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representations and derive optimal estimates for these functions within weighted Sobolev spaces.
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1. Introduction

T ime-frequency analysis plays a fundamental role in mathematics and physics, appearing prominently
in harmonic analysis and signal theory. This field encompasses various methods that involve not only

the signal and its Fourier transform f̂ but also every representation of a signal in the time-frequency domain.
One of the primary objectives of Fourier analysis is the study of time-frequency analysis. This theory,

significantly advanced by Gröchenig [1], introduced innovative ways to examine the local frequency spectrum
of signals. Through representations such as the short-time Fourier transform, the wavelet transform, and the
Wigner distribution, this approach enables the simultaneous representation of spatial and frequency variables
in a unified framework called the time-frequency plane. However, the short-time Fourier transform has a
notable limitation: the fixed width of its analyzing window. In many practical applications, the high-frequency
components of a signal are more time-localized than the low-frequency ones. This rigidity in the window
function motivated the development of the wavelet transform [2].

The Stockwell transform, often referred to as the S-transform in the literature, was first introduced by
geophysicist Stockwell [3]. It provides a solution to the limitations of fixed window width, offering an
adaptable representation for analyzing signals.

The Hartley transform is a linear operator defined for a suitable function ψ(x) as:

H (ψ)(λ) =
1√
2π

∫
R

ψ(x) cas(λx)dx, (1)

where cas(x), the cas function, is given by:

cas(x) =
∞

∑
n=0

(−1)(
n+1

2 )

n!
xn, (2)

with (n
2) =

n(n−1)
2 denoting the binomial coefficient.
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The cas function, as defined in (2), can be interpreted as a generalization of the exponential function
exp. A straightforward computation reveals that cas(x) is the unique C∞ solution of the following
differential-reflection problem [4]: {

R∂xu(x) = λu(x),
u(0) = 0,

(3)

where ∂x denotes the first-order derivative, and R is the reflection operator acting on functions f (x) as:

R( f )(x) = f (−x). (4)

The cas function is multiplicative on R, satisfying:

cas(x) cas(y) =
1
2
(

cas(x + y)− cas(−x − y) + cas(x − y) + cas(y − x)
)
. (5)

Inspired by the relation (4), the author in [4] generalized it for the Hartley-Bessel function and introduced
a generalized convolution product. This paper focuses on the generalized Hartley transform, referred to as the
Hartley-Bessel transform, introduced in [4–6]. Specifically, we consider the differential-reflection operator ∆α

defined by:

∆α = R
(

∂x +
α

x

)
+

α

x
, α ≥ 0, (6)

where R is the reflection operator given in (3).
The operator ∆α is closely linked to Dunkl’s theory [4,7]. Moreover, its eigenfunctions are related to Bessel

functions and satisfy a product formula, enabling the development of a novel harmonic analysis associated
with this operator [4].

The Stockwell transform has been successfully employed in diverse applications, such as seismic
recording, ground vibration analysis, geophysics, medical imaging, hydrology, gravitational wave detection,
and power system analysis [8–11]. Given its significance, the mathematical theory of this transform is evolving
in multiple directions, with numerous extensions proposed recently, see [1,7,12,13].

Since harmonic analysis associated with the Hartley-Bessel operator (5) has seen remarkable
development, it is natural to explore whether a time-frequency analysis equivalent for the Stockwell transform
exists in the Hartley-Bessel setting.

The primary aim of this paper is twofold. First, we introduce the Stockwell transform in the Hartley-Bessel
setting and present new results related to this transform. Second, we analyze the concentration of this
transform on sets of finite measure and establish uncertainty principles for orthonormal sequences. Finally,
using best approximations and reproducing kernel theory, we investigate extremal functions related to this
transform, deriving their integral representation and optimal estimates on weighted Sobolev spaces. The
remainder of this paper is structured as follows. Section 2 reviews the main results related to harmonic
analysis associated with the Hartley-Bessel operator (5). In Section 3, we define the Stockwell transform in
the Hartley-Bessel setting and present new findings related to this transform. Section 4 focuses on uncertainty
principles associated with the Hartley-Bessel-Stockwell transform. Finally, Section 5 examines extremal
functions linked to this transform in weighted Sobolev spaces.

2. Harmonic Analysis Associated with the Hartley-Bessel Transform

In this section, we recall key results in harmonic analysis related to the Hartley-Bessel transform. For
further details, we refer the reader to [4].

2.1. Weighted Lebesgue Measure and Function Spaces

For α ≥ 0, the weighted Lebesgue measure µα on R is defined as:

dµα(x) :=
|x|2α

2α+ 1
2 Γ
(

α + 1
2

) dx, (7)

where Γ denotes the Gamma function.
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The weighted Lebesgue space Lp
α(R), 1 ≤ p ≤ ∞, consists of measurable functions f satisfying:

∥ f ∥p,µα :=

{(∫
R | f (x)|p dµα(x)

)1/p
< ∞, 1 ≤ p < ∞,

ess supx∈R | f (x)| < ∞, p = ∞.
(8)

In particular, for p = 2, the space L2
α(R) is a Hilbert space with the inner product:

⟨ f , g⟩µα =
∫
R

f (x)g(x) dµα(x). (9)

2.2. Eigenfunctions of the Differential-Reflection Operator ∆α

For λ ∈ C, consider the Cauchy problem:

(S) :

{
∆αu(x) = λu(x),

u(0) = 1.
(10)

As shown in [4], this problem admits a unique solution Bα(λ·) given by:

Bα(λx) = jα− 1
2
(λx) +

λx
2α + 1

jα+ 1
2
(λx), (11)

where jα denotes the normalized Bessel function of order α (see [4]). The function Bα(λ·) is infinitely
differentiable on R, and it satisfies the following bound:

∀λ, x ∈ R, |Bα(λx)| ≤
√

2. (12)

Furthermore, from [4], the Hartley-Bessel kernel exhibits the multiplicative property:

∀λ ∈ R, x, y ∈ R∗, Bα(λx)Bα(λy) =
∫
R

Bα(λz)Kα(x, y, z) dµα(z), (13)

where Kα is the Bessel kernel explicitly provided in [4]. The product formula (9) generalizes classical relations
and facilitates the definition of a translation operator, convolution product, and the development of harmonic
analysis associated with ∆α.

2.3. The Hartley-Bessel Transform

Definition 1 ([4]). The Hartley-Bessel transform Hα is defined on L1
α(R) as:

Hα( f )(λ) =
∫
R

Bα(λx) f (x) dµα(x), λ ∈ R. (14)

The Hartley-Bessel transform satisfies the following key properties (see [4] for proofs):

Proposition 2. 1. Boundedness: For every f ∈ L1
α(R),

∥Hα( f )∥∞,µα ≤
√

2∥ f ∥1,µα . (15)

2. Inversion Formula: For f ∈ (L1
α ∩ L2

α)(R) such that Hα( f ) ∈ L1
α(R), we have:

f (x) =
∫
R

Bα(λx)Hα( f )(λ) dµα(λ), a.e. x ∈ R. (16)

3. Plancherel Theorem: The Hartley-Bessel transform Hα extends to an isometric isomorphism on L2
α(R):

∥ f ∥2,µα = ∥Hα( f )∥2,µα . (17)
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2.4. Translation Operator and Generalized Convolution

The product formula (9) enables the definition of the translation operator.

Definition 3. Let f be a measurable function on R. For x, y ∈ R, the translation operator T x
α is defined as:

T x
α f (y) =

∫
R

f (z)Kα(x, y, z) dµα(z). (18)

The translation operator satisfies the following properties ([4]):

Proposition 4. For all x, y ∈ R:

1. Symmetry:
T x

α f (y) = T y
α f (x). (19)

2. Preservation of Integrals: ∫
R
T x

α f (y) dµα(y) =
∫
R

f (y) dµα(y). (20)

3. Norm Preservation: For f ∈ Lp
α(R), p ∈ [1, ∞], the translation operator preserves norms:

∥T x
α f ∥p,µα ≤ ∥ f ∥p,µα . (21)

Using the translation operator, the generalized convolution product of f , g is defined as:

( f ∗α g)(x, t) =
∫
R
T x

α f (y)g(y) dµα(y). (22)

The generalized convolution satisfies properties such as Young’s inequality, Plancherel’s theorem, and the
convolution theorem. For further details, see [4].

3. Stockwell Transform Associated with The Hartley-Bessel operator

The main purpose of this section is to introduce the Hartley-Bessel-Stockwell transform and to give some
new results related to this transform.
Notation : we denote by
• Lp

α

(
R2) , 1 ≤ p ≤ +∞ the space of measurable functions on R×R satisfying

∥ f ∥p,µα⊗µα :=


(∫

R
∫
R | f (x, y)|p dµα(x)⊗ dµα(y)

) 1
p , if p ∈ [1,+∞[;

ess sup | f (x, y)| if p = +∞.

(x, y) ∈ R×R

Let ψ in L2
α (R) and y ∈ R, we recall that the modulation operator of ψ is given by

My(ψ) := Hα

(√
τ

y
α |Hα(ψ)|2

)
.

By using Plancherel’s formula (12) and the relation (15) we find that My(ψ) ∈ L2
α (R) and

∥My(ψ)∥2,α = ∥ψ∥2,α. (23)

Definition 5. Let y ∈ R. We define the dilation operator Dy of a measurable function ψ by

∀x ∈ R, Dy(ψ)(x) := yα+1ψ(xy).

For all ψ ∈ L2
α (R) we have Dy(ψ) ∈ L2

α (R) and

∥Da(ψ)∥2,α = ∥ψ∥2,α. (24)
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Now, for every non-zero window function ψ in L2
α (R), we consider the family ψx,y defined by

ψx,y(z) = τx
α

(
My(Dy(ψ))

)
(z), ∀(x, y) ∈ R×R. (25)

Definition 6. For every f and ψ in L2
α (R) we define the Hartley-Bessel-Stockwell transform by

Sα
ψ( f )(x, y) :=

∫
R

f (z)ψx,y(z)dµα(z), (26)

Remark 1. 1- The Hartley-Bessel-Stockwell transform (26) can be also expressed in the form

Sα
ψ( f )(x, y) =

(
My(Dy(ψ)) ∗α f

)
(x). (27)

By using Hölder’s inequality and the relations (23),(24)and (25) we find that Sα
ψ( f ) ∈ L∞

α

(
R2) and we have∥∥∥Sα

ψ( f )
∥∥∥

∞,µα⊗µα

≤ ∥ f ∥2,α∥ψ∥2,α (28)

Definition 7. Let ψ1, ψ2 be non-zero functions in L2
α (R), we say that the pair (ψ1, ψ2) is admissible if for almost

all λ ∈ R we have

0 < Cψ1,ψ2 =
∫
R

Hα

(
My(Dy(ψ1))

)
(λ)Fα

(
My(Dy(ψ2))

)
(λ)dµα(y) < ∞. (29)

In the following we have generalized Parseval’s formula for Sα
ψ.

Theorem 8. Let (ψ1, ψ2) be an admissible pair then for all f , g ∈ L2
α (R) we have∫

R

∫
R

Sα
ψ1
( f )(x, y)Sα

ψ2
(g)(x, y)dµα(x)⊗ dµα(y) = Cψ1,ψ2

∫
R

f (x)g(x)dµα(x) (30)

Proof. By using Fubini’s theorem and the relations (12), (18), and (27) we find that∫
R

∫
R

Sα
ψ1
( f )(x, y)Sα

ψ2
(g)(x, y)dµα(x)⊗ dµα(y)

=
∫
R

[∫
R

(
My(Dy(ψ1)) ∗α f

)
(x)
(
My(Dy(ψ2)) ∗α g

)
(x)dµα(x)

]
dµα(y)

=
∫
R

[∫
R

Hα

(
My(Dy(ψ1))

)
(λ)Hα

(
My(Dy(ψ2))

)
(λ)Hα( f )(λ)Fα(g)(λ)dµα(λ)

]
dµα(y)

= Cψ1,ψ2

∫
R

f (x)g(x)dµα(x).

The proof is complete.

Corollary 9 (Plancherel’s formula for Sα
ψ). If ψ = ψ1 = ψ2 and f = g we find that∥∥∥Sα

ψ( f )
∥∥∥

2,µα⊗µα

=
√

Cψ∥ f ∥2,µα . (31)

where
Cψ = Cψ,ψ =

∫
R
|Fα

(
My(Dy(ψ))

)
(λ)|2dµα(y) (32)

We have the following result.

Theorem 10. Let ψ be an admissible function in L2
α (R), for every f ∈ L2

α (R) the function Sα
ψ( f ) belongs to

Lp
α

(
R2)), p ∈ [2,+∞] and we have

∥∥∥Sα
ψ( f )

∥∥∥
p,µα⊗µα

≤ C
1
p
ψ ∥ψ∥

1− 2
p

2,α ∥ f ∥2,α. (33)
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Proof. By using the relations (28) and (31), the relation (33) follows from the Riesz-Thorin interpolation
theorem see [2].

In the following, we establish a generalized inversion formula for the Hartley-Bessel-Stockwell transform
Sα

ψ.

Theorem 11. Let (ψ1, ψ2) be an admissible pair in L2
α (R), then for all f ∈ L2

α

(
Rd
+

)
we have

f (.) =
1

Cψ1,ψ2

∫
R

∫
R

Sα
ψ1
( f )(x, y)ψ2

x,y(.)dµα(x)⊗ dµα(y),

weakly in L2
α (R).

Proof. By using the relations (26),(30) and Fubini’s theorem we find that∫
Rd
+

f (z)h(z)dµα(z) =
1

Cψ1,ψ2

∫
R

∫
R

Sα
ψ1
( f )(x, y)Sα

ψ2
(g)(x, y)dµα(x)⊗ dµα(y)

=
1

Cψ1,ψ2

∫
R

(∫
R

∫
R

Sα
ψ1
( f )(x, y)ψ2

x,y(z)dµα(x)⊗ dµα(y)
)

h(z)dµα(z),

which gives the result.

The reproducing kernels for Hilbert space play an important role in harmonic analysis [14]. In this context,
we have the following result.

Theorem 12. The space Sα
ψ

(
L2

α (R)
)

is a reproducing kernel Hilbert space in L2
α

(
R2d
+

)
with kernel function Kψ defined

by

Kψ

((
x′, y′

)
; (x, y)

)
=

1
Cψ

(
My′(Dy′(ψ)) ∗α ψx,y

)
(x′),

where Cψ is given by the relation (32).
Furthermore, the kernel is pointwise bounded

∣∣Kψ

((
x′, y′

)
; (x, y)

)∣∣ ≤ ∥ψ∥2
2,α

Cψ
, ∀(x, y);

(
x′, y′

)
∈ R2.

Proof. By using the relations (27) and (30) we find that

Sα
ψ( f )(x, y) =

1
Cψ

∫
R

∫
R

Sα
ψ( f )

(
x′, y′

)
Sα

ψ (ψx,y) (x′, y′)dµα

(
x′
)
⊗ dµα

(
y′
)

=
〈

Sα
ψ( f ) | Kψ((.); (x, y))

〉
µα⊗µα

,

where
Kψ

((
x′, y′

)
; (x, y)

)
=

1
Cψ

(
My′(Dy′(ψ)) ∗α ψx,y

)
(x′),

Finally by the Cauchy-Schwarz inequality, we get

∣∣Ku
((

x′, y′
)

; (x, y)
)∣∣ ≤ 1

Cψ

∫
R
|ψx,y(z)|

∣∣∣ψx′ ,y′(z)
∣∣∣dµα(z) ≤

∥ψ∥2
2,α

Cψ
.

The rest of this section is devoted to give Calderón’s type reproducing formula for the
Hartley-Bessel-Stockwell transform, to do this we need the help of the following result.
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Proposition 13. Let 0 < γ < δ < +∞ and (ψ1, ψ2) be an admissible pair such that Hα

(
My(Dy(ψ1))

)
and

Hα

(
My(Dy(ψ2))

)
belongs to L∞

α (R) for all y ∈ R . We put

Gγ,δ(x) :=
1

Cψ1,ψ2

∫
D(γ,δ)

(
My(Dy(ψ1))

)
∗α

(
My(Dy(ψ2))

)
(x)dµα(y) (34)

and
Kγ,δ(λ) :=

1
Cψ1,ψ2

∫
D(γ,δ)

Hα

(
My(Dy(ψ1))

)
(λ)Hα

(
My(Dy(ψ2))

)
(λ)dµα(y) (35)

where
D(γ, δ) = {x ∈ R : γ ≤ x ≤ δ} .

Then we have Gγ,δ belongs to L2
α

(
Rd
+

)
and

Hα(Gγ,δ)(λ) = Kγ,δ(λ). (36)

Proof. By using Hölder’s inequality and the relations (23) and (24) we find that

∣∣Gγ,δ(x)
∣∣2 ≤ µα(D(γ, δ))

C2
ψ1,ψ2

∫
D(γ,δ)

∣∣∣(My(Dy(ψ1))
)
∗α

(
My(Dy(ψ2))

)
(x)
∣∣∣2 dµα(y)

So

∥Gγ,δ∥2
2,α ≤ µα(D(γ, δ))

C2
ψ1,ψ2

∫
D(γ,δ)

(∫
R
|Hα

(
My(Dy(ψ1))

)
(λ)|2|Hα

(
My(Dy(ψ2))

)
(λ)|2 dµα(λ)

)
dµα(y)

≤
(

µα(D(γ, δ))

Cψ1,ψ2

)2 ∥∥Hα

(
My(Dy(ψ1))

)∥∥2
∞,α ∥ψ2∥2

2,µα
< ∞.

Which proves that Gγ,δ belongs to L2
α (R), furthermore by using Parseval’s relation (14) and (20) we find that

(
My(Dy(ψ1))

)
∗α

(
My(Dy(ψ2))

)
(x) =

∫
R

Hα

(
τx

α (My(Dy(ψ1))
)
)(λ)Hα

(
My(Dy(ψ2))

)
(λ)dµα(λ)

=
∫
R

Bα(λx)Hα

(
My(Dy(ψ1))

)
(λ)Hα

(
My(Dy(ψ2))

)
(λ)dµα(λ).

Now, by using Fubini’s theorem we find that

Gγ,δ(x) =
1

Cψ1,ψ2

∫
R

Bα(λx)
(∫

D(γ,δ)
Hα

(
My(Dy(ψ1))

)
(λ)Hα

(
My(Dy(ψ2))

)
(λ)dµα(y)

)
dµα(λ)

=
∫
R

Bα(λx)Kγ,δ(λ)dµα(λ).

Inversion formula (11) gives the relation (36).

In the following we establish generalized reproducing inversion formula of Calderón’s type for the
Hartley-Bessel-Stockwell transform Sα

ψ which is more general than that which is proved in [13].

Theorem 14. Let 0 < γ < δ < +∞ and (ψ1, ψ2) be an admissible pair such that Hα

(
My(Dy(ψ1))

)
and

Hα

(
My(Dy(ψ2))

)
belongs to L∞

α (R) for all y ∈ R , the function fγ,δ defined for all z ∈ R by:

fγ,δ(z) =
1

Cψ1,ψ2

∫
D(γ,δ)

∫
R

Sα
ψ1
( f )(x, y)ψ2

x,y(z)dµα(x)⊗ dµα(y), (37)

belongs to L2
α (R) and satisfies

lim
(γ,δ)→(0,+∞)

∥∥ fγ,δ − f
∥∥

2,µα
= 0. (38)
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Proof. It is easy to see that for all f ∈ L2
α (R) we have fγ,δ = f ∗α Gγ,δ, where Gγ,δ is the function given by the

relation (34), by using the relations (12),(36) we find that

∥∥ fγ,δ − f
∥∥2

2,α =
∫
R
|Hα( f )(λ)|2

(
1 − Kγ,δ(λ)

)2 dµα(λ).

By using the relations (29),(35), the relation (38) follows from the dominated convergence theorem.

4. Uncertainty Principles Associated with the Hartley-Bessel-Stockwell Transform

In this section, we estimate the concentration of Sα
ψ( f ) on subset of R×R of finite measure, similar results

have been checked in [15] and we establish the uncertainty principle for orthonormal sequences associated
with the Hartley-Bessel-Stockwell transform, first we consider the following orthogonal projections

(1) Let Pψ be the orthogonal projection from L2
α

(
R2)onto Sα

ψ

(
L2

α (R)
)

and Im Pψ denotes the range of Pψ.
(2) Let PE be the orthogonal projection on L2

α

(
R2) defined by

PEF = χEF, F ∈ L2
α

(
R2
)

, (39)

where E ⊂ R×R and Im PE is the range of PE. Also, we define∥∥PEPψ

∥∥ = sup
{∥∥PEPψ(F)

∥∥
2,µα⊗µα

: F ∈ L2
α

(
R2
)

, ∥F∥2,µα⊗µα = 1
}

.

We first need the following result.

Theorem 15. Let ψ be an admissible function in L2
α (R). Then for any E ⊂ R×R of finite measure µα ⊗ µα(E) < ∞,

the operator PEPψ is a Hilbert-Schmidt operator. Moreover, we have the following estimation

∥∥PEPψ

∥∥ ≤
∥ψ∥2

2,α

Cψ

√
µα ⊗ µα(E).

Proof. Since Pψ is a projection onto a reproducing karnel Hilbert space, for any function F ∈ L2
α(R2), the

orthogonal projection Pψ can be expressed as

Pψ(F)(x, ξ) =
∫∫

R2
F
(

x′, ξ ′
)

Ku
((

x′, ξ ′
)

; (x, ξ)
)

dµα(x′)⊗ dµα(ξ
′),

where Kψ ((x′, ξ ′) ; (x, ξ)) is same as already defined, using the relation (39), we find that

PEPψ(F)(x, ξ) =
∫∫

R2
χE(x, ξ)F

(
x′, ξ ′

)
Kψ

((
x′, ξ ′

)
; (x, ξ)

)
dµα(x′)⊗ dµα(ξ

′).

This shows that the operator PEPψ is an integral operator with kernel K ((x′, ξ ′) ; (x, ξ)) =

χE(x, ξ)Kψ ((x′, ξ ′) ; (x, ξ)). Using the relation (28) and Fubini’s theorem, we find that

∥∥PΣPψ

∥∥2
HS =

∫∫
R2

∫∫
R2

|χΣ(x, ξ)|2
∣∣Ku

((
x′, ξ ′

)
; (x, ξ)

)∣∣2 dµα(x′)⊗ dµα(ξ
′)dµα(x)⊗ dµα(ξ)

≤
∥ψ∥2

2,α

Cψ

√
µα ⊗ µα(E) < ∞. (40)

Thus, the operator PEPu is a Hilbert-Schmidt operator. Now, the proof follows from the fact that
∥∥PEPψ

∥∥ ≤∥∥PEPψ

∥∥
HS.

In the following, we obtain the uncertainty principle for orthonormal sequences associated with the
Hartley-Bessel-Stockwell transform.
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Theorem 16. Let ψ be an admissible function in L2
α (R) and {ϕn}n∈N be an orthonormal sequence in L2

α(R). Then for
any subset E ⊂ R×R of finite measure µα ⊗ µα(E) < ∞, we have

N

∑
n=1

(
1 −

∥∥∥χEc Sα
ψ (ϕn)

∥∥∥
2,µα⊗µα

)
≤

∥ψ∥2
2,α

Cψ

√
µα ⊗ µα(E),

for every N ∈ N.

Proof. Proof. Let {en}n∈N be an orthonormal basis for L2
α

(
R2d
+

)
. Since PEPψ is a Hilbert-Schmidt operator,

and satisfied the relation (40) and we have

∑
n∈N

〈
PψPEPψen, en

〉
µα⊗µα

=
∥∥PEPψ

∥∥2
HS ≤

∥ψ∥2
2,α

Cψ

√
µα ⊗ µα(E) < ∞.

According to the paper [16], the positive operator PψPEPψ is a trace class operator and we have

tr
(

PψPEPψ

)
=
∥∥PEPψ

∥∥2
HS ≤

∥ψ∥2
2,α

Cψ

√
µα ⊗ µα(E) < ∞,

where tr
(

PψPEPψ

)
denotes the trace of the operator PψPEPψ. Since {ϕn}n∈N be an orthonormal sequence in

L2
α(Rd

+), from the orthogonality relation (31), we obtain that
{

Sα
ψ (ϕn)

}
n∈N

is also an orthonormal sequence in

L2
α

(
R2d
+

)
thus

N

∑
n=1

〈
PESα

ψ (ϕn) , Sα
ψ (ϕn)

〉
µα⊗µα

=
N

∑
n=1

〈
PψPΣPψSα

ψ (ϕn) , Sα
ψ (ϕn)

〉
µα⊗µα

≤ tr
(

PψPEPψ

)
.

Hence, we find that
N

∑
n=1

〈
PESα

ψ (ϕn) , Sα
ψ (ϕn)

〉
µα⊗µα

≤
∥ψ∥2

2,α

Cψ

√
µα ⊗ µα(E) < ∞.

Moreover, for any n with 1 ≤ n ≤ N, using the Cauchy-Schwarz inequality, we get〈
PESα

ψ (ϕn) , Sα
ψ (ϕn)

〉
µα⊗µα

= 1 −
〈

PEc Sα
ψ (ϕn) , Sα

ψ (ϕn)
〉

µα⊗µα

≥ 1 −
∥∥∥χEc Sα

ψ (ϕn)
∥∥∥

2,µα⊗µα

.

Thus, we obtain

N

∑
n=1

(
1 −

∥∥∥χEc Sα
ψ (ϕn)

∥∥∥
2,µα⊗µα

)
≤

N

∑
n=1

〈
PESα

ψ (ϕn) , Sα
ψ (ϕn)

〉
µα⊗µα

≤
∥ψ∥2

2,α

Cψ

√
µα ⊗ µα(E) < ∞.

This completes the proof of the theorem.

5. Extremal Functions Associated with the Hartley-Bessel-Stockwell Transform

By using the theory of reproducing kernels [3,14], the main purpose of this section is to study the extremal
functions associated with the Hartley-Bessel-Stockwell transform and to give an integral representation and
best estimate of these functions on weighted Sobolev spaces.

5.1. Sobolev type spaces Associated with the Hartley-Bessel Transform

Definition 17. Let s ∈ R, we define the Hartley-Bessel-Sobolev space of order s that will be denoted by

Hs
α(R) :=

{
f ∈ L2

α(R)/
(

1 + |λ|2
)s/2

Hα( f ) ∈ L2
α(R)

}
.
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We provide Hs
α(Rd+1

+ ) with the inner product given by

⟨ f , g⟩Hs
α

:=
∫
R

(
1 + |λ|2

)s
Hα( f )(λ)Hα(g)(λ)dµα(λ), (41)

and the norm
∥ f ∥2

Hs
α

:= ⟨ f , f ⟩Hs
α
=
∫
R

(
1 + |λ|2

)s
|Hα( f )(λ)|2 dµα(λ). (42)

Definition 18. Let ψ be a admissible function in L2
α(R), we introduce the inner product in the Hilbert space

Hs
α(R) for any fixed β > 0 by

⟨ f , g⟩Hs
β,ψ

:= β⟨ f , g⟩Hs
α
+
〈

Sα
ψ( f ), Sα

ψ(g)
〉

µα⊗µα

. (43)

The norm associated to this inner product is defined by

∥ f ∥2
Hs

β,ψ
:= β∥ f ∥2

Hs
α
+
∥∥∥Sα

ψ( f )
∥∥∥2

2,µα⊗µα

. (44)

We have the following result.

Proposition 19. For s > α + 1 and ψ be a admissible function in L2
α(R) and β > 0 then we have

f ∈ Hs
β,ψ(R) ⇒ Hα( f ) ∈ L1

α(R). (45)

Proof. By using the relations (12),(31),(41) and (43) we find that

∥ f ∥2
Hs

β,ψ
=
∫
R

[
β
(

1 + |λ|2
)s

+ Cψ

]
|Hα( f )(λ)|2 dµα(λ), (46)

by using Hölder’s inequality and the fact that s > α + 1 we find that

∥Hα( f )∥1,µα
≤ ∥ f ∥Hs

β,ψ

(∫
R

dµα(λ)[
β (1 + |λ|2)s + Cψ

]) 1
2

< ∞,

which gives the result.

Theorem 20. Let s > α + 1 ψ be an admissible function in L2
α(R) and β > 0 then the space

(
Hs

β,ψ(R), ⟨, ⟩Hs
β,ψ

)
is a

reproducing kernel Hilbert space with kernel given by

Kβ,ψ(x, y) =
∫
R

Bα(λx)Bα(λy)
β (1 + |λ|2)s + Cψ

dµα(λ),

that is for every y ∈ R;
(i) The function x → Kβ,u(x, y) ∈ Hs

β,ψ(R).
(ii) For every f ∈ Hs

β,ψ(R) and y ∈ R we have

f (y) =
〈

f , Kβ,ψ(·, y)
〉

Hs
β,ψ

.

Proof. Let y ∈ R, by using the fact that s > α + 1 and the relation (2.4), the function

λ → Bα(λy)
β (1 + |λ|2)s + Cψ
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belongs to L1
α(R)∩ L2

α(R), by using Plancherel’s theorem for the Hartley-Bessel transform, there exist a unique
function in L2

α(R), which we denote by Kβ,u(·, y) such that

Hα

(
Kβ,ψ(·, y)

)
(λ) =

Bα(λy)
β (1 + |λ|2)s + Cψ

, (47)

by using inversion formula (11) we find that

Kβ,ψ(x, y) =
∫
R

Bα(λx)Bα(λy)
β (1 + |λ|2)s + Cψ

dµα(λ).

Furthermore, by using the relations (10),(45)and (47) we find that

∥∥Kβ,ψ(·, y)
∥∥2

Hs
β,ψ

≤
∫
R

dµα(λ)

β (1 + |λ|2)s + Cψ
< ∞,

which proves that Kβ,ψ(·, y) ∈ Hs
β,ψ(R), now let f ∈ Hs

β,u(R) by using the relations (46) and (50) we find that

〈
f , Kβ,ψ(·, y))

〉
Hs

β,ψ
=
∫
R

Hα( f )(λ)Bα(λy)dµα(λ).

Inversion formula (11) gives the desired result.

In the following we give the main result of this section.

Theorem 21. Let s > α + 1, ψ be an admissible function in L2
α (R) and g ∈ L2

α

(
R2), β > 0 then the infimum

inf
f∈Hs

α(R)

{
β∥ f ∥2

Hs
α
+
∥∥∥g − Sα

ψ( f )
∥∥∥2

2,µα⊗µα

}
, (48)

is attained by a unique function f ∗g,ψ,β given by

f ∗g,ψ,β(y) =
∫∫

R2
g(x, z)ϕψ,β(x, y, z)dµα(x)⊗ dµα(z), (49)

where ϕψ,β is given by

ϕu,β(x, y, z) =
∫
R

Bα(λx)Bα(λy)Hα (Mz(Dz(ψ))) (λ)

β (1 + |λ|2)s + Cψ
dµα(λ). (50)

Proof. The existence and unicity of the extremal function f ∗g,ψ,β, satistfying the relation (48) is given in [3] and
this function is given by the following relation

f ∗g,ψ,β(y) =
〈

g, Sα
ψ(Kβ,ψ(·, y))

〉
µα⊗µα

, (51)

where Kβ,ψ is the kernel function given the relation (47), on the other hand, by using the relations (12),(25) and
(26) we find that

Sα
ψ(Kβ,ψ(·, y))(x, z) =

∫
R

Hα(Kβ,ψ(·, y))(λ)Hα(ψx,z)(λ)dµα(λ).

Using the relations (25), (47) and (51) we find the result.

We have the following results.

Theorem 22. Let s > α + 1, ψ be an admissible function in L2
α (R) and g ∈ L2

α

(
R2), β > 0 then we have

(i) f ∗g,ψ,β(y) =
∫∫

R2

Bα(λy)Hα (g(·, z)) (λ)Hα (Mz(Dz(ψ))) (λ)

β (1 + |λ|2)s + Cψ
dµα(λ)⊗ dµα(z). (52)
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(ii) Hα( f ∗g,u,β)(λ) =
∫
R

Hα (g(·, z)) (λ)Hα (Mz(Dz(ψ))) (λ)

β (1 + |λ|2)s + Cψ
dµα(z). (53)

(iii) ∥ f ∗g,ψ,β∥Hs
α
≤

∥g∥2,µα⊗µα
∥ψ∥2,µα

β
. (54)

Proof. (i) Is a consequence of (49), (50) and Fubini’s theorem.
(ii) Is a consquence of Fubini’s theorem and the relation (52).
(iii)By using the relation (42) we find that

∥ f ∗g,ψ,β∥2
Hs

α
=
∫
R

(
1 + |λ|2

)s ∣∣∣Hα( f ∗g,ψ,β)(λ)
∣∣∣2 dµα(λ).

By using Hölder’s inequality, we find that

∣∣∣Hα( f ∗g,ψ,β)(λ)
∣∣∣2 ≤

∥ψ∥2
2,α

(β (1 + |λ|2)s + Cψ

∫
R
|g(λ, z)|2 dµα(z),

so we find that

∥ f ∗g,ψ,β∥2
Hs

α
≤
(
1 + |λ|2

)s ∥ψ∥2
2,α∥g∥2

2,µα⊗µα

(β (1 + |λ|2)s + Cψ)2
≤

∥g∥2
2,µα⊗µα

∥ψ∥2
2,µα

β2 ,

which gives the desired result.

Corollary 23. Let s > α + 1, ψ be an admissible function in L2
α (R) and β > 0, for all f ∈ Hs

α(R) and g = Sα
ψ( f ), the

extremal function f ∗Sα
ψ( f ),ψ,β satisfies the following properties

(i) Hα( f ∗Sα
ψ( f ),ψ,β)(λ) =

Hα( f )(λ)Cψ

β (1 + |λ|2)s + Cψ
. (55)

(ii) ∥ f ∗Sα
ψ( f ),ψ,β∥Hs

α
≤

∥ f ∥2,µα
∥ψ∥2,µα

√
Cψ

β2 . (56)

Proof. (i) By using the relations (25) and (26) we find that

Hα(Sα
ψ( f )(·, z))(λ) = Hα( f )(λ)Hα (Mz(Dz(ψ))) (λ). (57)

Using the relations (53) and (57) we find the relation (55).
(ii) Is a consequence of (31) and (54).

Theorem 24 (Second Calderón Reproducing Formula). Let s > α + 1, ψ be an admissible function in L2
α (R), and

β > 0. For all f ∈ Hs
α(R), the extremal function f ∗Sα

ψ( f ),ψ,β satisfies:

lim
β→0+

∥∥∥∥ f ∗Sα
ψ( f ),ψ,β − f

∥∥∥∥
Hs

α

= 0.

Moreover, f ∗Sα
ψ( f ),ψ,β converges uniformly to f as β → 0+.

Proof. Using the relation (55), we obtain:

Hα

(
f ∗Sα

ψ( f ),ψ,β − f
)
(λ) =

−β
(
1 + |λ|2

)s
Hα( f )(λ)

β (1 + |λ|2)s + Cψ
. (58)
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Consequently, the Hs
α-norm of the difference is:

∥∥∥∥ f ∗Sα
ψ( f ),ψ,β − f

∥∥∥∥2

Hs
α

=
∫
Rd
+

β2 (1 + |λ|2
)3s |Hα( f )(λ)|2(

β (1 + |λ|2)s + Cψ

)2 dµα(λ).

By applying the dominated convergence theorem and noting that:

β2 (1 + |λ|2
)3s |Hα( f )(λ)|2(

β (1 + |λ|2)s + Cψ

)2 ≤
(

1 + |λ|2
)s

|Hα( f )(λ)|2 ,

we conclude that:

lim
β→0+

∥∥∥∥ f ∗Sα
ψ( f ),ψ,β − f

∥∥∥∥
Hs

α

= 0.

Next, using the inversion formula (11) and relation (58), we find:

f ∗Sα
ψ( f ),ψ,β(y)− f (y) =

∫
R

Hα

(
f ∗Sα

ψ( f ),ψ,β − f
)
(λ)Bα(λy) dµα(λ).

Substituting (58), we get:

f ∗Sα
ψ( f ),ψ,β(y)− f (y) =

∫
R

−β
(
1 + |λ|2

)s
Hα( f )(λ)Bα(λy)

β (1 + |λ|2)s + Cψ
dµα(λ).

Applying the dominated convergence theorem again and observing that:∣∣∣∣∣−β
(
1 + |λ|2

)s
Hα( f )(λ)Bα(λy)

β (1 + |λ|2)s + Cψ

∣∣∣∣∣ ≤ |Hα( f )(λ)| ,

we deduce that:

lim
β→0+

∥∥∥∥ f ∗Sα
ψ( f ),ψ,β − f

∥∥∥∥
∞,α

= 0.

This establishes that f ∗Sα
ψ( f ),ψ,β converges uniformly to f as β → 0+, completing the proof.
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