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Abstract: We show that the universal covering space of a connected component of a regular level set of a
smooth complex valued function on C2, which is a smooth affine Riemann surface, is R2. This implies that
the orbit space of the action of the covering group on R2 is the original affine Riemann surface.
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1. Introduction

L et
F : C2 → C : (z, w) 7→ u + i v = Re F + i Im F

be a smooth function. Let XF be the holomorphic Hamiltonian vector field on (C2, dz ∧ dw) corresponding
to F, that is, XF (dz ∧ dw) = dF. On C2 = R4 = (Re z, Im z, Re w, Im w) with real symplectic form Ω =

Re(dz ∧ dw) we have real Hamiltonian vector fields Xu and Xv. Then

(Xu + i Xv) Re(dz ∧ dw) = du + i dv = dF = XF (dz ∧ dw)

= (Re XF + i Im XF)
(
Re (dz ∧ dw) + i Im (dz ∧ dw)

)
=

(
Re XF + i Im XF

)
Re(dz ∧ dw) +

(
− Im XF + i Re XF

)
Im(dz ∧ dw)

So
(Xu + i Xv) Re(dz ∧ dw) =

(
Re XF + i Im XF

)
Re(dz ∧ dw),

since the 2-forms Re(dz ∧ dw) and Im(dz ∧ dw) are linearly independent. This implies

XRe F = Xu = Re XF and XIm F = Xv = Im XF,

since Re(dz ∧ dw) is nondegenerate.

Proposition 1. Let S be a connected component of F−1(c), where c ∈ C is a regular value of F, which lies in its image.
Then the universal covering space of S is R2.

Proof. S is a connected smooth 1 dimensional complex manifold. Our argument constructs global coordinates
on the universal covering space of S. We begin. For every (z, w) ∈ S the complex tangent space to S at (z, w) is
ker dF(z, w), where

(0, 0) ̸= dF(z, w) = du|S(z, w) + i dv|S(z, w) = (du + i dv)|S(z, w)

for every (z, w) ∈ S. Thus the nonzero vector field XF = (Xu + i Xv)|S spans the complex tangent space of S
at each point of S. Because XF is nonzero on S, the real vector fields Xu |S and Xv |S are linearly independent
at each point of S. To see this we argue as follows. Suppose that the real vector fields Xu|S and Xv|S are
linearly dependent at some point (z, w) ∈ S. Then spanR{Xu|S(z, w), Xv|S(z, w)} has real dimension 1. Thus
(Xu|S + i Xv|S)(z, w) does not span the complex tangent space to S at (z, w), which is a contradiction.
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Consider the 2-form Ω|S on S. Since Ω is closed, it follows that Ω|S is
closed. Because Xu |S and Xv |S are linearly independent vector fields on S and Ω
is nondegenerate on R4, it follows that Ω|S is nondegenerate on spanR{Xu |S(z, w),
Xv |S(z, w)} for every (z, w) ∈ S. To see this from (Xu + i Xv) Ω = dF and the fact that dF ̸= (0, 0)
on S we get Ω(Xu, Xv) ̸= 0 on S. Hence Ω|S is a symplectic form on S.

Let M be the universal covering space of S with covering mapping ρ : M → S. Because ρ is a local
diffeomorphism, the 2-form ω = ρ∗(Ω|S) on M is symplectic. Consider the smooth functions U = ρ∗(u|S)

and V = ρ∗(v|S) on (M, ω). The corresponding Hamiltonian vector fields XU and XV on (M, ω) are given by
dU = XU ω and dV = XV ω. Since

XU ω = dU = d (ρ∗u|S) = ρ∗(du|S) = ρ∗(Xu|S Ω|S)

= ρ∗(Xu|S) ρ∗(Ω|S) = ρ∗(Xu|S) ω,

it follows that XU = ρ∗(Xu|S), because ω is nondegenerate. Similarly, XV = ρ∗(Xv|S). Since ρ is a local
diffeomorphism and the vector fields Xu|S and Xv|S are linearly independent at each point of S, the vector
fields XU and XV are linearly independent at each point of M. Thus the 1-forms dU and dV on M are linearly
independent at each point of M, because ω is nondegenerate. So the vector fields ∂

∂U and ∂
∂V are linearly

independent at each point of M.
Consider the nonzero 2-form ϖ = dV ∧ dU on M. Since M is 2-dimensional, the de Rham cohomology

group of 2-forms on M has dimension 1. Thus ϖ = aω for some nonzero real number a.1 Because { ∂
∂U , ∂

∂V } is
a basis of the tangent space of M at each point of M, we may write XU = A ∂

∂U + B ∂
∂V . Then

dU = XU ω =
1
a

XU ϖ =
1
a
(BdU − AdV),

which implies XU = a ∂
∂V . A similiar argument shows that XV = −a ∂

∂U .
The pair of functions (U, V) are coordinates on M, since the vector fields 1

a XU = ∂
∂V and − 1

a XV = ∂
∂U are

linearly independent at each point of M and commute. This latter assertion follows because

{u, v} = LXv u = LXIm F (Re F) = L 1
2i (XF−i F)

1
2 (F + i F)

=
1
4i
[LXF F + i LXF F − i LXF F + LXF F] = 0

implies [Xv, Xu] = X{u,v} = 0. From

Tρ [XU , XV ] = [Xu|S, Xv|S] ◦ ρ = [Xu, Xv]|S ◦ ρ = 0,

we get [XU , XV ] = 0, because ρ is a local diffeomorphism. Hence [ ∂
∂U , ∂

∂V ] = 0. Thus we may identify M with
R2.

Corollary 1. (Bates and Cushman [1]). The image of the linear flow of the vector field XU+i V on C under the covering
map ρ is the flow of the vector field XF on S.

Proof. The flow of XU+i V on C is U(t) + i V(t) =
(
U(0) + iat

)
+

(
iV(0) − at

)
, since XU = a ∂

∂V and XV =

−a ∂
∂U . Hence an integral curve of XU+i V starting at U(0) + i V(0) is t 7→

(
U(0) + i V(0)

)
+ a(−t + it), which

is a straight line in C. Thus the flow of XU+iV is linear. Since

TρXU+i V = Tρ(XU + i XV) = TρXU + i TρXV

= Xu|S ◦ ρ + i Xv|S ◦ ρ = X(u+iv)|S ◦ ρ = XF |S ◦ ρ,

1 We compute a as follows. Let D ⊆ R2 be the unit disk in (R2, ϖ = dV ∧ dU) with Euclidean inner product. Orient D so that its
boundary is traversed clockwise. Then π =

∫
D ϖ = a

∫
D ω, that is, a = π/

∫
D ω.
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the image of the flow of XU+i V under the covering map ρ is the flow of XF.

Define a Riemannian metric E on R2 by E = dU ⊙ dU + dV ⊙ dV. Since E( ∂
∂U , ∂

∂U ) = 1 = E( ∂
∂V , ∂

∂V ) and
E( ∂

∂U , ∂
∂V ) = 0, we find that E is the Euclidean inner product on T(U,V)R2 = R2 for every (U, V) ∈ R2. The

metric E is flat, since it is indendent of (U, V) ∈ R2. Let G be the group of covering transformations of S. Then
G is a discrete subgroup of the two dimensional Euclidean group. G acts properly on R2. Since each element
of G leaves no point of R2 fixed, we obtain the

Corollary 2. The orbit space R2/G of the action of the covering group G on the universal covering space R2 of the affine
Riemann surface S is diffeomorphic to S.

2. Example 3

Let
F : C2 → C : (z, w) 7→ w2 + z6. (1)

Then 1 is a regular value of F, since (0, 0) = dF(z, w) = (6z5, 2w) if and only if z = w = 0. But (0, 0) /∈ F−1(1) =
S. Thus S is a smooth affine Riemann surface, which is connected. Let π : C2 → C : (z, w) 7→ z. Then π|S : S ⊆
C2 → C is a branched covering map of S with branch points B = {(zk = e2πik/6, 0) ∈ S for k = 0, 1, . . . , 5}
and branch values V = {zk k = 0, 1, . . . , 5}. The map π|S is smooth on S \ B with image C \ V. The sheets Sℓ

of the branched covering map π|S are defined by wℓ = e2πiℓ/2(1 − z6)1/2 for ℓ = 0, 1, where z ∈ C, that is, Sℓ

is a connected component of (π|S)
−1(C) = ⨿ℓ=0,1 Sℓ.

Let ρ : R2 → S be the universal covering map of S. The sheets of the covering map ρ are Σℓ = ρ−1(Sℓ) for
ℓ = 0, 1. The group G of covering transformations of S is the collection of isometries of (R2, E), where E is the
Euclidean inner product on R2, which permute the sheets Σℓ of ρ. Consider the group G′ of diffeomorphisms
of S generated by the transformations

R : S ⊆ C2 → S ⊆ C2 : (z, w) 7→ (e2πi/6z, w)

and

U : S ⊆ C2 → S ⊆ C2 : (z, w) 7→ (z, w).

Since R6 = U 2 = id and RU = UR−1, the group G′ is isomorphic to the dihedral group on 6 letters.3 Because
R(Sℓ) = Sℓ for ℓ = 0, 1 and U (S0) = S1, the map R induces the identity permutation of the sheets of the
covering map ρ; while the map U transposes the sheets of ρ. Thus R and U generate the covering group G.

We want to describe the action of G, as a subgroup of the Euclidean group of (R2, E). We will need some
preliminary results. Let

f : C \ V → C : z 7→
∫ z

0

1
2w

dz, (2)

where w =
√

1 − z6. Then f is a local diffeomorphism, because d f = 1
2w dz is nonvanishing on C \ V. We have

Proposition 2. Up to a coordinate transformation λ : C → C, the map

δ : S ⊆ C2 → C : (z, w) 7→ ζ = α( f ◦ π|S)(z, w), (3)

where α =
√

2e3πi/4, is a right inverse of the universal covering map ρ, that is, ρ ◦ λ ◦ δ = idS.

To prove Proposition 2 we need:

2 See Cushman [2].
3 The group G′ is also generated by the reflections {RkU, k = 0, 1, . . . 5 R6 = U2 = id}. Thus G′ is the Weyl group of the complex

simple Lie algebra A5.
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Lemma 1. The image under the map δ (3) of an integral curve of the vector field (XF)|S on S is an integral curve of the
vector field α ∂

∂ζ on C.

Proof. It suffices to show that for every (z, w) ∈ S

T(z,w)δ XF(z, w) = α
∂

∂ζ ζ=δ(z,w)
. (4)

This we do as follows. Using the definition of the map π|S and the vector field (XF)|S = 2w ∂
∂z − 6w5 ∂

∂w , for
every (z, w) ∈ S we get

T(z,w)π|S XF(z, w) = T(z,w)π|S(2w
∂

∂z
− 6w5 ∂

∂w
) = 2w

∂

∂z
.

By definition of the function f (2) we have d f = 1
2w dz, which implies Tz f

(
2w ∂

∂z
)
= ∂

∂ζ . Thus for every (z, w) ∈ S

T(z,w)δ XF(z, w) = αTz f
(

T(z,w)π|S
(
XF(z, w)

))
= α

∂

∂ζ
,

which establishes Eq. (4).

Corollary 3. The map δ (3) is a local diffeomorphism.

Proof. This follows from Eq. (4), which shows that the tangent map of δ is injective at each point of S.

Proof of Proposition 2. Let U + iV = ρ∗(Re F) + i ρ∗(Im F). By Proposition 1, U + i V is a coordinate on C.
Define the diffeomorphism

λ : C → C : ζ 7→ U + i V

by requiring λ∗
(
α ∂

∂ζ

)
= XU + i XV , that is, set U = λ(Re ζ) and V = λ(Im ζ). By construction we have

α ∂
∂ζ = λ∗ρ∗

(
(XF)|S

)
, see the proof of Proposition 1. By Eq. (4) we have α ∂

∂ζ = δ∗
(
(XF)|S

)
. Thus δ∗ = λ∗ρ∗,

which implies ρ ◦ λ ◦ δ = idS. To see this suppose that ρ ◦ λ ◦ δ ̸= idS. Then δ∗ ◦ (ρ ◦ λ)∗ ̸= idTS. Hence
λ∗ρ∗ ̸= δ∗, which is a contradiction.

Let
R : C → C : z 7→ e2πi/6z. (5)

Then f (Rz) = R f (z), where f is the function defined in (2). To see this we compute.

f (Rz) =
∫ Rz

0

dξ

2w(ξ)
, where w(ξ) =

√
1 − ξ6

=
∫ z

0

Rdz
2w(z)

, using ξ = Rz and w(Rz) = w(z)

= R f (z).

Thus up to a dialation the image under f (2) of the closed equilateral triangle

T′ = {z = r′eiθ′ ∈ C 0 ≤ r′ ≤ 1 & 0 ≤ θ′ ≤ 2π/6}

with vertex at the origin and one edge of length 1 along the real axis is the equilateral triangle

T = f (T′) = {ζ = reiθ ∈ C 0 ≤ r ≤ C & 2π/6 ≤ θ ≤ 4π/6} = CR(T′),

where C =
∫ 1

0
dz√
1−z6 . Hence f maps a regular hexagon into another. In particular, it sends the closed regular

hexagon H′ with center at the origin O and edge length 1 onto the regular hexagon H with center at O and
edge length C. Since H′ is simply connected and is contained in the unit disk {|z| ≤ 1}, the complex square
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root
√

1 − z6 is single valued for all z ∈ H′. Thus H′ is the image under π|S of a domain D ⊆ S, which is
contained in some sheet Sℓ′ of the covering map ρ of S.

Let
U : C → C : z 7→ z. (6)

The regular hexagon H is invariant under the action of the group G, generated be the rotation R and the
reflection RU in the diagonal of H, which is an edge of the triangle T with the orgin as an end point that is not
the real axis. The map δ (3) intertwines the action of the group G′ generated by R and RU on S with the action
of the G on H. Thus the domain D contains a fundamental domain of the action of the covering group G on
R2.

Let T be the abelian group generated by the translations

τk : C → C : z 7→ z + uk, for k = 0, 1, . . . , 5.

Here uk =
√

3C e2πi(1/12+k/6), which is perpendicular to an edge of the equilateral triangle Rk(T) that lies on
the boundary of the hexagon H. The action of T on C has fundamental domain H. To see this recall that in [2]
it is shown that ⋃

n≥0

⋃
ℓ1+···+ℓk=n

τℓ1
1 ◦ · · · ◦τ

ℓk
k (K) = C,

where K is the closed stellated hexagon formed by placing an equilateral triangle of edge length C on each
bounding edge of H. But

K = H ∪
5⋃

k=0

τk(R(4+k)mod 6T).

So H is the fundamental domain of the T action on C. Because applying an element of G′ to the domain D ⊆ S
gives a domain whose boundary has a nonempty intersection with the boundary of D, it follows that under
the mapping δ (3) the corresponding element of the group of motions in C sends the hexagon H to a hexagon
which has an edge in common with H. Thus this group of motions is the group T . Because the mapping δ

intertwines the G′ action on S with the T action on C and sends the domain D ⊆ Sℓ′ diffeomorphically onto H,
it follows that D is a fundamental domain for the action of G′ on S. Consider λ(H), which is a regular hexagon
with center at the origin, since the coordinate change λ maps straight lines to straight lines. From proposition
2.1 we deduce that λ(H) is a fundamental domain for the action of the covering group G on C = R2 of the
affine Riemann surface S. Hence S = R2/T .
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