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Abstract: This paper investigates the stationary probability distribution of the well-known stochastic
logistic equation under regime switching. Sufficient conditions for the asymptotic stability of both the zero
solution and the positive equilibrium are derived. The stationary distribution of the logistic equation under
Markovian switching is obtained by computing the weighted mean of the stationary distributions of its
subsystems. The weights correspond to the limiting distribution of the underlying Markov chain.
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1. Introduction: Background and Research Aims

L ogistic equation is one of the most important models in mathematical ecology. The classical logistic
equation can be expressed as follows

dx(t) = rx(t)
(

1 − x(t)
K

)
dt. (1)

For model (1), a famous result is that if r < 0, then lim
t→∞

x(t) = 0; if r > 0, then lim
t→∞

x(t) = K (see e.g., Murray

[1]).
In recent years, random systems have received more and more attentions, and many people have studied

this (see e.g., [2–8]). In [9], Mao pointed out that small environmental noise may have different effects on the
growth rate of species, that is, white noise can be used to simulate environmental disturbance, which is the
most common method, such as [10–18]. Suppose that the growth rate r is affected by environmental noise with

r → r + σḂ(t).

From (1), we can obtain the Itô type stochastic model

dx(t) = x(t)(1 − x(t)
K

)
[
rdt + σdB(t)

]
. (2)

Consider the natural growth of many populations vary with t, Liu and Wang in [19] studied the stochastic
non-autonomous logistic equation

dx(t) = x(t)(1 − x(t)
K

)
[
r(t)dt + σ(t)dB(t)

]
. (3)

They investigated the effect of white noise on the stability of these two equilibria a: 0 and K for (3).
However, large and sudden environmental disturbance are unavoidable, such as earthquakes, tsunamis,

hurricanes, floods, or droughts may have important consequences on the system. Therefore, in addition to the
small disturbances described by the white noise, there are also some environmental noises that will obviously
change the population growth at random times, making the population growth switch from one state to
another. It cannot be represented by the stochastic differential equation driven by the standard Brownian
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motion, but needs to be modeled by the continuous time Markov chain. Many researches such as [20–26]
and the references therein show that this regime switching can be described by a right-continuous Markov
chain taking value in a finite state space. Suppose ξ(t) represents a right continuous Markov chain in state
space S = {1, 2, ..., N}, which is independent of B(t) . Thus it is reasonable and important to study the
following logistic equation and stochastic logistic equation with Markovian switching

dx(t) = r(ξ(t), t)x(t)
(

1 − x(t)
K

)
dt (4)

and

dx(t) = x(t)
(

1 − x(t)
K

)[
r(ξ(t), t)dt + σ(ξ(t), t)dB(t)

]
. (5)

Note that Eq. (4) has two equilibria: 0 and K, so does Eq. (5). The aim of this paper is to investigate the effect
of Markovian switching noise and white noise on the stability of these two equilibria. For (5), we shall show
that

• lim
t→∞

x(t) = 0, a.s. if b∗ =: lim sup
t→∞

1
t

∫ t

0
[r(ξ(s), s) +

1
2

σ2(ξ(s), s)]ds < 0.

• lim
t→∞

x(t) = K, a.s. if b∗ =: lim inf
t→∞

1
t

∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s)]ds > 0.

For the Richards model ([27,28]) with Markovian switching

dx(t) = x(t)(1 − xθ(t)
K

)
[
r(ξ(t))dt + σ(ξ(t))dB(t)

]
. (6)

The similar results are obtained as

• lim
t→∞

x(t) = 0, a.s. if D∗ =: lim sup
t→∞

1
t

∫ t

0
[r(ξ(s), s) +

θ

2
σ2(ξ(s), s)]ds < 0.

• lim
t→∞

x(t) = θ
√

K, a.s. if D∗ =: lim inf
t→∞

1
t

∫ t

0
[r(ξ(s), s)− θ

2
σ2(ξ(s), s)]ds > 0.

2. Main Results

Lemma 1. For any initial value x0 > 0, Eq. (5) has a unique and positive solution x(t) on t ≥ 0 a.s..

Proof. The proof is similar to Mao et al. [29] by defining V(x) = 4
√

x − 4 − 2 ln x, x > 0, and hence is
omitted.

Lemma 2. For all t > 0, the solution of Eq. (5) obeys that x(t) < K under 0 < x(0) < K.

Proof. Define U(x) = ln
∣∣∣∣ x
K − x

∣∣∣∣, by using generalised Itô formula, we find that

dU(x(t)) =
K

x(t)(K − x(t))
dx(t)− 1

2
· K(K − 2x(t))

x2(t)(K − x(t))2 · [x(t)σ(ξ(t), t)(1 − x(t)
K

)]2dt

= [r(ξ(t), t)− 1
2

σ2(ξ(t), t) +
x(t)

K
σ2(ξ(t), t)]dt + σ(ξ(t), t)dB(t).

(7)

Calculate the integral from 0 to t on both sides of the above equation, we get that

ln
∣∣∣∣ x(t)
K − x(t)

∣∣∣∣ = ln
∣∣∣∣ x(0)
K − x(0)

∣∣∣∣+ ∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s) +

x(s)
K

σ2(ξ(s), s)]ds + M1(t). (8)

In other words

x(t)
K − x(t)

=
x(0)

K − x(0)
exp

{ ∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s) +

x(s)
K

σ2(ξ(s), s)]ds + M1(t)
}

.
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Where M1(t) =
∫ t

0
σ(ξ(s))dB(s), therefore

x(t) =
K

K − x(0)
x(0)

exp
{
−

∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s) +

x(s)
K

σ2(ξ(s), s)]ds − M1(t)
}
+ 1

. (9)

So we can get that x(t) < K for all t > 0 when x(0) < K.

Theorem 1. Let 0 < x(0) = x0 < K, and

b∗ =: lim sup
t→∞

1
t

∫ t

0
[r(ξ(s), s) +

1
2

σ2(ξ(s), s)]ds < 0

then (5) has globally asymptotically stable zero solution, i.e

lim
t→∞

x(t) = 0, a.s..

Proof. By (8) and Lemma 2, we can get that

ln
∣∣∣∣ x(t)
K − x(t)

∣∣∣∣ = ln | x(0)
K − x(0)

|+
∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s) +

x(s)
K

σ2(ξ(s), s)]ds + M1(t)

≤ ln | x(0)
K − x(0)

|+
∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s) + σ2(ξ(s), s)]ds + M1(t)

= ln | x(0)
K − x(0)

|+
∫ t

0
[r(ξ(s), s) +

1
2

σ2(ξ(s), s)]ds + M1(t),

(10)

where M1(t) =
∫ t

0
σ(ξ(s), s)dB(s). Through a series of calculations, we can obtain that

x(t) ≤ K
K − x(0)

x(0)
exp

{
−

∫ t

0
[r(ξ(s), s) +

1
2

σ2(ξ(s), s)]ds − M1(t)
}
+ 1

≤ K
K − x(0)

x(0)
exp

{
−

∫ t

0
[r(ξ(s), s) +

1
2

σ2(ξ(s), s)]ds − M1(t)
} .

(11)

Calculating the logarithmic function on both sides of the inequality (11) together, and we can get that

ln x(t) ≤ ln K − ln
K − x(0)

x(0)
+

∫ t

0
[r(ξ(s), s) +

1
2

σ2(ξ(s), s)]ds + M1(t)

= ln
Kx(0)

K − x(0)
+

∫ t

0
[r(ξ(s), s) +

1
2

σ2(ξ(s), s)]ds + M1(t).
(12)

Note that M1(t) is a martingale with quadratic variation

⟨M1(t), M1(t)⟩ =
∫ t

0
σ2(ξ(s), s)ds ≤ max

1≤i≤N
σ̂2

i t,

where σ̂2
i = supt≥0 σi(t). By the strong law of large numbers for local martingales (see, e.g., [30,31]),

lim
t→∞

M1(t)
t

= 0 a.s.. (13)

Therefore

lim sup
t→∞

ln x(t)
t

≤ lim sup
t→∞

1
t

∫ t

0
[r(ξ(s), s) +

1
2

σ2(ξ(s), s)]ds = b∗.
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The required assertion
lim
t→∞

x(t) = 0 a.s.

follows from b∗ < 0.

Theorem 2. Let 0 < x(0) = x0 < K, and

b∗ =: lim inf
t→∞

1
t

∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s)]ds > 0

then Eq. (5) has globally asymptotically stable positive equilibrium K, i.e

lim
t→∞

x(t) = K, a.s..

Proof. Define
η(t) =

K
K − x(0)

x(0)
exp

{
−

∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s)]ds − M1(t)

}
+ 1

.

In the light of (9), η(t) ≤ x(t). In addition, η(t) can also be expressed as

η(t) =
K

K − x(0)
x(0)

exp
{
− t

(1
t

∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s)]ds +

1
t

M1(t)
)}

+ 1
.

Since b∗ =: lim inf
t→∞

1
t

∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s)]ds > 0 and (13), so

lim
t→∞

exp
{
− t

(1
t

∫ t

0
[r(ξ(s), s)− 1

2
σ2(ξ(s), s)]ds +

1
t

M1(t)
)}

= 0.

Therefore
lim
t→∞

η(t) = K a.s.,

This, along with x(t) < K, imply that
lim
t→∞

x(t) = K a.s..

Let Markov chain ξ(t) is irreducible, so it has a unique stationary (probability) distribution π1. By the
ergodic property of the irreducible Markov chain, we can get the results for Eq. (5) with the special case.

Corollary 1. For r(ξ(t), t) = r(ξ(t)), σ(ξ(t), t) = σ(ξ(t)). Let 0 < x(0) = x0 < K. Then

(i) If ∑
i∈S

πi(ri +
1
2

σ2
i ) < 0, then the zero solution of Eq. (5) is globally asymptotically stable a.s., that is,

lim
t→+∞

x(t) = 0, a.s..

(ii) If ∑
i∈S

πi(ri −
1
2

σ2
i ) > 0, then the positive equilibrium K of Eq. (5) is globally asymptotically stable a.s., that is,

lim
t→+∞

x(t) = K, a.s..

Corollary 2. For r(i, t + T) = r(i, t), σ(i, t + T) = σ(i, t). Let 0 < x(0) = x0 < K. Then

(i) If ∑
i∈S

πi
T

∫ T

0
(ri(s) +

1
2

σ2
i (s))ds < 0, then lim

t→+∞
x(t) = 0, a.s.;

(ii) If ∑
i∈S

πi
T

∫ T

0
(ri(s)−

1
2

σ2
i (s))ds > 0, then lim

t→+∞
x(t) = K, a.s..
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For Eq. (4), we have the following results.

Theorem 3. Let 0 < x(0) = x0 < K.

(i) If r∗ =: lim sup
t→∞

1
t

∫ t

0
r(ξ(s), s)ds < 0, then the zero solution of Eq. (4) is globally asymptotically stable a.s.,

that is,
lim

t→+∞
x(t) = 0, a.s..

(ii) If r∗ =: lim inf
t→∞

1
t

∫ t

0
r(ξ(s), s)ds > 0, then the positive equilibrium K of Eq. (4) is globally asymptotically

stable a.s., that is,
lim

t→+∞
x(t) = K, a.s..

Theorem 4. Let 0 < x(0) = x0 < K. If r∗ = r∗ = r which is a constant, then Eq. (4) has the properties that
(i) If r < 0, then lim

t→+∞
x(t) = 0, a.s.;

(ii) If r > 0, then lim
t→+∞

x(t) = K, a.s..

Following we introduce stochastic Richards model ([27,28]) with Markovian switching which can be
expressed as

dx(t) = x(t)(1 − xθ(t)
K

)[r(ξ(t), t)dt + σ(ξ(t), t)dB(t)], (14)

where θ is a positive constant. Note that model (14) is obtained from the generalized hybrid logistic model

dx(t) = x(t)r(ξ(t), t)(1 − xθ(t)
K

)dt.

by changing r(ξ(t), t) to r(ξ(t), t) + σ(ξ(t), t)Ḃ(t), it is worth mentioning that model (14) become to Eq. (5) if
θ = 1. Here we use a result of Theorem 2 from [32] to Eq. (14) which reads

if 0 < x0 < θ
√

K, then 0 < x(t) < θ
√

K for t > 0, a.s..

Theorem 5. If

D∗ =: lim sup
t→∞

1
t

∫ t

0
[r(ξ(s), s) +

θ

2
σ2(ξ(s), s)]ds < 0

and 0 < x(0) < θ
√

K, then the zero solution of Eq. (14) is asymptotically stable a.s., that is, lim
t→∞

x(t) = 0 a.s..

Proof. Define V = ln
∣∣∣∣ xθ(t)
K − xθ(t)

∣∣∣∣ , by using generalised Itô formula, we find that

dV(t) = [θr(ξ(t), t)− θ

2
σ2(ξ(t), t) +

θ(θ + 1)
2K

xθ(t)σ2(ξ(t), t)]dt + θσ(ξ(t), t)dB(t). (15)

Therefore we have that

dV(t) ≤ [θr(ξ(t), t)− θ

2
σ2(ξ(t), t) +

θ(θ + 1)
2

σ2(ξ(t), t)]dt + θσ(ξ(t), t)dB(t).

Integrating both sides from 0 to t implies that

ln
∣∣∣∣ xθ(t)
K − xθ(t)

∣∣∣∣ ≤ ln
∣∣∣∣ xθ(0)
K − xθ(0)

∣∣∣∣+ ∫ t

0
[θr(ξ(s), s) +

θ2

2
σ2(ξ(s), s)ds + M2(t).
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Therefore
xθ(t) ≤ K

K − xθ(0)
xθ(0)

exp
{
−

∫ t

0
[θr(ξ(s), s) +

θ2

2
σ2(ξ(s), s)]ds − M2(t)

}
+ 1

≤ K
K − xθ(0)

xθ(0)
exp

{
−

∫ t

0
[θr(ξ(s), s) +

θ2

2
σ2(ξ(s), s)]ds − M2(t)

} .
(16)

The logarithm of both sides for the above equation

ln xθ(t) ≤ ln
Kxθ(0)

K − xθ(0)
+

∫ t

0
[θr(ξ(s), s) +

θ2

2
σ2(ξ(s), s)]ds + M2(t), (17)

where

M2(t) =
∫ t

0
θσ(ξ(s), s)dB(s).

Note that M2(t) is a martingale with quadratic variation

⟨M2(t), M2(t)⟩ =
∫ t

0
θ2σ2(ξ(s), s)ds.

For σ(ξ(t)) is a bounded function on [0,+∞) , we have that

lim sup
t→∞

⟨M2(t), M2(t)⟩
t

< +∞.

By virtue of the strong law of large numbers for martingales, we can see that

lim
t→∞

M2(t)
t

= 0. (18)

For arbitrary ε > 0, there exists T > 0 such that for t ≥ T,

M2(t) + ln
Kxθ(0)

K − xθ(0)
t

<
θε

2
,

1
t

∫ t

0
[θr(ξ(s), s) +

θ2

2
σ2(ξ(s), s)]ds ≤ θ(D∗ +

ε

2
).

Using these inequalities in (17), one can obtain that

ln xθ(t)
t

≤ θε

2
+ θ(D∗ +

ε

2
).

Then,
ln x(t)

t
≤ (D∗ + ε) < 0.

Therefore we have lim
t→∞

x(t) = 0, a.s..

Theorem 6. If

D∗ =: lim inf
t→∞

1
t

∫ t

0
[r(ξ(s), s)− θ

2
σ2(ξ(s), s)]ds > 0

and 0 < x(0) < θ
√

K, then the positive equilibrium θ
√

K of (14) is asymptotically stable a.s., that is, lim
t→∞

x(t) = θ
√

K.

Proof. Define

ηθ(t) =
K

K − xθ(0)
xθ(0)

exp
{
−

∫ t

0
[θr(ξ(s), s)− θ2

2
σ2(ξ(s), s)]ds − M2(t)

}
+ 1

.
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In the light of the expression of xθ(t), ηθ(t) ≤ xθ(t). In addition, ηθ(t) can also be expressed as

ηθ(t) =
K

K − xθ(0)
xθ(0)

exp
{
− t

(1
t

∫ t

0
[θr(ξ(s), s)− θ2

2
σ2(ξ(s), s)]ds +

1
t

M2(t)
)}

+ 1
.

Since D∗ =: lim inf
t→∞

1
t

∫ t

0
[r(ξ(s), s)− θ

2
σ2(ξ(s), s)]ds > 0 and (18), so

lim
t→∞

exp
{
− t

(1
t

∫ t

0
[θr(ξ(s), s)− θ2

2
σ2(ξ(s), s)]ds +

1
t

M2(t)
)}

= 0.

Therefore
lim
t→∞

η(t) = θ
√

K a.s.,

This, along with x(t) < θ
√

K, imply that
lim
t→∞

x(t) = θ
√

K a.s..

This completes the proof.

Remark 1. The same results as Corollary 1 and Corollary 2 can be obtained for model (14) under the condition
that Markov chain ξ(·) is irreducible.

3. Conclusion

This paper investigates the stochastic logistic equation under regime switching. We establish sufficient
conditions for the global asymptotic stability of both the zero solution and the positive equilibrium.
Furthermore, we derive an explicit expression for the limiting behavior of hybrid models. Our findings reveal
several significant and biologically relevant insights: both white noise and switching noise can profoundly
influence population dynamics.

While our study addresses key aspects of the stochastic logistic equation, several intriguing questions
remain open for future research. For instance, exploring the dynamics of state-dependent or infinite-state
Markov chains presents a promising direction for further investigation.
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