∥+ ∥D∥ ≤ lim

k
∥CUk − UkD∥ ≤ ∥C∥+ ∥D∥.

Hence
lim

k
∥CUk − UkD∥ = ∥C∥+ ∥D∥.

(ii)⇒(iii): Let {Uk} be such that

∥Uk∥ = 1, lim
k

∥CUk − UkD∥ = ∥C∥+ ∥D∥.

Since

∥CUk − UkD∥ = ∥(C + λ)Uk − Uk(D + λ)∥
≤ ∥C + λ∥+ ∥D + λ∥, ∀λ ∈ C.

we have
∥C∥+ ∥D∥ ≤ ∥C + λ∥+ ∥D + λ∥, ∀λ ∈ C.

Proposition 8. Let B ∈ J(E) where E is a complex Hilbert space of dim ≥ 2. Then

(i) 0 ∈ W0(B) ⇒ ∥B∥2 + |λ|2 ≤ ∥B + λI∥2, ∀λ ∈ C
(ii) ∥B∥ ≤ ∥B + λI∥ ⇒ 0 ∈ W0(B)

(iii) ∀B ∈ B(H), there exists a unique λ0 such that ∥B − λ0 I∥ ≤ ∥A − λI∥, ∀ λ ∈ C

Proof. (i) Assume that 0 ∈ W0(B).Let {yk} be a normed sequence of E such that

lim
k
(∥B∗B∥ − B∗B)yk) = 0, lim

k
(Byk, yk) = 0.

Then
lim

k
∥(B + λ)yk∥2 = ∥B∗B∥+ |λ|2.

Therefore
∥B + λ∥2 ≥ ∥B∥2 + |λ|2.

(ii) Suppose that 0 ∈ W0(B). We prove that there exists λ ∈ C such that ∥B + λ∥ ≤ ∥B∥. By transformation
A exp(iθ) of A, we can suppose that d(0, W0(B)) = n, where n > 0 and n ∈ W0(B). Let

Gn = {y ∈ E : ∥y∥ = 1, Re(By, y) ≤ n
2
}, Hn = {y ∈ E : ∥y∥ = 1, y ∈ Gn}.

We have
sup{∥By∥, y ∈ Gn} = β ≤ ∥B∥.

Indeed, assume that β∥B∥. Let yk be a sequence such that ∥yk∥ = 1 and limk ∥Byn∥ = ∥B∥. It remains to extract
a subsequence, which gives an element W0(B), ϕ = limk(Byk, yk) be such that

λ ≤ 1
2
(∥B∥ − β),

we have for all y ∈ Gn.

∥(B + λ)y∥ ≤ β + |λ| ≤ 1
2
(β + ∥B∥) ≤ ∥B∥.
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If λ is a negative real number satisfying

|λ| ≤ 1
2
(∥B∥ − β), |λ| ∈ [0, n],

then
∥B + λ∥ = sup{∥(B + λ)y∥, y ∈ Gn

⋃
Gn} ≤ ∥B∥.

We have then established from that

sup{∥BY − YB∥, ∥y∥ = 1} = 2 inf{∥B + λ∥, λ ∈ C}.

(iii)Since ∥B − λ∥ ≥ |λ| − ∥B∥, hence if |λ| ≥ 2∥B∥, then ∥B − λ∥ > ∥B∥ and,

inf{∥B − λ∥, λ ∈ C} = inf{∥B − λ∥, |λ| ≤ 2∥B∥}.

4. Conclusion

In this paper, we have determined the upper and lower norm estimates of derivations implemented by
self-adjoint operators. We recommend more studies on their orthogonality of such derivations on self-adjoint
operators.
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