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Abstract: In medical and biomedical research, real data sets often exhibit characteristics such as bimodality,
unimodality, or asymmetry. Among the generalized regression models commonly employed for analyzing
such data are the Kumaraswamy and gamma-normal models. This study introduces two new generalized
regression models based on the Harmonic Mixture Weibull-Normal distribution: one with varying dispersion
and the other with constant dispersion. Additionally, a novel experimental design model was developed
using the same distribution framework. The proposed models demonstrated the capability to effectively
capture symmetric, asymmetric, and bimodal response variables. Model parameters were estimated using
the maximum likelihood method, and simulation experiments were conducted to assess the behavior of
the model coefficients. Empirical results revealed that the newly developed models outperformed several
established alternatives, making them more practical for biomedical applications. Residual analysis further
confirmed the adequacy of the proposed models, supporting their suitability for analyzing complex data in
biomedical research.
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1. Introduction

T he use of appropriate statistical models with sufficient flexibility in capturing data characteristics is
crucial for gaining meaningful insights into essential aspects of real-world datasets. According to [1],

the normal distribution remains one of the most widely used models in practical data analysis. In many
applied research domains, the outcome of a dependent (response) variable is often influenced by predictor
variables, such as sex and insulin concentration. Regression analysis is a fundamental statistical tool employed
to study the effects of these predictor variables on a response variable.

Over the past decades, the classical normal regression model has been extensively utilized for analyzing
symmetric datasets in biomedical research and other fields. However, empirical data in practical scenarios
often exhibit characteristics such as heavy or light tails, asymmetry, or bimodality, which cannot be adequately
modeled by the classical linear regression model. Moreover, the standard assumptions of classical regression
analysis—homogeneity of error variances and normality of the error distribution—are frequently violated in
real-world applications. Such violations can adversely affect the efficiency and reliability of estimators [1].

To address these limitations, numerous generalized normal distributions have been developed to
produce generalized regression models. Examples include the complementary Topp-Leone geometric normal
distribution [2], the folded normal distribution [3], and the new extended normal distribution [4]. Other
studies have also utilized generalized normal distributions to create enhanced regression models [1,5–10],
among others.

In this study, we build on these advancements by presenting the Harmonic Mixture Weibull-Normal
(HMWN) distribution developed by [11]. This distribution is utilized to construct efficient generalized
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regression models with residuals following the HMWN distribution. The motivations for employing the
HMWN distribution include the following:

• To develop efficient generalized regression models capable of modeling bimodal data with varying
complexities in medical studies.

• To produce generalized regression models suitable for both symmetric and asymmetric datasets in
biomedical research.

• To create models capable of handling data with varying dispersion as well as constant dispersion.
• To construct efficient generalized regression models applicable to experimental design data in medical

and biomedical studies.

The remainder of this article is structured as follows: Section 2 introduces the HMWN distribution, while
Section 3 describes the maximum likelihood estimation method. Section 4 presents the results of simulation
experiments. Sections 5 and 6 detail the newly developed generalized regression models and the experimental
design model, respectively, based on the HMWN distribution. Empirical applications of the proposed models
to practical biomedical datasets are discussed in Section 7, and Section 8 concludes the article.

2. HMWN Distribution

The probability density function (PDF) of the normal distribution and its corresponding cumulative
distribution function (CDF) are respectively given by
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where σ > 0 is a scale parameter with −∞ < µ < ∞ being a location parameter and Φ (.) being the CDF for
the standard normal distribution.

The HMWN distribution developed by [11] is defined based on a new generalized family of distributions
called Harmonic Mixture Weibull-Generated family of distributions. If a random variable Y follows the
HMWN distribution, the PDF of the HMWN distribution and its corresponding CDF according to [11] are
given respectively by

g (y) =β

[
Φ
(

y − µ

σ

)]β−1
exp

−

1
2

(
y − µ

σ

)2
+ α

[[
Φ
(

y − µ

σ

)]−1
− 1

]−β


×
α (1 − θ) + θ exp

{
− (α − 1)

[[
Φ
(

y−µ
σ

)]−1
− 1
]−β

}

σ
√

2π
[
1 − Φ

(
y−µ

σ

)]β+1
[

1 − θ

(
1 − exp

{
− (α − 1)

[[
Φ
(

y−µ
σ

)]−1
− 1
]−β

})]2 , y ∈ R, (1)

and

G (y) = 1 −
exp

{
−α

[[
Φ
(

y−µ
σ

)]−1
− 1
]−β

}

1 − θ

[
1 − exp

{
− (α − 1)

[[
Φ
(

y−µ
σ

)]−1
− 1
]−β

}] , y ∈ R, (2)

where β > 0 is a shape parameter with u ∈ R being a location parameter, α > 0, 0 < θ < 1, σ > 0 being scale
parameters and Φ (.) being the CDF for the standard normal distribution.

Thus, a random variable Y ∼ HMWN (α, β, θ, µ, σ) has a PDF given by (1). The flexibility of the HMWN
distribution is illustrated by the results of the density plots in Figure 1a, Figure 1b, Figure 1c and Figure 1d.
The results of the plots establish the HMWN distribution as a very flexible model with desirable properties
including different complexities of bimodality, asymmetry and symmetry shapes.
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(a) PDF plots of HMWN distribution (b) PDF plots of HMWN distribution

(c) PDF plots of HMWN distribution (d) PDF plots of HMWN distribution

Figure 1. PDF plots of HMWN distribution shown in pairs.
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3. Estimation Method: Maximum Likelihood

Suppose the distribution of a random sample of size n with a sequence of independent observations
x1, x2, ..., xn, is that of the HMWN. Then, the total log-likelihood function is given by
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where zi = xi−µ
σ . By differentiating (4) with respect to α, β, θ and σ, U (Ψ)g representing the score vector is

obtained by U (Ψ) = ∂ℓ
∂Ψ =

(
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)
. By solving the system of likelihood equations ∂ℓ

∂Ψ = 0, the
maximum likelihood estimates (MLEs) of the unknown parameter vector Ψ are obtained. However, the
system of likelihood equations does not have an explicit solution in closed form. Consequently, numerical
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procedures are applied using R software to obtain the MLEs. The Fisher information matrix estimated
by J (Ψ) = ∂2ℓ

∂i∂j
for (i, j = α, β, θ, σ) can be used to construct asymptotic confidence intervals for the model

parameters.

4. Results of Simulation Experiment

To evaluate the behaviour of the model coefficients obtained using the approach of maximum likelihood,
simulation experiments were conducted. Thus, estimators of the HMWN distribution were used to perform
Monte Carlo simulation studies. The simulation experiment was repeated 1000 times for each of different
probability samples obtained from the HMWN distribution with 25, 50, 75, 100, 200, 300 and 600 being
the sample sizes (n) . Different values for the coefficients of the HMWN generalized model used in the
simulation are given as (µ, σ, α, β, θ) = I: (4.4, 2.8, 0.1, 0.33, 1.0), II: (0.8, 4.5, 0.01, 0.21, 0.9), III: (9.0, 3.0, 4.5,
0.2, 0.01) and IV: (0.5, 2.9, 0.1, 0.1, 0.863). Coverage probability (CP) as an assessment criterion was used to
evaluate the behaviour of the estimated values of the model coefficients. Root mean square error (RMSE) in
addition to average estimate (AE) as well as average bias (AB) was also used in assessing the behaviour of the
estimated values of the model coefficients. Presented in Table 1 and Table 2 are the results of the simulation
experimentation.

Table 1. Results of simulation experimentation

Parameter n I : (4.4, ;2.8, ;0.1, ;0.33, ;1.0) I I : (0.8, ;4.5, ;0.01, ;0.21, ;0.9)
CP RMSE AB AE CP RMSE AB AE

µ

25 0.9980 1.9122 1.5283 2.9752 0.9750 0.9237 0.7943 0.4345
50 0.9670 1.4746 1.1629 3.2550 0.9790 0.9252 0.7524 0.4474
75 0.9760 1.1484 0.9221 3.5005 0.9750 0.7842 0.6944 0.4489
100 0.9660 1.0061 0.7890 3.6556 0.9810 0.7606 0.6611 0.5501
200 0.9780 0.6533 0.5334 3.9028 0.9900 0.6631 0.5695 0.5965
300 0.9680 0.5284 0.4247 4.0077 0.9900 0.5619 0.4826 0.6375
600 0.9890 0.3874 0.3136 4.1107 0.9990 0.4800 0.4069 0.7680

σ

25 0.9900 1.3092 09857 2.4393 0.9950 2.1249 1.6100 4.8632
50 0.9930 1.2230 0.8684 2.5877 0.9900 1.7127 1.3028 4.7279
75 0.9780 0.9471 0.7295 2.5754 0.9880 1.4956 1.1146 4.6851
100 0.9710 0.8782 0.6544 2.6078 0.9780 1.3274 1.0079 4.6290
200 0.9680 0.5957 0.4770 2.6505 0.9710 0.9262 0.7116 4.6013
300 0.9670 0.5054 0.4128 2.6523 0.9630 0.7610 0.6074 4.5984
600 0.9720 0.3705 0.2968 2.6926 0.9640 0.5673 0.4499 4.5459

α

25 0.8140 0.5885 0.4987 0.5462 0.9390 0.5226 0.4664 0.4746
50 0.7950 0.5759 0.4906 0.5237 0.9320 0.5559 0.4731 0.3804
75 0.7320 0.5655 0.4851 0.5149 0.9230 0.5527 0.4705 0.3477
100 0.8860 0.5414 0.4775 0.5104 0.9140 0.5501 0.4629 0.2694
200 0.9680 0.5359 0.4642 0.5077 0.8820 0.5684 0.4658 0.2047
300 0.9880 0.5290 0.4432 0.4807 0.8600 0.5793 0.4713 0.1870
600 0.9640 0.5258 0.4333 0.4672 0.8270 0.5861 0.4687 0.1627

β

25 0.9920 0.2174 0.1519 0.2830 0.9950 0.1651 0.1165 0.2576
50 0.9910 0.1941 0.1360 0.2917 0.9930 0.1267 0.0940 0.2375
75 0.9720 0.1520 0.1173 0.2962 0.9820 0.1099 0.0798 0.2272
100 0.9760 0.1407 0.1050 0.3019 0.9650 0.0983 0.0730 0.2226
200 0.9670 0.0957 0.0768 0.3046 0.9660 0.0680 0.0512 0.2149
300 0.9840 0.0822 0.0676 0.3050 0.9610 0.0548 0.0437 0.2122
600 0.9470 0.0612 0.0493 0.3113 0.9670 0.0409 0.0322 0.2114

θ

25 0.9490 0.0240 0.7075 0.2925 0.9440 0.0161 0.4324 0.4719
50 0.8310 0.0224 0.6419 0.3581 0.9810 0.0140 0.3571 0.5496
75 0.8710 0.0211 0.5904 0.4096 0.9890 0.0135 0.3415 0.5653
100 0.8920 0.0198 0.4560 0.4541 0.9920 0.0132 0.3216 0.5846
200 0.9790 0.0174 0.4551 0.5449 0.9920 0.0129 0.3081 0.6003
300 0.9870 0.0159 0.3939 0.6061 0.9990 0.0128 0.2959 0.6172
600 0.9910 0.0145 0.3391 0.6609 0.9990 0.0126 0.2803 0.6306
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From the results of both Table 1 and Table 2, most of the values for the CP are shown to revolve around
a 0.95 nominal value. Also, the values of the RMSE decrease with an increasing sample size. Further, there
is a decrease in the values of the AB as the sample size increases. With an increase in the sample size, it
is also observed that the values of the AE converge to the true population values. By these characteristics,
the maximum likelihood procedure proved to be very efficient in providing estimated values for the model
coefficients. Asymptotically, the results also show that the estimators are consistent.

Table 2. Results of simulation experimentation

Parameter n I I I : ; (9, ;3.0, ;4.5, ;0.2, ;0.01) IV : ; (0.5, ;2.9, ;0.1, ;0.1, ;0.863)
CP RMSE AB AE CP RMSE AB AE

µ

25 0.7460 6.4051 6.0223 3.0009 0.9730 0.9330 0.6366 0.4595
50 0.9950 5.1606 4.5708 4.5252 0.9770 0.6660 0.5268 0.4047
75 0.8990 3.6888 3.0887 6.0992 0.9500 0.5935 0.4923 0.3900
100 0.9800 3.0845 3.0008 6.1812 0.9800 0.5765 0.4595 0.3961
200 0.9280 2.5845 2.1150 7.1951 0.9180 0.4515 0.3799 0.4117
300 0.9910 2.1883 1.8039 7.5397 0.9180 0.4209 0.3523 0.4295
600 0.9560 1.7396 1.4386 7.9226 0.9920 0.3291 0.2750 0.4495

σ

25 0.8810 1.4145 1.1765 2.3338 0.8640 2.0664 1.4032 4.1415
50 0.9900 1.3903 1.1056 2.5038 0.9910 1.4486 1.0015 3.7512
75 0.9200 1.1731 0.9407 2.5460 0.9180 1.1762 0.8310 3.5900
100 0.9910 1.0765 0.9015 2.5573 0.9250 1.0167 0.7437 3.5123
200 0.9180 0.9479 0.8070 2.5612 0.9950 0.6096 0.4496 3.2494
300 0.9850 0.8319 0.7001 2.6024 0.9910 0.5306 0.3030 3.2090
600 0.8730 0.6692 0.5495 2.6870 0.9680 0.3660 0.2823 3.1007

α

25 0.9800 2.5477 2.3740 2.2368 0.9840 0.5165 0.4177 0.4984
50 0.9170 2.1485 1.8780 3.0759 0.9450 0.4809 0.4064 0.3782
75 0.9790 1.6971 1.4293 3.4498 0.9900 0.4745 0.4023 0.3081
100 0.9900 1.4846 1.2230 3.6129 0.9100 0.4659 0.4018 0.2698
200 0.9450 1.0157 0.8183 4.1574 0.8950 0.4541 0.4012 0.2114
300 0.9870 0.8782 0.7175 4.3190 0.9850 0.4082 0.3900 0.2018
600 0.9590 0.6675 0.5453 4.4263 0.9250 0.3980 0.3704 0.1935

β

25 0.8450 0.1873 0.1313 0.2439 0.9100 0.1552 0.1032 0.1975
50 0.9780 0.1729 0.1259 0.2386 0.9910 0.1035 0.0697 0.1638
75 0.9160 0.1621 0.1131 0.2363 0.9990 0.0818 0.0557 0.1498
100 0.9890 0.1318 0.0999 0.2289 0.9720 0.0682 0.0482 0.1428
200 0.8440 0.1051 0.0869 0.2240 0.9980 0.0406 0.0294 0.1246
300 0.9940 0.0942 0.0782 0.2198 0.9250 0.0346 0.0259 0.1212
600 0.8450 0.0738 0.0614 0.2138 0.9900 0.0237 0.0180 0.1140

θ

25 0.9900 0.0296 0.3986 0.4037 0.9570 0.0151 0.4037 0.4688
50 0.9350 0.0201 0.3652 0.3892 0.9730 0.0137 0.3439 0.5339
75 0.9810 0.0186 0.3431 0.3396 0.9910 0.0131 0.3190 0.5579
100 0.9890 0.0164 0.2939 0.3041 0.9850 0.0126 0.2994 0.5817
200 0.7920 0.0133 0.2702 0.2812 0.9350 0.0121 0.2761 0.6044
300 0.9750 0.0121 0.2648 0.2633 0.9990 0.0115 0.2499 0.6371
600 0.7390 0.0109 0.2220 0.1017 0.9980 0.0106 0.2309 0.7466

5. The HMWN Regression Models

Let wi =
(
wi1, ..., wik1

)Tbe a k × 1 vector of independent variables associated with the ith response
variable yi (i = 1, ..., no). Let yi be a response variable having the HMWN distribution. By utilizing the density
function in (3), the HMWN generalized regression models are defined with the regression structure given as

yi = µi + σizi, (5)
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where the random error zi = (yi − µi)
/

σi has the standardized HMWN distribution. The parameters µi and σi
are respectively given by

µi = µi (γ1) and σi = σi (γ2) , (6)

where γ1 =
(
γ11, ..., γ1k1

)T and γ2 =
(
γ21, ..., γ2k2

)T . For the location and dispersion parameters, the respective
systematic components are µi = wT

i γ1 and f (σi) = ψi = uT
i γ2. Thus, µ = Wγ1, µ = (µ1, ..., µn0)

T and
W = (w1, ..., wn0)

T is a full rank n0 × k1 matrix. f (.) denotes a link function for the dispersion parameter,
ui =

(
ui1, ..., uik2

)T is a vector of covariates with a linear function in f (σi) that gives a measure of variation
associated with the ith observed value. Thus, f (σ) = ψ = Uγ2, σ = (σ1, ..., σn)

T , ψ = (ψ1, ..., ψn)
T and

U = (u1, ..., un)
T is a n0 × k2 full rank matrix. The dispersion covariates in U are but not necessarily regression

covariates in W. Functionally, γ1 and γ2 are independent and f (.) is a twice differentiable one-to-one function.
The Marshall-Olkin Weibull Normal (MOWN) regression model is a special case of HMWN regression

when α = 0. The MLEs of the parameter vector
(
γT

1 , γT
2 , α, β, θ

)T are obtained by utilizing (4). Residual analysis
involving Cox-Snell residuals according to [12] is utilized in this study to assess the adequacy of the HMWN
generalized regression models. For a given HMWN generalized regression model, the Cox-Snell residuals are
defined by

ri = − log
{

S
[
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∣∣∣∣(γ̂T
1 , γ̂T

2 , α̂, β̂, θ̂
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]}

, i = 1, 2, ..., n,

where S
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2 , α̂, β̂, θ̂
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)

is the survival function of the HMWN regression model. For a given data set
therefore, a HMWN generalized regression model is said to provide an adequate fit if the distribution of its
Cox-Snell residuals is that of the standard exponential.

6. HMWN Experimental Design Model

Experimental design models have been applied in many fields of enquiry including medical and
biomedical studies. With the use of these models, the response variable is required to be normally distributed
and hence symmetric. In some practical situations however, the data are skewed or bimodal and cannot be
modelled by the classical experimental design models [7]. Thus, the HMWN experimental design model is
proposed as a robust generalization to overcome these limitations.

In a completely randomized block design (CRBD), the experimental units randomly receive experimental
dosages independently in the given blocks. Thus, this ensures a restriction on the randomization allowing for
local control. This type of control should therefore be taken into consideration in the fitted statistical model [7].
In a given block q, let ypq represent the observation from the pth treatment such that ypq follows the HMWN
distribution. By using the density function in (3), a HMWN CRBD model is defined with a control structure
given in the form

ypq = µ + vp + bq + σzpq, (7)

where µ denotes the grand mean, the pth treatment effect represented by vp and the qth block effect represented
by bq with zpq being the random error having a distribution of the HMWN. Thus, p = 1, ..., P where P is the
number of treatments and q = 1, ..., Q where Q is the number of blocks.

Consider a sample y11, ..., yPQ of size n = PQ drawn from a distribution of HMWN and let v = (v1, ..., vP)
T

and b =
(
b1, ..., bQ

)T . By adopting numerical procedures in R software, the MLEs of the vector of parameters

ψ =
(
µ, vT , bT , α, β, θ

)T are obtained by maximizing (8).
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− (β + 1)
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(8)

where zpq =
(
ypq − µ − vp − bq

) /
σ. A HMWN completely randomized design (CRD) model is obtained as

a specialized case in the absence of a local control where bq = 0. To assess the quality of fit of the model for
the HMWN CRD in terms of its adequacy, residual analysis involving Cox-Snell residuals according to [12] is
utilized. For a HMWN experimental design model, the Cox-Snell residuals are defined by

ri = − log
{

S
[

yi

∣∣∣∣(µ̂, v̂T , b̂T , σ̂, α̂, β̂, θ̂
)T
]}

, i = 1, 2, ..., PQ,

where S
[

yi

∣∣∣∣(µ̂, v̂T , b̂T , α̂, β̂, θ̂
)T
]

is the survival function of the HMWN CRD model. For a given data set, the

complete randomized HMWN experimental design model is said to provide an adequate fit if the distribution
of its Cox-Snell residuals is that of the standard exponential.

7. Applications

This section presents the use of practical data sets in illustrating the applications of the HMWN
generalized models. The AIC representing Akaike Information Criterion is used to estimate the quality of
the model fits. Consistent AIC (CAIC) and Schwarz Information Criterion (BIC) are also utilized as additional
measures of model fit. The HMWN generalized models are then compared with some well-known models
and the best performing model selected based on least values of the model fit measures.

7.1. First application: red cell folate data

A practical dataset on red cell folate levels, accessible in [13] and replicated in [1], was used to demonstrate
the applicability of the HMWN generalized regression models. During an anesthesia procedure, patients
undergoing cardiac bypass surgery were randomized into three ventilation procedure groups, and red cell
folate measurements were recorded. The ventilation procedures are described as follows:

- **Ventilation Procedure I**: A mixture of 50% nitrous oxide and 50% oxygen was administered
continuously for 24 hours (N2O + O2, 24 h).

- **Ventilation Procedure II**: A mixture of 50% nitrous oxide and 50% oxygen was administered only
during the operation (N2O + O2, operation only).

- **Ventilation Procedure III**: A 35-50% oxygen mixture without nitrous oxide was administered
continuously for 24 hours (O2, 24 h).

The folate concentration levels (µg/l), denoted by yi, were modeled as the response variable, while
the ventilation procedure (vi) served as the explanatory variable categorized into three levels (Ventilation
Procedure I, Ventilation Procedure II, and Ventilation Procedure III). The three levels of vi were encoded using
dummy variables:

- Ventilation Procedure I: (vi1 = 0 and vi2 = 0),
- Ventilation Procedure II: (vi1 = 1 and vi2 = 0),
- Ventilation Procedure III: (vi1 = 0 and vi2 = 1).
The regression model fitted to the dataset takes the form:

yi = µi + σizi,

where µi = γ10 + γ11v1 + γ12v2 and σi = γ20 + γ21v1 + γ22v2 are the location and dispersion parameters,
respectively, in the HMWN regression model with varying dispersion. The variables z1, z2, . . . , zn are
independently distributed random variables with the density function specified in (3). The HMWN regression
model with constant dispersion is a special case where σi = σ.

The performance of the HMWN generalized regression models was evaluated by comparison with two
competitive models: the OLLG-N regression model with constant dispersion and the OLLGN regression
model with varying dispersion, as developed in [1]. Table 3 presents descriptive statistics for the ventilation
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procedures and the overall red cell folate concentration levels. The minimum and maximum folate
concentrations observed were 206 and 392 µg/l, respectively, with an overall mean of 283.23 µg/l. The
coefficient of skewness (0.5853) and excess kurtosis (-0.4068) indicate that the overall folate concentration levels
are right-skewed and platykurtic. The levels of skewness and kurtosis varied across the ventilation procedures.

These results demonstrate that classical linear regression models are unsuitable for this dataset due to
the asymmetry in the response variable. However, the HMWN generalized regression models provided an
adequate fit, highlighting their applicability for analyzing asymmetric data in biomedical studies.

Table 3. Descriptive Statistics for the red cell folate data

Variable Minimum Mean Skewness Excess Kurtosis Maximum
Overall folate levels 206.0000 283.2273 0.5853 -0.4068∼ 392.0000
N2O+O2,24h 243.0000 316.6250 -0.0058 -1.5911 392.0000
N2O+O2,op 206.0000 256.4444 -0.0697 -1.3287 309.0000
O2,24h 241.0000 278.0000 0.5029 -0.9931 328.0000

The results of the violin plot in Figure 1c show that the overall folate concentration levels are skewed to
the right with some ventilation procedures showing some form of bimodality. The results further confirm that
the data cannot be adequately modeled by the classical linear regression but can be modeled adequately using
the HMWN generalized regression models.

Figure 2. Violin plot of the data on red cell folate concentration

Presented in Table 4 are the model fit measures of the generalized regression models fitted to the data on
red cell folate concentrations. The AIC and the BIC reported least values for the HMWN generalized regression
models compared with the other fitted generalized regression models. The results thus indicate that the
HMWN generalized regression models provided a superior fitness capability than the OLLG-N generalized
regression models.

Table 4. Measures of model fit for the red cell folate

Model AIC BIC
HMWN regression with varying dispersion 232.0619 240.8813
HMWN regression with constant dispersion 233.2760 241.4133
OLLG-N regression with varying dispersion 234.2000 243.0000
OLLG-N regression with constant dispersion 235.0000 241.6000

Estimated values for the coefficients of the HMWN generalized regression models with constant and
varying dispersion are presented in Table 5. Using a significance level of 5%, the results showed the parameter
γ11 to be statistically significant. The result therefore provided empirical evidence that Ventilation Procedure
I had a statistically significant effect on the red cell folate concentration levels in the patients during the
anaesthesia procedure. Again, the result further showed that the effect of Ventilation Procedure I differ
significantly from that of Ventilation Procedure II.
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Table 5. Estimated values for the coefficients of the fitted generalized regression models for the data on red cell
folate concentrations

Model Parameter Estimate Standard Error P − Value

HMWN
Regression
with
Varying
Dispersion

α 3.0198 × 10−1 1.1176 × 10−1 6.8890 × 10−3

β 1.4841 3.2914 × 10−1 6.5150 × 10−6

θ 2.0212 × 10−3 8.5446 × 10−3 8.1301 × 10−1

γ10 296.5550 3.7695 < 2.2000 × 10−16

γ11 −64.7101 5.5879 < 2.2000 × 10−16

γ12 −44.2504 7.7546 1.1540 × 10−8

γ20 113.6263 2.3128 < 2.2000 × 10−16

γ21 −27.5977 4.6731 3.5130 × 10−9

γ22 −25.2431 6.0898; 3.3960 × 10−5

HMWN
Regression
with
Constant
Dispersion

σ 103.0343 2.4194 × 10−1 < 2.2000 × 10−16

α 3.0307 × 10−1 1.2369 × 10−1 1.4280 × 10−2

β 1.7039 3.6023 × 10−1 2.2460 × 10−6

θ 1.6343 × 10−3 6.8906 × 10−3 0.8122
γ10 312.1668 2.6117 < 2.2000 × 10−16

γ11 −81.1948 13.6228 2.5190 × 10−9

γ12 −64.1245 12.2834 1.7850 × 10−7

β10 317.3760 9.7130 < 0.0001

OLLG-N
Regression
with
Varying
Dispersion

β11 −61.4500 10.2170; 0.00003
β12 −31.6260 15.2970 0.0570
β20 2.5250 0.6610 0.0010
β21 −0.3890 0.2270 0.1080
β22 −0.5220 0.2810 0.0840
logit(ν) −2.1650 1.2860 −
log(τ) −2.0880 1.1200 −

OLLG-N
Regression
with
Constant
Dispersion

β20 320.1140 5.2920; < 0.0001
β21 −63.3280 18.6330 0.003
β22 −25.3060 27.8040; 0.3740
log(σ) 2.3840 0.1140; -
logit(ν) −1.6520 1.1470 -
log(τ) −1.9600 0.1960; -

The adequacies of the HMWN regression models (both constant and varying dispersion) were evaluated
through a residual analysis with the use of the Cox- Snell residuals. Residual analysis results presented in
Figure 1d give a firm indication that the HMWN generalized regression models provided an adequate fit to
the data and can be practically utilized to analyze data in biomedical research studies.

Figure 3. Diagnostic test results of the HMWN regression models
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7.2. Second application: doses effects data

The second data set represents the effectiveness levels of different dosages of anthelmintic compound
in the control of a parasite. Representing 5 treatments, 5 experimental dosages were examined through
a completely randomized design experiment. Experimental dosage 1 and dosage 2 were defined as
controls while 5%, 10% and 15% concentrations of a new drug were used to represent experimental
dosages 3, 4 and 5 respectively. The experiment was replicated 6 times for each experimental dosage
and the data are accessible through [7]. The effectiveness levels of the experimental dosages on
the parasite control representing the response variable was modelled with the treatment factor (vi)

having five levels (experimental dosage 1 (V1), experimental dosage 2 (V2), experimental dosage
3 (V3), experimental dosage 4 (V4) and experimental dosage 5 (V5)) defined by the following
dummy variables: V1 (vi1 = 0, vi2 = 0, vi3 = 0 and vi4 = 0) , V2 (vi1 = 1, vi2 = 0, vi3 = 0 and vi4 = 0) ,
V3 (vi1 = 0, vi2 = 1, vi3 = 0 and vi4 = 0) , V4 (vi1 = 0, vi2 = 0, vi3 = 1 and vi4 = 0) , and V5

(vi1 = 0, vi2 = 0, vi3 = 0 and vi4 = 1) . By setting bj = 0, the HMWN CRD model fitted to the data set
is

yi = µi + σizi,

where µi = µ+ t11v1 + t12v2 + t13v3 + t14v4 and σi are the parameters of the HMWN CRD model and z1, . . ., zn

are independently distributed random variables with density function given in (3).
The competitiveness of the HMWN CRD model in practical applications was evaluated by comparing

with other CRD models generated from gamma normal (GN) distribution by [6], odd log-logistic normal
(OLLN) distribution by [7], Kumaraswamy normal (KN) distribution by [9], beta-normal (BN) distribution
by [8] and skew-normal (SN) distribution by [14]. In Table 6, the descriptive statistics for the overall doses
effect and for the different experimental dosage groups are presented. The least and the highest overall doses
effect were observed to be 44.0000 and 3020 respectively. The overall average doses effect of the anthelmintic
compound is also shown to be 1065.3667. The overall coefficient of skewness and excess kurtosis are shown
to be 0.5270 and -1.3773 respectively which indicate that the overall doses effects are skewed to the right
and platykurtic. The doses effects of the different experimental dosage groups also showed various levels of
skewness and kurtosis. The asymmetric nature of the doses effects shows that whilst the HMWN experimental
design model can adequately model the data, the classical experimental design models cannot adequately
model the data.

Table 6. Descriptive Statistics of the doses data

Variable Minimum Maximum Mean Skewness Excess Kurtosis
Overall Doses Effects 44.0000 3020.0000 1065.3667 0.5270 -1.3773∼
Experimental dosage 1 1687.0000 3020.0000 2477.0000 -0.5016 -0.7453
Experimental dosage 2 1825.0000 2527.0000 2075.0000 0.7727 -0.9066
Experimental dosage 3 317.0000 842.0000 527.1667 0.3930 -0.9538
Experimental dosage 4 127.0000 227.0000 156.3333 1.1183 -0.1642
Experimental dosage 5 44.0000 193.0000 91.3333 1.3522 0.4724

In Figure 3, the anthelmintic compound’s overall doses effect on the parasite control is shown to exhibit
positive asymmetry and bimodality in the violin plot with the effect level on the parasite control showing
different forms of asymmetry across the different experimental dosages. The results further confirm that the
data cannot be adequately modeled by the classical CRD model but can be modeled adequately using the
HMWN CRD model.

Presented in Table 7 are the model fit measures of the generalized CRD models fitted to the data on
anthelmintic compound doses. The AIC and CAIC as well as the BIC all reported least values for the HMWN
CRD model compared with the other fitted generalized CRD models. The results thus indicate that the HMWN
CRD model provided a superior performance in fitting the data than the other generalized CRD models.

Estimated values for the coefficients of the fitted generalized CRD models are presented in Table 8. By
applying the standard error procedure of test of significance of model coefficients, all the parameters of the
HMWN CRD model are statistically significant except θ. The empirical results provided a significant evidence
of differences between the experimental dosages in the parasite control.
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Figure 4. Violin plot of the data on the effect of doses

Table 7. Measures of model fit for the data on anthelmintic doses

Design Model AIC CAIC BIC
HMWN 421.2100 430.7100 431.1820
OLLN 424.7210 433.721 434.5300
SN 428.7210 437.7210 438.529
BN 430.1750 441.7540 441.3840
KN 430.1870 441.7660 441.3960
GN 428.4140 437.4140 438.2220

To assess the adequacy of the HMWN experimental design model, residual analysis was carried out using
the Cox-Snell residuals. Diagnostic test results of the residual analysis presented in Figure 5 give a firm
indication that the HMWN CRD model provided an adequate fit to the data and can be practically utilized
to analyze data in biomedical research works.

Figure 5. Diagnostic test results of the HMWN experimental design model

8. Conclusion

Two Harmonic Mixture Weibull-Normal (HMWN) generalized regression models—one with varying
dispersion and the other with constant dispersion—are proposed in this study. The relationships between
the scale and location parameters and the covariates were defined using an identity link function. The utility
of the HMWN generalized regression models was demonstrated through an application investigating the
effect of different ventilation procedures on red cell folate concentration in patients undergoing anesthesia.
The parameter estimates for both the constant and varying dispersion HMWN models provided significant
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Table 8. Estimated values of the coefficients of the fitted CRD generalized models for the data on doses effects

Model Parameter Estimate Standard Error

HMWN
Design
model

µ 1.1247 × 103 2.0820 × 10−3

t2 −3.8179 × 102 8.0457 × 10−4

t3 −1.9254 × 103 1.2482 × 10−3

t4 −2.5002 × 103 9.0656 × 10−4

t5 −1.1883 × 103 3.0173 × 10−4

σ 9.5181 × 103 5.6226 × 10−4

α 7.6670 × 10−2 3.6742 × 10−2

β 7.1819; 7.4463 × 10−1

θ 4.0013 × 10−3 5.6922 × 10−3

OLLN
Design
Model

µ 2466.5220 110.2280
t2 −405.0100 146.8860
t3 −1949.3200 139.5390
t4 −2310.0070 131.5050
t5 −2375.4370 131.8170
σ 1022.3570 343.8980
α 5.2310 7.0570

SN
Design
model

µ 2384.5410 401.5300
t2 −392.2600 148.7730
t3 −1940.7960 153.7840
t4 −2305.9270 159.8830
t5 −2374.2070 159.6560
σ 256.9020 115.7650
λ 0.4390 1.9160

BN
Design
Model

µ 2716.7250 1339.8500
t2 −371.0160 227.2530
t3 −1948.8120 273.2410
t4 −2335.5260 326.1370
t5 −2400.13200; 324.3050
σ 355.7740 359.7750
a 1.2880 3.2000
b 3.1860; 10.1360

KN
design
model

µ 2461.8950 3304.0300
t2 −394.7450 331.9290
t3 −1946.1060 418.9820
t4 −2318.2710 508.6730
t5 −2385.7000 505.4300
σ 378.0430 1001.6830
a 2.0340 17.5560
b 2.3160 5.7390

GN
design
model

µ 2625.1850 395.7940
t2 −388.8660 156.5170
t3 −1950.0100 169.3580
t4 −2322.0100 187.9410
t5 −2385.7000 187.2800
σ 209.0470 87.0540
a 0.5570; 0.7720

empirical evidence of differences in red cell folate concentration between patients subjected to Ventilation
Procedure I and Ventilation Procedure II. Moreover, empirical results established that the HMWN models
offered a superior fit to the data compared to other competitive generalized regression models.

Additionally, this study proposes a novel experimental design model, referred to as the HMWN
experimental design model. Its utility was illustrated through an application examining the effectiveness
of varying dosages of an anthelmintic compound in controlling a parasite. The parameter estimates of
the HMWN experimental design model provided strong empirical evidence of significant differences in
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the parasite control effects among the different dosages. Further results demonstrated that the HMWN
experimental design model achieved a better fit to the data than competing experimental design models.

In summary, the HMWN generalized models, including the regression and experimental design variants,
have been empirically validated as robust and practically applicable tools for analyzing biomedical data.
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