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Abstract: We show that the universal covering space of a connected component of a regular level set of a
smooth complex valued function on C2, which is a smooth affine Riemann surface, is R2. This implies that
the orbit space of the action of the covering group on R? is the original affine Riemann surface.
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1. Introduction

et
L F:C> - C:(zw) > u+iv=ReF+ilmF

be a smooth function. Let Xr be the holomorphic Hamiltonian vector field on (C?,dz A dw) corresponding
to F, that is, Xp _J (dz Adw) = dF. On C?> = R* = (Rez,Imz, Rew,Imw) with real symplectic form Q =
Re(dz A dw) we have real Hamiltonian vector fields X;, and X. Then

(Xu +1iXy) 1 Re(dz Ndw) = du+idv = dF = Xp_I (dz N dw)
= (Re Xp +iIm Xr) I (Re (dz A dw) 4 iIm (dz A dw))
= (Re Xf +iIm Xp) 1 Re(dz A dw) + ( — Im Xp + iRe Xr) I Im(dz A dw)
So
(Xu +1Xy) I Re(dz Adw) = (Re Xp +ilm Xf) I Re(dz A dw),

since the 2-forms Re(dz A dw) and Im(dz A dw) are linearly independent. This implies
XRep = Xu = ReXp and lep = X-U = ImXp,
since Re(dz A dw) is nondegenerate.

Proposition 1. Let S be a connected component of F~(c), where ¢ € C is a reqular value of F, which lies in its image.
Then the universal covering space of S is R2.

Proof. S isa connected smooth 1 dimensional complex manifold. Our argument constructs global coordinates
on the universal covering space of S. We begin. For every (z,w) € S the complex tangent space to S at (z, w) is
ker dF(z, w), where

(0,0) # dF(z,w) = du|s(z, w) +idv|s(z,w) = (du +1idv)|5(z, w)

for every (z,w) € S. Thus the nonzero vector field Xp = (X, +1Xoy)|s spans the complex tangent space of S
at each point of S. Because XF is nonzero on S, the real vector fields Xy s and Xy s are linearly independent
at each point of 5. To see this we argue as follows. Suppose that the real vector fields Xy ; and Xy are
linearly dependent at some point (z,w) € S. Then spang{Xi (2, w), Xy (z,w)} has real dimension 1. Thus
(Xu‘ s HiXog )(z, w) does not span the complex tangent space to S at (z, w), which is a contradiction.
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Consider the 2-form ()5 on S Since ) is closed, it follows that g s
closed. Because X, s and Xyg are linearly independent vector fields on S and 0
is nondegenerate on R% it follows that Qg is nondegenerate on spang{Xu(z,w),
Xo(s(z,w)} for every (z,w) € S. To see this from (X +iX,) 1 Q = dF and the fact that dF # (0,0)
on S we get Q(Xy, X») # 0 on S. Hence ()5 is a symplectic form on S.

Let M be the universal covering space of S with covering mapping p : M — S. Because p is a local
diffeomorphism, the 2-form w = p*(Qs) on M is symplectic. Consider the smooth functions U = p*(us)
and V = p*(vjs) on (M, w). The corresponding Hamiltonian vector fields Xi; and Xy on (M, w) are given by
dU = Xy Jwand dV = Xy _1 w. Since

XuJw =dlU =d(p'us) = p*(dujs) = p (Xuy 1 Q)
— 0" (Xuy) 10" (Qs) = 0" (Xu) L o,

it follows that X;; = p*(Xu‘S), because w is nondegenerate. Similarly, Xy = p*(XU‘S). Since p is a local
diffeomorphism and the vector fields X, ; and Xy, are linearly independent at each point of S, the vector
fields X{; and Xy are linearly independent at each point of M. Thus the 1-forms dU and dV on M are linearly
independent at each point of M, because w is nondegenerate. So the vector fields % and % are linearly
independent at each point of M.

Consider the nonzero 2-form @ = dV A dU on M. Since M is 2-dimensional, the de Rham cohomology
group of 2-forms on M has dimension 1. Thus @ = aw for some nonzero real number a.! Because {%, %} is
a basis of the tangent space of M at each point of M, we may write X;; = A% + B%. Then

AU =Xy Jw= %Xu_lco = %(BdU—AdV),

which implies X7 = a%. A similiar argument shows that Xy = —a%.
The pair of functions (U, V) are coordinates on M, since the vector fields %Xu = % and —%XV = 5 are
linearly independent at each point of M and commute. This latter assertion follows because

{u,v} = Lx,u = Lx, ,(ReF) = L%(XF—iF)% (F+iF)

1 . .
= E[LXFF +1LXFF - lLXpF + LXFF] =0

implies [Xo, Xu] = Xy} = 0. From
Tp [Xu, Xv] = [XulS, Xo|S] 0 p = [Xu, Xo]js0p =0,

we get [Xy, Xy] = 0, because p is a local diffeomorphism. Hence [2;, 3, = 0. Thus we may identify M with

R2. O

Corollary 1. (Bates and Cushman [1]). The image of the linear flow of the vector field Xijyiv on C under the covering
map p is the flow of the vector field X on S.

Proof. The flow of X4iv on Cis U(t) +iV(t) = (U(0) +iat) + (iV(0) — at), since Xy = a5}, and Xy =
—a%. Hence an integral curve of X4y starting at U(0) +iV(0) is t — (U(0) +iV(0)) + a(—t +it), which
is a straight line in C. Thus the flow of X{;;y is linear. Since
ToXutiv = Tp(Xu +iXy) = TpXy +iTpXy
= Xu\S op +iXU|S op = X(ll-i-iv)‘s op= XF|S op,

1 We compute 4 as follows. Let D C R? be the unit disk in (R?,@ = dV A dU) with Euclidean inner product. Orient D so that its
boundary is traversed clockwise. Then 7 = [, @ = a [, w, thatis, a = 71/ [, w.
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the image of the flow of X1y under the covering map p is the flow of Xr. O

Define a Riemannian metric E on R2 by E = dU © dU +dV ® dV. Since E(%, %) =1= E(%, %) and
E(%, %) = 0, we find that E is the Euclidean inner product on T(U,V)Rz = R? for every (U,V) € R2. The
metric E is flat, since it is indendent of (U, V) € R2. Let G be the group of covering transformations of S. Then
G is a discrete subgroup of the two dimensional Euclidean group. G acts properly on R?. Since each element
of G leaves no point of R? fixed, we obtain the

Corollary 2. The orbit space R? /G of the action of the covering group G on the universal covering space R? of the affine
Riemann surface S is diffeomorphic to S.

2. Example’

Let

F:C? = C:(z,w) > w? +2°. 1)
Then 1 is a regular value of F, since (0,0) = dF(z,w) = (6z°,2w) ifand only if z = w = 0. But (0,0) ¢ F~1(1) =
S. Thus S is a smooth affine Riemann surface, which is connected. Let 7t : C2 — C : (z,w) — z. Then s : S C
C? — C is a branched covering map of S with branch points B = {(z; = e*™*/6,0) € S|fork =0,1,...,5}
and branch values V = {zk| k=0,1,...,5}. The map 75 is smooth on S\ B with image C\ V. The sheets S,
of the branched covering map 7|5 are defined by w, = e2mit/ 2(1 — 26)1/ 2for ¢ = 0,1, where z € C, that is, Sy
is a connected component of (n‘s)_l (C) = 1r=01 Se-

Let p : R? — S be the universal covering map of S. The sheets of the covering map p are &, = p~1(S,) for
¢ = 0,1. The group G of covering transformations of S is the collection of isometries of (R?,E), where E is the
Euclidean inner product on R?, which permute the sheets ¥, of p. Consider the group G’ of diffeomorphisms
of S generated by the transformations

R:SCC?—SCC?: (z,w) — (202, w)
and
U:SCC?—=SCC?:(z,w) — (Z,).

Since R® = U? = id and RU = UR !, the group G’ is isomorphic to the dihedral group on 6 letters.? Because
R(Sy) = Sy for £ = 0,1 and U(Sy) = S3, the map R induces the identity permutation of the sheets of the
covering map p; while the map U/ transposes the sheets of p. Thus R and U/ generate the covering group G.

We want to describe the action of G, as a subgroup of the Euclidean group of (R?, E). We will need some
preliminary results. Let

f:C\V%(C:szozﬁdz, @)
where w = /1 — z6. Then f is a local diffeomorphism, because df = ﬁdz is nonvanishing on C \ V. We have
Proposition 2. Up to a coordinate transformation A : C — C, the map
(S:SQ(CZA(C:(z,w)ngzx(fomS)(z,w), ©)]
where . = +/2e3/%, is a right inverse of the universal covering map p, that is, p o A 0 6 = ids.

To prove Proposition 2 we need:

2 See Cushman [2].
The group G’ is also generated by the reflections {R¥U, k = 0,1,...5|R® = U? = id}. Thus G’ is the Weyl group of the complex
simple Lie algebra As.
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Lemma 1. The image under the map & (3) of an integral curve of the vector field (Xp)|s on S is an integral curve of the
vector field a% on C.

Proof. It suffices to show that for every (z,w) € S
d
T, .00 Xp(z,w) =a—| . 4)
(zw) Fz,w) 3¢ s(e)

d

This we do as follows. Using the definition of the map 715 and the vector field (Xp)‘ g = 2w% — 6w5%, for

every (z,w) € S we get

9 59 9
Tz s XE(2,0) = T2 ) N\S(ng — 6w %) = 2w—.

By definition of the function f (2) we have df = 5dz, which implies T. f (Zw%) = a% Thus for every (z,w) € S

d
T(z)0 Xp(z,w) = “Tzf<T(z,w) N\s(XF(z,w)D =gz

which establishes Eq. (4). O
Corollary 3. The map 6 (3) is a local diffeomorphism.

Proof. This follows from Eq. (4), which shows that the tangent map of ¢ is injective at each pointof S. O

Proof of Proposition 2. Let U + iV = p*(ReF) +ip*(ImF). By Proposition 1, U + 1V is a coordinate on C.
Define the diffeomorphism
AC—-C:—U+iV

by requiring A, (a%) = Xy +1iXy, thatis, set U = A(Re() and V = A(Im(). By construction we have
oc(% = \*p* ((XF)‘S), see the proof of Proposition 1. By Eq. (4) we have zxa% = (5*((X1:)‘5). Thus 6, = A*p*,
which implies po A od = ids. To see this suppose that po A od # idg. Then 6* o (po A)* # idrs. Hence
A*p* # b, which is a contradiction.
Let
R:C — C:z s &2M/0, (5)

Then f(Rz) = Rf(z), where f is the function defined in (2). To see this we compute.

f(Re) = [ s, wahere w(@) = 18
= /OZ 25;1(72), using ¢ = Rz and w(Rz) = w(z)
= Rf(z).

Thus up to a dialation the image under f (2) of the closed equilateral triangle

T'={z=re" cClo0<r <1&0<06 <21/6}

with vertex at the origin and one edge of length 1 along the real axis is the equilateral triangle

T=f(T)={{=re® €Cl0<r<C&27/6<0<4m/6} = CR(T),

where C = fol \/% Hence f maps a regular hexagon into another. In particular, it sends the closed regular
hexagon H’ with center at the origin O and edge length 1 onto the regular hexagon H with center at O and

edge length C. Since H' is simply connected and is contained in the unit disk {|z| < 1}, the complex square
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root V1 — z° is single valued for all z € H'. Thus H’ is the image under 7|5 of a domain D C S, which is
contained in some sheet Sy of the covering map p of S.
Let
U:C—-=C:z—z (6)

The regular hexagon H is invariant under the action of the group G, generated be the rotation R and the
reflection RU in the diagonal of H, which is an edge of the triangle T with the orgin as an end point that is not
the real axis. The map ¢ (3) intertwines the action of the group G’ generated by R and RU on S with the action
of the G on H. Thus the domain D contains a fundamental domain of the action of the covering group G on
R2.

Let T be the abelian group generated by the translations

4:C—>C:z—z4u, fork=0,1,...,5.

Here uj. = /3C e27(1/124k/6) which is perpendicular to an edge of the equilateral triangle R¥(T) that lies on
the boundary of the hexagon H. The action of 7 on C has fundamental domain H. To see this recall that in [2]
it is shown that

U U 1 ont(K) =C,

120 {44 +l=n
where K is the closed stellated hexagon formed by placing an equilateral triangle of edge length C on each
bounding edge of H. But

5
K=HU U Tk(R(4+k)mod 6T).
k=0
So H is the fundamental domain of the 7 action on C. Because applying an element of G’ to the domain D C S
gives a domain whose boundary has a nonempty intersection with the boundary of D, it follows that under
the mapping J (3) the corresponding element of the group of motions in C sends the hexagon H to a hexagon
which has an edge in common with H. Thus this group of motions is the group 7. Because the mapping §
intertwines the G’ action on S with the 7 action on C and sends the domain D C S diffeomorphically onto H,
it follows that D is a fundamental domain for the action of G’ on S. Consider A(H), which is a regular hexagon
with center at the origin, since the coordinate change A maps straight lines to straight lines. From proposition
2.1 we deduce that A(H) is a fundamental domain for the action of the covering group G on C = R? of the
affine Riemann surface S. Hence S = R2/7. O
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