
Article

Floquet exponent of solution to homogeneous
growth-fragmentation equation

MEAS Len1,∗

1 Department of Mathematics, Royal University of Phnom Penh, Phnom Penh, Cambodia.
* Correspondence: meas.len@rupp.edu.kh

Communicated by: Absar Ul Haq
Received: 22 September 2023; Accepted: 2 Decemebr 2023; Published: 29 December 2023.

Abstract: In this work, we establish the existence and uniqueness of solution of Floquet eigenvalue and its
adjoint to homogeneous growth-fragmentation equation with positive and periodic coefficients. We study
the Floquet exponent, which measures the growth rate of a population. Finally, we establish the long term
behavior of solution to the homogeneous growth-fragmentation equation by entropy method [1–3].
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1. Introduction

T he growth-fragmentation model finds application in diverse contexts such as cell division,
polymerization, neuroscience, prion proliferation, and telecommunications. This model encapsulates a

critical biological phenomenon: the competition between growth and fragmentation, which exhibit opposing
dynamics. Growth tends to increase the population size, whereas fragmentation reduces it.

In this study, we examine the homogeneous growth-fragmentation equation, a partial differential
equation (PDE) modeling the dynamics of a cell population. This PDE describes cells of size y > 0 dividing
into two parts, each of size 0 < x < y, with equal probability. The equation is expressed as follows: for all
t, x > 0,

∂

∂t
n(t, x) +

∂

∂x
n(t, x) + β(t, x)n(t, x)

= 2
∫ ∞

x
β(t, y)n(t, y)

dy
y

,

n(t, x = 0) = 0, t > 0,

n(t = 0, x) = n0(x), x ≥ 0.

(1)

Here, β(t, y) represents the division rate of cells of size y at time t, and 1
y denotes the uniform probability of

division into cells of size x < y. We assume β is T-periodic, positive, and bounded, satisfying

1 < inf
t∈(0,T)

∫ ∞

0
β(t, y)

dy
y

e−
∫ x

0 β(t−x+z,z)dzdx

and
sup

t∈(0,T)

∫ ∞

0
β(t, y)

dy
y

e−
∫ x

0 β(t−x+z,z)dzdx < ∞.

The mathematical inquiry central to this biological phenomenon involves the existence and uniqueness
of the solution to the corresponding eigenvalue problem and its adjoint, as well as the exponential decay of
the solution for the growth-fragmentation equation, as studied in various works [4–7].

Our investigation is motivated by the need to model cell division in cancer treatments, such as resonance
and chrono-therapy, which are based on circadian rhythms [8].
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The principal result of this research is the demonstration of the existence and uniqueness of (λper, N, ϕ)

for the associated Floquet eigenvalue problem to equation (1), presented as

∂

∂t
N(t, x) +

∂

∂x
N(t, x) + (λper + β(t, x))N(t, x)

= 2
∫ ∞

x
β(t, y)N(t, y)

dy
y

,

N(t, x = 0) = 0,

N(t, x) > 0, T-periodic,
∫ T

0

∫ ∞

0
N(t, x)dxdt = 1.

(2)

The adjoint eigenvalue problem is formulated as

− ∂

∂t
ϕ(t, x)− ∂

∂x
ϕ(t, x) + (λper + β(t, x))ϕ(t, x)

= 2
β(t, x)

x

∫ x

0
ϕ(t, y)dy,

ϕ(t, x) > 0, T-periodic,
∫ ∞

0
N(t, x)ϕ(t, x)dx = 1.

(3)

Theorem 1. Given the assumptions on β, there exists a unique Floquet exponent λper > 0 and functions N, ϕ ∈
C(R+, L1(R+; ϕ(., x)dx)) for the Floquet eigenvalue problems (2) and (3).

Furthermore, the long-term behavior is established using two main methodologies: the existence and
uniqueness of a positive dominant Floquet eigenvalue associated with a positive eigenvector, and the General
Relative Entropy method [1–3].

Theorem 2. Under the assumptions on β and with n0 ∈ L1(R+, ϕ(0, x)dx), it holds true that∫ ∞

0
|n(t, x)e−λpert − ρN(t, x)|ϕ(t, x)dx −−→

t→∞
0,

where ρ =
∫ ∞

0 n0(x)ϕ(0, x)dx.

This theorem implies that under periodic and positive coefficients, and suitable assumptions, the solution
n to equation (1) tends asymptotically towards N(t, x) times a time-exponential eλpert. In biological terms, this
indicates a balance between growth and division, maintaining the population at finite sizes.

The equation (1) can be written as an evolution equation{
∂
∂t n = An + Ln

n(0, x) = n0(x)

with the operator

An = − ∂

∂x
n − βn

and
Ln = 2

∫ ∞

x
β(t, y)n(t, y)

dy
y

defined on the space E = D′((0, ∞)× (0, ∞)). It is T-periodic when β is. This allows us to apply the Floquet
theory for the linear differential equation on a Banach space with a T-periodic operator [9,10].

2. Floquet Eigenvalue Problem

In this section, we will prove Theorem 1 which is a consequence of the following theorem and the Floquet
theory on Banach space.
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Theorem 3. Let Λ > 0 and supt∈[0,T]
β(t,x)

x be bounded. Then there is a unique solution n ∈ C(R+, L1(R+; dx)) to
the equation 

∂
∂t n(t, x) + ∂

∂x n(t, x) + (Λ + β(t, x))n(t, x) = 2
∫ ∞

x β(t, y)n(t, y) dy
y

n(t, x = 0) = 0

n(t = 0, x) = n0(x) ∈ L1(R+; dx).

Proof. Let us consider the T-periodic space X = C([0, T], L1(R+; dx)), which is a Banach space endowed with
the supremum norm ∥n∥X = supt∈[0,T] ∥n(t, .)∥L1(R+)

. We will prove that n(t, x) is a fixed point of a contraction
operator and conclude the result by the Banach fixed point theorem. To do this, define the operator U as
follows:

U : X → X

m 7→ n = U(m)

where n is a solution of the following partial differential equation
∂
∂t n(t, x) + ∂

∂x n(t, x) + (Λ + β(t, x))n(t, x) = 2
∫ ∞

x β(t, y)m(t, y) dy
y

n(t, x = 0) = 0

n(t = 0, x) = n0(x)

Let m1, m2 ∈ X and ni = U(mi), i = 1, 2. Then the difference n = n1 − n2 satisfies
∂
∂t n(t, x) + ∂

∂x n(t, x) + (Λ + β(t, x))n(t, x) = 2
∫ ∞

x β(t, y)m(t, y) dy
y

n(t, x = 0) = 0

n(t = 0, x) = 0

where m = m1 − m2. By the characteristics method, we have for x < t

n(t, x) =
∫ x

0

∫ ∞

y
β(t − x + y′, y′)m(t − x + y′, y′)

dy′

y′
e−

∫ x
y (Λ+β)(t−x+z,z)dzdy

It follows that

∥n(t, .)∥L1(R+)

≤
∫ t

0

∣∣∣∣ ∫ x

0

∫ ∞

y
β(t − x + y′, y′)m(t − x + y′, y′)

dy′

y′
e−

∫ x
y (Λ+β)(t−x+z,z)dzdy

∣∣∣∣dx

≤ M
∫ t

0

∫ t

0
∥m(t, .)∥L1(R+)

dydx

≤ t2M∥m(t, .)∥L1(R+)
.

Hence
∥n∥X = sup

t∈[0,T]
∥n(t, .)∥L1(R+)

≤ sup
t∈[0,T]

t2M∥m(t, .)∥L1(R+)
= T2M∥m∥X .

This implies that U : X → X. Choose T so that T2M ≤ 1
2 , then we have

∥U(m1)− U(m2)∥X ≤ 1
2
∥m1 − m2∥X .

This means that U is contraction in the Banach space X, which proves the existence of the fixed point. This
process can be iterated on the intervals [T, 2T], [2T, 3T] , . . . and such solution can be built in C(R+, L1(R+; dx)).
Next, the density argument is used to complete the proof. To do this, let n0 ∈ L1(R+; ϕ(0, x)dx), ∃n0

k ∈



Open J. Math. Anal. 2023, 7(2), 1-7 4

L1(R+; dx) such that n0
k → n0 in L1(R+; ϕ(0, x)dx), and ñk be a solution of the following partial differential

equation {
∂
∂t ñk(t, x) + ∂

∂x ñk(t, x) + (µ + β(t, x))ñk(t, x) = 2
∫ ∞

x β(t, y)ñk(t, y) dy
y

ñk(t, x = 0) = 0.

If ñ = ñk − ñl , then
∂
∂t
(
ñ(t, x)ϕ(t, x)

)
+ ∂

∂x
(
ñ(t, x)ϕ(t, x)

)
= 2ϕ(t, x)

∫ ∞
x β(t, y)ñ(t, y) dy

y − 2ñ(t, x) β(t,x)
x

∫ x
0 ϕ(t, y)dy

ñ(t, x = 0)ϕ(0, x) = 0.

It also holds that
∂
∂t
(
|ñ(t, x)|ϕ(t, x)

)
+ ∂

∂x
(
|ñ(t, x)|ϕ(t, x)

)
≤ 2ϕ(t, x)

∫ ∞
x β(t, y)|ñ(t, y)| dy

y − 2|ñ(t, x)| β(t,x)
x

∫ x
0 ϕ(t, y)dy

|ñ(t, x = 0)|ϕ(0, x) = 0.

Integrating with respect to x gives
d
dt

∫ ∞

0
|ñ(t, x)|ϕ(t, x)dx ≤ 0.

This implies that ∫ ∞

0
|ñk − ñl |ϕ(t, x)dx ≤

∫ ∞

0
|n0

k − n0
l |ϕ(0, x)dx.

Thus, ñk is a Cauchy sequence in a Banach space C(R+; L1(R+; ϕ(., x)dx)). So ñk converges in the space to a
solution in the distribution sense.

We are now ready to prove the existence and uniqueness of the solution of Floquet eigenvalue and its
adjoint. Let us restate Theorem 1 as follows.

Theorem 4. With the assumptions on β. There is a unique Floquet exponent λper > 0 and N, ϕ ∈
C(R+, L1(R+; ϕ(., x)dx)) of the Floquet eigenvalue problem (2) and its adjoint eigenvalue problem (3).

Proof. Let Λ = λper > 0. It follows from Theorem 3 that there exists a unique solution N(t, x) ∈
C(R+; L1(R+; dx)) satisfying

∂

∂t
N(t, x) +

∂

∂x
N(t, x) + (λper + β(t, x))N(t, x) = 2

∫ ∞

x
β(t, y)N(t, y)

dy
y

.

In the same manner, its adjoint is given by

− ∂

∂t
ϕ(t, x)− ∂

∂x
ϕ(t, x) + (λper + β(t, x))ϕ(t, x) = 2

β(t, x)
x

∫ x

0
ϕ(t, y)dy,

where ϕ(t, x) ∈ C(R+; L1(R+; dx)). In addition, the operator U defined in Theorem 3 is T-periodic,
strictly positive as soon as K is. The operator U is compact as a result of Arzela-Ascoli theorem since
sup

{
∥U(n)∥X ; ∥n∥X ≤ 1

}
is uniformly bounded; hence equicontinuous. Thus by Corollary 1.11 and Corollary

1.14 in [9] with Λ = λper such that the spectral radius of U, r(Λ) = 1 and up to renormalization N, ϕ is unique.
To end the proof, Λ need to be found such that r(Λ) = 1. Since r is decreasing function and vanishing at
infinity and

r(0) ≥ inf
t∈(0,T)

∫ ∞

0

∫ ∞

0
β(t, y)

dy
y

e−
∫ x

0 β(t−x+z,z)dzdx > 1.

Thus, there exists a unique λper such that r(λper) = 1.

3. Long term behavior by entropy method

In this section, the long run asymptotic decay of the solution of the growth-fragmentation equation
is established by entropy method [1–3]. We first derive the following relative entropy inequality. Then
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with appropriate entropy dissipation together with convex function H(s) = s2 in the relativity entropy
inequality and passing to the weak limits, we obtain the long run asymptotic behavior of the solution of the
growth-fragmentation equation.

Theorem 5. With the assumptions on β and for all convex functions H and for all t > 0; it holds true that

d
dt

∫ ∞

0
ϕ(t, x)N(t, x)H

(
ñ(t, x)
N(t, x)

)
dx = −DH(ñ)(t) ≤ 0

where ñ(t, x) = n(t, x)e−λpert and

DH(ñ)(t) = 2
∫ ∞

0

∫ ∞

x
ϕ(t, x)

β(t, y)
y

N(t, y)
[

H
(

ñ(t, y)
N(t, y)

)
− H

(
ñ(t, x)
N(t, x)

)
− H′

(
ñ(t, x)
N(t, x)

)(
ñ(t, y)
N(t, y)

− ñ(t, x)
N(t, x)

)]
dydx.

Proof. The equations (1),(2) and (3) yield

∂

∂t

(
ñ(t, x)
N(t, x)

)
+

∂

∂x

(
ñ(t, x)
N(t, x)

)
=

2
N(t, x)

∫ ∞

x

β(t, y)
y

N(t, y)
[

ñ(t, y)
N(t, y)

− ñ(t, x)
N(t, x)

]
dy

and

∂

∂t
H
(

ñ(t, x)
N(t, x)

)
+

∂

∂x
H
(

ñ(t, x)
N(t, x)

)
=

2
N(t, x)

H′
(

ñ(t, x)
N(t, x)

) ∫ ∞

x

β(t, y)
y

N(t, y)
[

ñ(t, y)
N(t, y)

− ñ(t, x)
N(t, x)

]
dy.

It follows that

∂

∂t

[
ϕ(t, x)N(t, x)H

(
ñ(t, x)
N(t, x)

)]
+

∂

∂x

[
ϕ(t, x)N(t, x)H

(
ñ(t, x)
N(t, x)

)]
= −2

∫ x

0

β(t, x)
x

ϕ(t, y)N(t, x)H
(

ñ(t, x)
N(t, x)

)
dy

+ 2
∫ ∞

x

β(t, y)
y

ϕ(t, x)N(t, y)H
(

ñ(t, x)
N(t, x)

)
dy

+ 2
∫ ∞

x
ϕ(t, x)

β(t, y)
y

N(t, y)H′
(

ñ(t, x)
N(t, x)

) [
ñ(t, y)
N(t, y)

− ñ(t, x)
N(t, x)

]
dy.

Then integrating in x to get

d
dt

∫ ∞

0
ϕ(t, x)N(t, x)H

(
ñ(t, x)
N(t, x)

)
dx

= −2
∫ ∞

0

∫ x

0

β(t, x)
x

ϕ(t, y)N(t, x)H
(

ñ(t, x)
N(t, x)

)
dydx

+ 2
∫ ∞

0

∫ ∞

x

β(t, y)
y

ϕ(t, x)N(t, y)H
(

ñ(t, x)
N(t, x)

)
dydx

+ 2
∫ ∞

0

∫ ∞

x
ϕ(t, x)

β(t, y)
y

N(t, y)H′
(

ñ(t, x)
N(t, x)

) [
ñ(t, y)
N(t, y)

− ñ(t, x)
N(t, x)

]
dydx

= −2
∫ ∞

0

∫ ∞

x
ϕ(t, x)

β(t, y)
y

N(t, y)
[

H
(

ñ(t, y)
N(t, y)

)
− H

(
ñ(t, x)
N(t, x)

)
+ H′

(
ñ(t, x)
N(t, x)

)(
ñ(t, y)
N(t, y)

− ñ(t, x)
N(t, x)

)]
dydx

= −DH(ñ)(t).

Finally, by the convexity of H; it can be concluded that DH(ñ)(t) is nonpositive.
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Theorem 6. Under the assumptions on β and n0 ∈ L1(R+, ϕ(0, x)dx). Then it holds∫ ∞

0
|ñ(t, x)− ρN(t, x)|ϕ(t, x)dx −−→

t→∞
0

where ρ =
∫ ∞

0 n0(x)ϕ(0, x)dx.

Proof. Let h(t, x) = ñ(t, x)− ρN(t, x); then h satisfies the following partial differential equation{
∂
∂t h(t, x) + ∂

∂x h(t, x) + (λper + β(t, x))h(t, x) = 2
∫ ∞

x β(t, y)h(t, y) dy
y

h(t, x = 0) = 0.
(4)

It also holds

∂

∂t
(|h(t, x)|ϕ(t, x)) +

∂

∂x
(|h(t, x)|ϕ(t, x))

≤ 2ϕ(t, x)
∫ ∞

x
β(t, y)|h(t, y)|dy

y
− 2|h(t, x)| β(t, x)

x

∫ x

0
ϕ(t, y)dy.

Integrating with respect to x gives

d
dt

∫ ∞

0
|h(t, x)|ϕ(t, x)dx ≤ 0.

It follows that
∫ ∞

0 |h(t, x)|ϕ(t, x)dx is decaying and it is positive, so it converges to some value L ≥ 0. It
remains to prove that L = 0. Now let define the sequence of functions hk(t, x) = h(t + k, x); it also satisfies (4).
Then hk(t, x) is bounded in L1(R+; ϕ(., x)dx). So up to subsequence hk ⇀ g weakly. The entropy dissipation
of h(t, x) can be worked on and the property of relative entropy for a convex function H(s) = s2 gives

∫ ∞

0

∫ ∞

0

∫ ∞

x
ϕ(t, x)

β(t, y)
y

N(t, y)
(

h(t, y)
N(t, y)

− h(t, x)
N(t, x)

)2

dydxdt ≤ C.

Therefore, as k → ∞,

∫ ∞

0

∫ ∞

0

∫ ∞

x
ϕ(t, x)

β(t, y)
y

N(t, y)
(

hk(t, y)
N(t, y)

− hk(t, x)
N(t, x)

)2

dydxdt

=
∫ ∞

k

∫ ∞

0

∫ ∞

x
ϕ(t, x)

β(t, y)
y

N(t, y)
(

h(t, y)
N(t, y)

− h(t, x)
N(t, x)

)2

dydxdt → 0.

Passing to the weak limits yields

∫ ∞

0

∫ ∞

0

∫ ∞

x
ϕ(t, x)

β(t, y)
y

N(t, y)
(

g(t, y)
N(t, y)

− g(t, x)
N(t, x)

)2

dydxdt = 0.

That is, g(t,y)
N(t,y) = g(t,x)

N(t,x) almost everywhere on the support of β. On the other hand, in the limits the entropy
dissipation for g/N vanishes, so we obtain

∂

∂t

(
g(t, x)
N(t, x)

)
+

∂

∂x

(
g(t, x)
N(t, x)

)
= 0.

Using Lemma 4.5 in [3, p.100], it follows that g(t, x) = constant and by the condition
∫ ∞

0 g(t, x)ϕ(t, x)dx = 0 it
can be concluded that g = 0 and thus L = 0.
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