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function.

MSC: 34B16; 34B18; 34C25.

1. Introduction

S ingular differential equations help solve problems in biology, engineering and economics, and it is of
great relevance. The study of the singularity periodic problem only began to receive more scholarly

attention in 1987 when Lazer and Solimini [1] opened new doors for the singularity problems. In this paper
we study the existence of positive periodic solutions to a class of indefinite singular differential equation with
a parameter

y′′(t) + a(t)y(t) = µ
q(t)
yρ(t)

+ µb(t)yδ(t) + µc(t), (1)

where µ is a positive parameter, ρ and δ are two positive constants and 0 < δ < 1, a ∈ Lp(R/ωZ), q, c ∈
L1(R/ωZ), b ∈ L1(R/ωZ) is positive, here ω is a constant and 1 ≤ p ≤ +∞.

At present, scholars are more concerned about the periodic problems with singularity of attractive and
repulsive type [2–6]. However, it becomes relatively difficult to study the periodic problems when considering
indefinite singularities, which means that there is still plenty of scope for studying the periodic problems
with indefinite singularities. In 2010, Bravo and Torres [7] first studied the following class of second-order
differential equation with an indefinite singularity

y′′(t) =
q(t)
yρ(t)

, (2)

where q ∈ C(R,R) and ρ = 3. They gave a sufficient condition for the existence of a positive periodic solution
of equation (2) as

∫ ω
0 q(t)dt < 0. Hakl and Zamora [8] in 2017 used Leray-Schauder degree theory to prove

the existence of positive periodic solutions of the equation (2) with strong singularity ( ρ ≥ 1 ). In the same
year, Zamora and Godoy [9] studied the existence of positive periodic solutions to equation (2) with weak
singularity ( 0 < ρ < 1 ).

In 2021, Cheng and Cui [10] applied the fixed point theorem in cones to prove the existence of positive
periodic solutions to the following indefinite differential equation

y′′(t) + a(t)y(t) =
q(t)
yρ(t)

+ c(t), (3)

where a, c ∈ C(R, (0,+∞)) and ρ is a positive constant. Han and Cheng [11] used the Krasnoselskiĭ’s-Guo
fixed point theorem in 2022 to consider the existence of positive periodic solutions to equation (3).
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Based on their study, we will discuss the existence of positive periodic solutions to the equation (1) by
the methods of the Krasnoselskiĭ’s-Guo fixed point and the positivity of the associated Green’s function. It is
worth noting that, according to the range of values taken for µ, we can obtain one and two positive periodic
solutions to equation (1), respectively. First, we introduce the Krasnoselskiĭ’s-Guo fixed point.

Lemma 1. ([12, P. 94]) Let Y be a Banach space and K is a cone in Y. Assume that S1 and S2 are open subsets of Y with
0 ∈ S1, S1 ⊂ S2. Let

Ψ : K ∩ (S2\S1) → K

be a completely continuous operator such that one of the following conditions holds:
(i) ∥Ψy∥ ≥ ∥y∥ for y ∈ K ∩ ∂S1 and ∥Ψy∥ ≤ ∥y∥ for y ∈ K ∩ ∂S2;
(ii) ∥Ψy∥ ≤ ∥y∥ for y ∈ K ∩ ∂S1 and ∥Ψy∥ ≥ ∥y∥ for y ∈ K ∩ ∂S2.
Then Ψ has a fixed point in the set K ∩ (S2\S1).

Before applying the Krasnoselskiĭ’s-Guo fixed point, we have to write the periodic problem as an
equivalent fixed point problem using the concept of Green’s function. A general construction of the Green’s
function is described in [13]. Next we give another Lemma to be used.

Lemma 2. (see [14, Corollary 2.3])Define

Q(α) =


2π

αω1+2/α

(
2

2 + α

)1−2/α
 Γ

(
1
α

)
Γ
(

1
2 + 1

α

)
2

, 1 ≤ α < ∞,

4
ω

, α = ∞,

where Γ is the Gamma function, i.e., Γ(t) =
∫ +∞

0 yt−1e−udu. Assume that a(t) ≥ 0 for almost every t ∈ [0, ω] and
a ∈ Lp(R/ωZ). If

∥a∥p :=
(∫ ω

0
|a(t)|pdt

) 1
p
< Q(2p∗), (4)

where p∗ = p
p−1 if 1 ≤ p < ∞ and p∗ = 1 if p = +∞, then the Green’s function H(t, s) > 0 for all (t, s) ∈

[0, ω]× [0, ω].

Define

(Ψµy)(t) := µ
∫ ω

0
H(t, s)

(
q(t)
yρ(t)

+ b(t)yδ(t) + c(t)
)

ds. (5)

Here, a fixed point of the map Ψ defined by (5) is a positive periodic solution of the equation (1). Besides, from
Lemma 2, we know that H(t, s) > 0 for all (t, s) ∈ [0, ω]× [0, ω].

Remark 1. (see [? ]) In the special case a(t) ≡ ς2 with ς > 0, the Green’s function has the following form

H(t, s) =


cos ς(t − s − ω

2 )

2ς sin ςω
2

, 0 ≤ s ≤ t ≤ ω,

cos ς(t − s + ω
2 )

2ς sin ςω
2

, 0 ≤ s ≤ t ≤ ω.

If ς < π
ω , then the Green’s function H(t, s) > 0 for all (t, s) ∈ [0, ω]× [0, ω].

For convenience, we have given some symbolic definitions

H∗ := min
0≤s,t≤ω

H(t, s), H∗ := max
0≤s,t≤ω

H(t, s), σ :=
H∗
H∗ . (6)

According to (6), it is easy to know that 0 < H∗ < H∗ and 0 < σ ≤ 1.
Furthermore, we give some information about q(t) and b(t)

q+(t) := max{q(t), 0}, q−(t) := −min{q(t), 0}, q :=
1
ω

∫ ω

0
q(t)dt, b∗ := max

t∈[0,ω]
g(t), g∗ := min

t∈[0,ω]
b(t).
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Finally, we give our main conclusion.

Theorem 1. Assume that equation (4) holds. Then the following one of conclusions holds.
(i) There exists µ0 > 0 such that equation (1) has a positive periodic solution for µ > µ0;
(ii) For all sufficiently small µ > 0, equation (1) has two positive periodic solutions.

2. Proof of Theorem 1.1

First, define
K := {y ∈ Cω : min

t∈R
y(t) ≥ σ∥y∥},

Sr1 := {y ∈ Cω : ∥y∥ < r1} and Sr2 := {y ∈ Cω : ∥y∥ < r2},

where r1 and r2 are two positive constants, and Cω := {y ∈ C(R,R), y(t + ω) ≡ y(t), for all t ∈ R} with norm
∥y∥ := max

t∈R
|y(t)|. It is easy to verify that K is cone in Cω.

Lemma 3. Assume that (4) holds. Besides, the follows inequality is satisfied

r2 > r1 >
1
σ

max


(

2∥q−∥
b∗

) 1
δ+ρ

,
(

2∥c−∥
b∗

) 1
δ

 := ξ.

Then Ψµ : K ∩ (Sr2\Sr1) → K is a completely continuous operator.

Proof. First, we prove that Ψµ(K ∩ (Sr2\Sr1)) ⊂ K. Obviously, we have

σr1 < y(t) ≤ r2, ∀ y ∈ K ∩ (Sr2\Sr1), ∀ t ∈ R.

Because r1 > ξ, we obtain

q(t)
yρ(t)

+ b(t)yδ(t) + c(t) =
q+(t)
yρ(t)

− q−(t)
yρ(t)

+ b(t)yδ(t) + c+(t)− c−(t)

>− ∥q−∥
(σr1)ρ + b∗(σr1)

δ − ∥c−∥

>0,

(7)

for all t ∈ R. It follows from (6) and (7) that

min
t∈R

(Ψµy)(t) =µ min
t∈R

∫ ω

0
H(t, s)

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

≥µH∗

∫ ω

0

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

=µσH∗
∫ ω

0

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

≥µσ max
t∈R

∫ ω

0
H(t, s)

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

=µσ∥Ψµy∥,

which implies Ψµ(K ∩ (Sr2\Sr1)) ⊂ K. Besides, applying the Arzela-Ascoli theorem, it is easy to prove that
Ψµ : K ∩ (Sr2\Sr1) → K is a completely continuous operator.

The proof of Theorem 1
(i) Our proof relies on Lemma 1. First, define

SR1 := {y ∈ Cω : ∥y∥ < R1} and SR2 := {y ∈ Cω : ∥y∥ < R2},

where R1 and R2 are two positive constants. Besides, R2 > R1 > ξ and (4) is satisfied. We can obtain
Ψµ : K ∩ (SR2\SR1) → K is a completely continuous operator according to Lemma 3.
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Then we prove that
∥Ψµy∥ ≥ ∥y∥, for y ∈ K ∩ ∂SR1 . (8)

Obviously, we can get ∥y∥ = R1 and

σR1 ≤ y(t) ≤ R1, ∀ y ∈ K ∩ ∂SR1 , ∀ t ∈ R.

According to (7), it follows that

(Ψµy)(t) =µ
∫ ω

0
H(t, s)

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

=µ
∫ ω

0
H(t, s)

(
q+(s)
yρ(s)

− q−(s)
yρ(s)

+ b(s)yδ(s) + c+(s)− c−(s)
)

ds

>µ
∫ ω

0
H(t, s)

q+(s)
yρ(s)

ds

>µ
H∗ωq+

Rρ
1

.

For µ > µ0, the existence of µ0 >
Rρ+1

1
H∗ωq+

> 0 satisfies (8).

On the other hand, we prove that

∥Ψµy∥ ≤ ∥y∥, for y ∈ K ∩ ∂SR2 . (9)

Obviously, we can get ∥y∥ = R2 and

σR2 ≤ y(t) ≤ R2, ∀ y ∈ K ∩ ∂SR2 , ∀ t ∈ R.

From (7) we get

(Ψµy)(t) =µ
∫ ω

0
H(t, s)

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

=µ
∫ ω

0
H(t, s)

(
q+(s)
yρ(s)

− q−(s)
yρ(s)

+ b(s)yδ(s) + c+(s)− c−(s)
)

ds

≤µ

(
H∗ωq+

(σR2)ρ − H∗ωq+

Rρ
2

+H∗ωbRδ
2 +H∗ωc+ −H∗ωc−

)

≤µ

(
H∗ωq+

(σR2)ρ +H∗ωbRδ
2 +H∗ωc+

)
.

It is obvious that we can choose R2 large enough such that

(Ψµy)(t) ≤ µ

(
H∗ωq+

(σR2)ρ +H∗ωbRδ
2 +H∗ωc+

)
< R2.

Therefore, (9) is satisfied. According to Lemma 1, we get that Ψµ has a fixed point and equation (1) has a
positive periodic solution.

(ii) First, define

SR3 := {y ∈ Cω : ∥y∥ < R3} and SR4 := {y ∈ Cω : ∥y∥ < R4},

where R3 and R4 are two positive constants and R4 >

(
H∗ωq+

η

) 1
ρ+1

> R3 > ξ, and (4) is satisfied, here η > 0

is a constant and µη > 1.
According to Lemma 3, we can know that Ψµ : K ∩ (SR4\SR3) → K is a completely continuous operator.

Afterward, let us prove that
∥Ψµy∥ ≥ ∥y∥, for y ∈ K ∩ ∂SR3 . (10)
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Obviously, we can get ∥y∥ = R3 and

σR3 ≤ y(t) ≤ R3, ∀ y ∈ K ∩ ∂SR3 , ∀ t ∈ R.

According to (7), it follows that

(Ψµu)(t) =µ
∫ ω

0
H(t, s)

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

=µ
∫ ω

0
H(t, s)

(
q+(s)
yρ(s)

− q−(s)
yρ(s)

+ b(s)yδ(s) + c+(s)− c−(s)
)

ds

>µ
∫ ω

0
H(t, s)

q+(s)
yρ(s)

ds

>µ
H∗ωq+

Rρ
3

≥µηR3.

Because µη > 1, (Ψµu)(t) ≥ R3, then (10) holds.
Then we prove that

∥Ψµy∥ ≤ ∥y∥, for y ∈ K ∩ ∂SR4 . (11)

Obviously, we can get ∥y∥ = R4 and

σR4 ≤ y(t) ≤ R4, ∀ y ∈ K ∩ ∂SR4 , ∀ t ∈ R.

From (7) we get

(Ψµy)(t) =µ
∫ ω

0
H(t, s)

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

=µ
∫ ω

0
G(t, s)

(
q+(s)
yρ(s)

− q−(s)
yρ(s)

+ b(s)yδ(s) + c+(s)− c−(s)
)

ds

≤µ

(
H∗ωq+

(σR4)ρ − H∗ωq+

Rρ
4

+H∗ωbRδ
4 +H∗ωc+ −H∗ωc−

)

≤µ

(
H∗ωh+

(σR4)ρ +H∗ωbRδ
4 +H∗ωc+

)
.

There exists µ1 > 0 such that

µ1 <
σρRρ+1

4

H∗ωq+ + σρRδ+ρ
4 H∗ωb + σρRρ

4H∗ωc+
.

For µ < µ1, (11) holds.
It follows from Lemma 1 that Ψµ has a fixed point y1 ∈ K ∩ (SR4\SR3), which is a positive periodic

solution of equation (1) for µ < µ2 and satisfies R3 < ∥y1∥ < R4.
On the other hand, define

SR5 := {y ∈ Cω : ∥y∥ < R5} and SR6 := {y ∈ Cω : ∥y∥ < R6},

where R5 and R6 are two positive constants and R6 >

(
H∗ωq+

η′

) 1
ρ+1

> R5 > R4 > ξ, and (4) is satisfied, here

η′ > 0 is a constant, µη′ > 1 and η′ < η.
Similarly, according to Step 1 of (i), we can know that Ψµ(K∩ (SR6\SR5)) ⊂ K and Ψµ : K∩ (SR6\SR5) →

K is a completely continuous operator.
Afterward, let us prove that

∥Ψµy∥ ≥ ∥y∥, for y ∈ K ∩ ∂SR5 . (12)
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Obviously, we can get ∥y∥ = R5 and

σR5 ≤ y(t) ≤ R5, ∀ y ∈ K ∩ ∂SR5 , ∀ t ∈ R.

From (7) we get

(Ψµy)(t) =µ
∫ ω

0
H(t, s)

(
q(s)
yρ(s)

+ b(s)yδ(s) + c(s)
)

ds

=µ
∫ ω

0
H(t, s)

(
q+(s)
yρ(s)

− q−(s)
yρ(s)

+ b(s)yδ(s) + c+(s)− c−(s)
)

ds

>µ
∫ ω

0
H(t, s)

q+(s)
yρ(s)

ds

>µ
H∗ωq+

Rρ
5

≥µη′R5.

Because µη′ > 1, (Ψµy)(t) ≥ R5, then (12) holds.
Then we prove that

∥Ψµy∥ ≤ ∥y∥, for y ∈ K ∩ ∂SR6 . (13)

Obviously, we can get ∥u∥ = R6 and

σR6 ≤ y(t) ≤ R6, ∀ y ∈ K ∩ ∂SR6 , ∀ t ∈ R.

According to (7), it follows that

(Ψµy)(t) =µ
∫ ω

0
H(t, s)

(
q(s)
yρ(s)

+ b(s)uδ(s) + c(s)
)

ds

=µ
∫ ω

0
H(t, s)

(
q+(s)
yρ(s)

− q−(s)
yρ(s)

+ b(s)yδ(s) + c+(s)− c−(s)
)

ds

≤µ

(
H∗ωq+

(σR6)ρ − H∗ωq+

Rρ
6

+H∗ωbRδ
6 +H∗ωc+ −H∗ωc−

)

≤µ

(
Bωq+

(σR6)ρ +H∗ωbRδ
6 +H∗ωc+

)
.

There exists µ2 > 0 satisfying

µ2 < min

{
σρRρ+1

6

H∗ωq+ + σρRδ+ρ
6 H∗ωb + σρRρ

6H∗ωc+
, µ1

}
.

Therefore, for µ < µ2, we know (13) holds.
It follows from Lemma 1 that Ψµ has a fixed point y2 ∈ K ∩ (SR6\SR5), which is a positive periodic

solution of equation (1) for µ < µ2 and satisfying R5 < ∥y2∥ < R6. Noting that

R3 < ∥y1∥ < R4 < R5 < ∥y2∥ < R6,

we can deduce that y1 and y2 are two desired distinct positive periodic solutions of equation (1) for µ < µ2.
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