

Article On affine Riemann surfaces

Richard Cushman^{1,*}

- ¹ University of Calgary, Alberta, Canada.
- * Correspondence: r.h.cushman@gmail.com

Received: 7 July 2024; Accepted: 30 November 2024; Published: 20 December 2024.

Abstract: We show that the universal covering space of a connected component of a regular level set of a smooth complex valued function on \mathbb{C}^2 , which is a smooth affine Riemann surface, is \mathbb{R}^2 . This implies that the orbit space of the action of the covering group on \mathbb{R}^2 is the original affine Riemann surface.

Keywords: universal covering space, affine Riemann surface.

MSC: 35G16, 74Dxx, 35B40.

1. Introduction

$$F: \mathbb{C}^2 \to \mathbb{C}: (z, w) \mapsto u + \mathrm{i} v = \mathrm{Re} F + \mathrm{i} \mathrm{Im} F$$

be a smooth function. Let X_F be the holomorphic Hamiltonian vector field on $(\mathbb{C}^2, dz \wedge dw)$ corresponding to *F*, that is, $X_F \sqcup (dz \wedge dw) = dF$. On $\mathbb{C}^2 = \mathbb{R}^4 = (\operatorname{Re} z, \operatorname{Im} z, \operatorname{Re} w, \operatorname{Im} w)$ with real symplectic form $\Omega = \operatorname{Re}(dz \wedge dw)$ we have real Hamiltonian vector fields X_u and X_v . Then

$$(X_u + i X_v) \sqcup \operatorname{Re}(dz \wedge dw) = du + i dv = dF = X_F \sqcup (dz \wedge dw)$$

= (Re X_F + i Im X_F) \lowbrack (Re (dz \wedge dw) + i Im (dz \wedge dw))
= (Re X_F + i Im X_F) \lowbrack Re (dz \wedge dw) + (-Im X_F + i Re X_F) \lowbrack Im (dz \wedge dw)

So

$$(X_u + \mathrm{i} X_v) \sqcup \operatorname{Re}(dz \wedge dw) = (\operatorname{Re} X_F + \mathrm{i} \operatorname{Im} X_F) \sqcup \operatorname{Re}(dz \wedge dw),$$

since the 2-forms $\operatorname{Re}(dz \wedge dw)$ and $\operatorname{Im}(dz \wedge dw)$ are linearly independent. This implies

$$X_{\operatorname{Re} F} = X_u = \operatorname{Re} X_F$$
 and $X_{\operatorname{Im} F} = X_v = \operatorname{Im} X_F$,

since $\operatorname{Re}(dz \wedge dw)$ is nondegenerate.

Proposition 1. Let *S* be a connected component of $F^{-1}(c)$, where $c \in \mathbb{C}$ is a regular value of *F*, which lies in its image. Then the universal covering space of *S* is \mathbb{R}^2 .

Proof. *S* is a connected smooth 1 dimensional complex manifold. Our argument constructs global coordinates on the universal covering space of *S*. We begin. For every $(z, w) \in S$ the complex tangent space to *S* at (z, w) is ker dF(z, w), where

$$(0,0) \neq dF(z,w) = du_{|S}(z,w) + i dv_{|S}(z,w) = (du + i dv)_{|S}(z,w)$$

for every $(z, w) \in S$. Thus the nonzero vector field $X_F = (X_u + i X_v)_{|S}$ spans the complex tangent space of S at each point of S. Because X_F is nonzero on S, the real vector fields $X_{u|S}$ and $X_{v|S}$ are linearly independent at each point of S. To see this we argue as follows. Suppose that the real vector fields $X_{u|S}$ and $X_{v|S}$ are linearly dependent at some point $(z, w) \in S$. Then span_{\mathbb{R}} { $X_{u|S}(z, w), X_{v|S}(z, w)$ } has real dimension 1. Thus $(X_{u|S} + i X_{v|S})(z, w)$ does not span the complex tangent space to S at (z, w), which is a contradiction.

Since Ω is closed, it follows that Consider the 2-form $\Omega_{|S}$ on S. $\Omega_{|S|}$ is Because $X_{u|S}$ and $X_{v|S}$ are linearly independent vector closed. fields on S and Ω is nondegenerate on \mathbb{R}^4 , it follows that $\Omega_{|S}$ is nondegenerate on span_{$\mathbb{R}}{X_{u|S}(z, w)}$,</sub> $X_{v|S}(z,w)$ for every $(z,w) \in S$. To see this from $(X_u + iX_v) \perp \Omega = dF$ and the fact that $dF \neq (0,0)$ on *S* we get $\Omega(X_u, X_v) \neq 0$ on *S*. Hence $\Omega_{|S|}$ is a symplectic form on *S*.

Let *M* be the universal covering space of *S* with covering mapping $\rho : M \to S$. Because ρ is a local diffeomorphism, the 2-form $\omega = \rho^*(\Omega_{|S})$ on *M* is symplectic. Consider the smooth functions $U = \rho^*(u_{|S})$ and $V = \rho^*(v_{|S})$ on (M, ω) . The corresponding Hamiltonian vector fields X_U and X_V on (M, ω) are given by $dU = X_U \sqcup \omega$ and $dV = X_V \sqcup \omega$. Since

$$\begin{aligned} X_{U} \sqcup \omega &= dU = d\left(\rho^* u_{|S}\right) = \rho^*(du_{|S}) = \rho^*(X_{u_{|S}} \sqcup \Omega_{|S}) \\ &= \rho^*(X_{u_{|S}}) \sqcup \rho^*(\Omega_{|S}) = \rho^*(X_{u_{|S}}) \sqcup \omega, \end{aligned}$$

it follows that $X_U = \rho^*(X_{u_{|S}})$, because ω is nondegenerate. Similarly, $X_V = \rho^*(X_{v_{|S}})$. Since ρ is a local diffeomorphism and the vector fields $X_{u_{|S}}$ and $X_{v_{|S}}$ are linearly independent at each point of *S*, the vector fields X_U and X_V are linearly independent at each point of *M*. Thus the 1-forms dU and dV on *M* are linearly independent at each point of *M*, because ω is nondegenerate. So the vector fields $\frac{\partial}{\partial U}$ and $\frac{\partial}{\partial V}$ are linearly independent at each point of *M*.

Consider the nonzero 2-form $\omega = dV \wedge dU$ on M. Since M is 2-dimensional, the de Rham cohomology group of 2-forms on M has dimension 1. Thus $\omega = a\omega$ for some nonzero real number a.¹ Because $\{\frac{\partial}{\partial U}, \frac{\partial}{\partial V}\}$ is a basis of the tangent space of M at each point of M, we may write $X_U = A \frac{\partial}{\partial U} + B \frac{\partial}{\partial V}$. Then

$$dU = X_U \sqcup \omega = \frac{1}{a} X_U \sqcup \omega = \frac{1}{a} (BdU - AdV),$$

which implies $X_U = a \frac{\partial}{\partial V}$. A similar argument shows that $X_V = -a \frac{\partial}{\partial U}$.

The pair of functions (U, V) are coordinates on M, since the vector fields $\frac{1}{a}X_U = \frac{\partial}{\partial V}$ and $-\frac{1}{a}X_V = \frac{\partial}{\partial U}$ are linearly independent at each point of M and commute. This latter assertion follows because

$$\{u, v\} = L_{X_v} u = L_{X_{\text{Im}F}}(\text{Re}\,F) = L_{\frac{1}{2i}(X_{F-iF})}^{\frac{1}{2}}(F+iF)$$
$$= \frac{1}{4i}[L_{X_F}F+iL_{X_F}F-iL_{X_F}F+L_{X_F}F] = 0$$

implies $[X_v, X_u] = X_{\{u,v\}} = 0$. From

$$T\rho\left[X_{U}, X_{V}\right] = \left[X_{u}|S, X_{v}|S\right] \circ \rho = \left[X_{u}, X_{v}\right]_{|S} \circ \rho = 0,$$

we get $[X_U, X_V] = 0$, because ρ is a local diffeomorphism. Hence $[\frac{\partial}{\partial U}, \frac{\partial}{\partial V}] = 0$. Thus we may identify M with \mathbb{R}^2 . \Box

Corollary 1. (Bates and Cushman [1]). The image of the linear flow of the vector field X_{U+iV} on \mathbb{C} under the covering map ρ is the flow of the vector field X_F on S.

Proof. The flow of X_{U+iV} on \mathbb{C} is U(t) + iV(t) = (U(0) + iat) + (iV(0) - at), since $X_U = a \frac{\partial}{\partial V}$ and $X_V = -a \frac{\partial}{\partial U}$. Hence an integral curve of X_{U+iV} starting at U(0) + iV(0) is $t \mapsto (U(0) + iV(0)) + a(-t + it)$, which is a straight line in \mathbb{C} . Thus the flow of X_{U+iV} is linear. Since

$$T\rho X_{U+iV} = T\rho(X_U + i X_V) = T\rho X_U + i T\rho X_V$$

= $X_{u|S} \circ \rho + i X_{v|S} \circ \rho = X_{(u+iv)|S} \circ \rho = X_{F|S} \circ \rho,$

¹ We compute *a* as follows. Let $D \subseteq \mathbb{R}^2$ be the unit disk in $(\mathbb{R}^2, \omega = dV \wedge dU)$ with Euclidean inner product. Orient *D* so that its boundary is traversed clockwise. Then $\pi = \int_D \omega = a \int_D \omega$, that is, $a = \pi / \int_D \omega$.

the image of the flow of X_{U+iV} under the covering map ρ is the flow of X_F . \Box

Define a Riemannian metric E on \mathbb{R}^2 by $E = dU \odot dU + dV \odot dV$. Since $E(\frac{\partial}{\partial U}, \frac{\partial}{\partial U}) = 1 = E(\frac{\partial}{\partial V}, \frac{\partial}{\partial V})$ and $E(\frac{\partial}{\partial U}, \frac{\partial}{\partial V}) = 0$, we find that E is the Euclidean inner product on $T_{(U,V)}\mathbb{R}^2 = \mathbb{R}^2$ for every $(U, V) \in \mathbb{R}^2$. The metric E is flat, since it is indendent of $(U, V) \in \mathbb{R}^2$. Let G be the group of covering transformations of S. Then G is a discrete subgroup of the two dimensional Euclidean group. G acts properly on \mathbb{R}^2 . Since each element of G leaves no point of \mathbb{R}^2 fixed, we obtain the

Corollary 2. The orbit space \mathbb{R}^2 / *G* of the action of the covering group *G* on the universal covering space \mathbb{R}^2 of the affine *Riemann surface S is diffeomorphic to S.*

2. Example³

Let

$$F: \mathbb{C}^2 \to \mathbb{C}: (z, w) \mapsto w^2 + z^6.$$
⁽¹⁾

Then 1 is a regular value of *F*, since $(0,0) = dF(z,w) = (6z^5, 2w)$ if and only if z = w = 0. But $(0,0) \notin F^{-1}(1) = S$. Thus *S* is a smooth affine Riemann surface, which is connected. Let $\pi : \mathbb{C}^2 \to \mathbb{C} : (z,w) \mapsto z$. Then $\pi_{|S} : S \subseteq \mathbb{C}^2 \to \mathbb{C}$ is a branched covering map of *S* with branch points $B = \{(z_k = e^{2\pi i k/6}, 0) \in S \mid \text{for } k = 0, 1, \dots, 5\}$ and branch values $V = \{z_k \mid k = 0, 1, \dots, 5\}$. The map $\pi_{|S}$ is smooth on $S \setminus B$ with image $\mathbb{C} \setminus V$. The sheets S_ℓ of the branched covering map $\pi_{|S}$ are defined by $w_\ell = e^{2\pi i \ell/2}(1-z^6)^{1/2}$ for $\ell = 0, 1$, where $z \in \mathbb{C}$, that is, S_ℓ is a connected component of $(\pi_{|S})^{-1}(\mathbb{C}) = \prod_{\ell=0,1} S_\ell$.

Let $\rho : \mathbb{R}^2 \to S$ be the universal covering map of *S*. The sheets of the covering map ρ are $\Sigma_{\ell} = \rho^{-1}(S_{\ell})$ for $\ell = 0, 1$. The group *G* of covering transformations of *S* is the collection of isometries of $(\mathbb{R}^2, \mathbb{E})$, where \mathbb{E} is the Euclidean inner product on \mathbb{R}^2 , which permute the sheets Σ_{ℓ} of ρ . Consider the group *G'* of diffeomorphisms of *S* generated by the transformations

$$\mathcal{R}: S \subseteq \mathbb{C}^2 \to S \subseteq \mathbb{C}^2: (z, w) \mapsto (e^{2\pi i/6} z, w)$$

and

$$\mathcal{U}: S \subseteq \mathbb{C}^2 \to S \subseteq \mathbb{C}^2: (z, w) \mapsto (\overline{z}, \overline{w}).$$

Since $\mathcal{R}^6 = \mathcal{U}^2 = \text{id}$ and $\mathcal{R}\mathcal{U} = \mathcal{U}\mathcal{R}^{-1}$, the group *G*' is isomorphic to the dihedral group on 6 letters.³ Because $\mathcal{R}(S_\ell) = S_\ell$ for $\ell = 0, 1$ and $\mathcal{U}(S_0) = S_1$, the map \mathcal{R} induces the identity permutation of the sheets of the covering map ρ ; while the map \mathcal{U} transposes the sheets of ρ . Thus \mathcal{R} and \mathcal{U} generate the covering group *G*.

We want to describe the action of *G*, as a subgroup of the Euclidean group of (\mathbb{R}^2 , E). We will need some preliminary results. Let

$$f: \mathbb{C} \setminus V \to \mathbb{C}: z \mapsto \int_0^z \frac{1}{2w} \, dz, \tag{2}$$

where $w = \sqrt{1-z^6}$. Then *f* is a local diffeomorphism, because $df = \frac{1}{2w}dz$ is nonvanishing on $\mathbb{C} \setminus V$. We have

Proposition 2. *Up to a coordinate transformation* $\lambda : \mathbb{C} \to \mathbb{C}$ *, the map*

$$\delta: S \subseteq \mathbb{C}^2 \to \mathbb{C}: (z, w) \mapsto \zeta = \alpha(f \circ \pi_{|S})(z, w), \tag{3}$$

where $\alpha = \sqrt{2}e^{3\pi i/4}$, is a right inverse of the universal covering map ρ , that is, $\rho \circ \lambda \circ \delta = id_S$.

To prove Proposition 2 we need:

² See Cushman [2].

³ The group *G*' is also generated by the reflections $\{R^k U, k = 0, 1, \dots, 5 | R^6 = U^2 = id\}$. Thus *G*' is the Weyl group of the complex simple Lie algebra A_5 .

Lemma 1. The image under the map δ (3) of an integral curve of the vector field $(X_F)_{|S}$ on S is an integral curve of the vector field $\alpha \frac{\partial}{\partial \zeta}$ on \mathbb{C} .

Proof. It suffices to show that for every $(z, w) \in S$

$$T_{(z,w)}\delta X_F(z,w) = \alpha \frac{\partial}{\partial \zeta} \Big|_{\zeta = \delta(z,w)}$$
(4)

This we do as follows. Using the definition of the map $\pi_{|S}$ and the vector field $(X_F)_{|S} = 2w \frac{\partial}{\partial z} - 6w^5 \frac{\partial}{\partial w}$, for every $(z, w) \in S$ we get

$$T_{(z,w)}\pi_{|S} X_F(z,w) = T_{(z,w)}\pi_{|S}(2w\frac{\partial}{\partial z} - 6w^5\frac{\partial}{\partial w}) = 2w\frac{\partial}{\partial z}.$$

By definition of the function f(2) we have $df = \frac{1}{2w}dz$, which implies $T_z f(2w\frac{\partial}{\partial z}) = \frac{\partial}{\partial \zeta}$. Thus for every $(z, w) \in S$

$$T_{(z,w)}\delta X_F(z,w) = \alpha T_z f\Big(T_{(z,w)}\pi_{|S}\big(X_F(z,w)\big)\Big) = \alpha \frac{\partial}{\partial\zeta}$$

which establishes Eq. (4). \Box

Corollary 3. *The map* δ (3) *is a local diffeomorphism.*

Proof. This follows from Eq. (4), which shows that the tangent map of δ is injective at each point of *S*.

Proof of Proposition 2. Let $U + iV = \rho^*(\operatorname{Re} F) + i\rho^*(\operatorname{Im} F)$. By Proposition 1, U + iV is a coordinate on \mathbb{C} . Define the diffeomorphism

$$\lambda: \mathbb{C} \to \mathbb{C}: \zeta \mapsto U + \mathrm{i}\, V$$

by requiring $\lambda_*(\alpha \frac{\partial}{\partial \zeta}) = X_U + i X_V$, that is, set $U = \lambda(\operatorname{Re} \zeta)$ and $V = \lambda(\operatorname{Im} \zeta)$. By construction we have $\alpha \frac{\partial}{\partial \zeta} = \lambda^* \rho^*((X_F)_{|S})$, see the proof of Proposition 1. By Eq. (4) we have $\alpha \frac{\partial}{\partial \zeta} = \delta_*((X_F)_{|S})$. Thus $\delta_* = \lambda^* \rho^*$, which implies $\rho \circ \lambda \circ \delta = \operatorname{id}_S$. To see this suppose that $\rho \circ \lambda \circ \delta \neq \operatorname{id}_S$. Then $\delta^* \circ (\rho \circ \lambda)^* \neq \operatorname{id}_{TS}$. Hence $\lambda^* \rho^* \neq \delta_*$, which is a contradiction.

Let

$$R: \mathbb{C} \to \mathbb{C}: z \mapsto e^{2\pi i/6} z. \tag{5}$$

Then f(Rz) = Rf(z), where *f* is the function defined in (2). To see this we compute.

$$f(Rz) = \int_0^{Rz} \frac{d\xi}{2w(\xi)}, \text{ where } w(\xi) = \sqrt{1 - \xi^6}$$
$$= \int_0^z \frac{Rdz}{2w(z)}, \text{ using } \xi = Rz \text{ and } w(Rz) = w(z)$$
$$= Rf(z).$$

Thus up to a dialation the image under f(2) of the closed equilateral triangle

$$T' = \{ z = r' e^{i\theta'} \in \mathbb{C} \mid 0 \le r' \le 1 \& 0 \le \theta' \le 2\pi/6 \}$$

with vertex at the origin and one edge of length 1 along the real axis is the equilateral triangle

$$T = f(T') = \{ \zeta = r e^{i\theta} \in \mathbb{C} \mid 0 \le r \le C \& 2\pi/6 \le \theta \le 4\pi/6 \} = CR(T')$$

where $C = \int_0^1 \frac{dz}{\sqrt{1-z^6}}$. Hence *f* maps a regular hexagon into another. In particular, it sends the closed regular hexagon *H'* with center at the origin *O* and edge length 1 onto the regular hexagon *H* with center at *O* and edge length *C*. Since *H'* is simply connected and is contained in the unit disk $\{|z| \le 1\}$, the complex square

root $\sqrt{1-z^6}$ is single valued for all $z \in H'$. Thus H' is the image under $\pi_{|S}$ of a domain $\mathcal{D} \subseteq S$, which is contained in some sheet $S_{\ell'}$ of the covering map ρ of S.

Let

$$U: \mathbb{C} \to \mathbb{C}: z \mapsto \overline{z}. \tag{6}$$

The regular hexagon *H* is invariant under the action of the group *G*, generated be the rotation *R* and the reflection *RU* in the diagonal of *H*, which is an edge of the triangle *T* with the orgin as an end point that is not the real axis. The map δ (3) intertwines the action of the group *G*' generated by *R* and *RU* on *S* with the action of the *G* on *H*. Thus the domain *D* contains a fundamental domain of the action of the covering group *G* on \mathbb{R}^2 .

Let \mathcal{T} be the abelian group generated by the translations

$$\tau_k : \mathbb{C} \to \mathbb{C} : z \mapsto z + u_k$$
, for $k = 0, 1, \dots, 5$.

Here $u_k = \sqrt{3}C e^{2\pi i(1/12+k/6)}$, which is perpendicular to an edge of the equilateral triangle $R^k(T)$ that lies on the boundary of the hexagon H. The action of \mathcal{T} on \mathbb{C} has fundamental domain H. To see this recall that in [2] it is shown that

$$\bigcup_{n\geq 0} \bigcup_{\ell_1+\cdots+\ell_k=n} \tau_1^{\ell_1} \circ \cdots \circ \tau_k^{\ell_k}(K) = \mathbb{C}$$

where *K* is the closed stellated hexagon formed by placing an equilateral triangle of edge length *C* on each bounding edge of *H*. But

$$K = H \cup \bigcup_{k=0}^{5} \tau_k(R^{(4+k) \operatorname{mod} 6}T).$$

So *H* is the fundamental domain of the \mathcal{T} action on \mathbb{C} . Because applying an element of *G'* to the domain $\mathcal{D} \subseteq S$ gives a domain whose boundary has a nonempty intersection with the boundary of \mathcal{D} , it follows that under the mapping δ (3) the corresponding element of the group of motions in \mathbb{C} sends the hexagon *H* to a hexagon which has an edge in common with *H*. Thus this group of motions is the group \mathcal{T} . Because the mapping δ intertwines the *G'* action on *S* with the \mathcal{T} action on \mathbb{C} and sends the domain $\mathcal{D} \subseteq S_{\ell'}$ diffeomorphically onto *H*, it follows that \mathcal{D} is a fundamental domain for the action of *G'* on *S*. Consider $\lambda(H)$, which is a regular hexagon with center at the origin, since the coordinate change λ maps straight lines to straight lines. From proposition 2.1 we deduce that $\lambda(H)$ is a fundamental domain for the action of the covering group *G* on $\mathbb{C} = \mathbb{R}^2$ of the affine Riemann surface *S*. Hence $S = \mathbb{R}^2/\mathcal{T}$. \Box

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The author declares no conflict of interest."

References

- [1] Bates, L., & Cushman, R. (2005). Complete integrability beyond Liouville-Arnol'd. *Reports on Mathematical Physics*, 56(1), 77-91.
- [2] Cushman, R. (2021). The A5 Hamiltonian. arXiv preprint arXiv:2111.14001.

© 2024 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).