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1. Introduction

T he theory of dual numbers was originally introduced by Clifford [1] in 1873. In 1891, E. Study [2]
recognized that the associative algebra of dual numbers was well-suited for describing the group of

motions in three-dimensional space. At the turn of the 20th century, Kotelnikov [3] expanded this theory by
developing the concepts of dual vectors and dual quaternions. The algebraic properties of dual numbers have
been extensively studied and documented in various papers, including [4–7].

The study of functions involving dual variables has also garnered significant attention, as seen in [8,9].
This concept finds applications in numerous fields of fundamental sciences and engineering; for further details,
see [3,10–16].

Building on this foundation, multidual numbers were introduced by Messelmi in [17] as a natural
extension of dual numbers to higher dimensions. Messelmi further explored functions of multidual variables
in this context.

In the domain of multidual analysis, Messelmi introduced the novel concepts of log-series and
log-functions in [18]. His approach involved replacing natural powers with multidual integers and coefficients
with multidual sequences in real power series. However, his study was limited to elementary log-functions,
representing specific extensions of classical real functions. These log-functions were utilized to expand certain
special functions expressed as integrals involving the nth power of logarithmic functions and harmonic
numbers.

The main objective of the present paper is to investigate certain log-series and log-functions. Specifically,
the second section begins with an introduction to basic concepts in dual analysis, including the holomorphy
of dual functions, generalized Cauchy-Riemann formulas, and a continuation principle for real functions in
the dual algebra. Furthermore, we define and examine the properties of the ring of dual integers, Z (ε).
Additionally, certain notions related to relative numbers, such as the factorial map, generalized harmonic
numbers, and the sum of reciprocals of factorials, are extended to dual integers.

The third section focuses on the study of log-series and log-functions, restricted to the dual case. Within
this framework, several significant results are established. These findings allow for the determination of sums
for classes of power series involving generalized harmonic numbers and sums of reciprocals of factorials.

2. Preliminaries

A dual number z is defined as an ordered pair of real numbers (x, y, ) associated with the real unit 1 and
the dual unit ε, where ε is an nilpotent number i.e. ε2 = 0. Indeed, a dual number is usually denoted in the
form

z = x + yε. (1)
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for which, we admit that ε0 = 1.
The set of dual numbers denonted by D is given by

D =
{

z = x + yε | x, y ∈ R where ε2 = 0
}

. (2)

If z = x + yε is a dual number, we will denote by real (z) the real part of z given by

real (z) = x0. (3)

The dual numbers form a commutative ring with characteristic 0. Moreover the inherited multiplication
gives the dual numbers the structure of 2−dimensional Clifford Algebra, see for more details regarding dual
numbers the references [2,4–7,9,19]. In abstract algebra terms, the dual ring can be obtained as the quotient of
the polynomial ring R [X] by the ideal generated by the polynomial X2, i.e.

D ≃ R [X]

⟨X2⟩ . (4)

There are many ways to choose the dual unit number ε. The fundamental example can be given by the
matrix

ε =

[
0 0
1 0

]
.

It is also important to point out that every dual number possess a matrix representation that can be
formulated as follows.

Let us denote by G2 (R) the subset of M2 (R) given by

G2 (R) =
{

A ∈ M2 (R) | A =

[
a0 0
a1 a0

]
. (5)

It is clear that G2 (R) is a subring of M2 (R) , it has also a structure of 2−dimensional associative,
commutative and unitary algebra. If a0 ̸= 0, the set G2 (R) can be seen as a subgroup of GL (2) .

Introducing now the following mapping
R : D −→ G2 (R) ,

R (x + yε) =

[
x 0
y x

]
(6)

The result below shows the relationship between the sets D and G2 (R) .

Proposition 1 ([8]). R is an isomorphism of algebras.

If z is a dual number, the conjugate of z denoted by z̄ is the dual number given by

z̄ = x − yε. (7)

Hence, z = x + yε has a unique conjugate if and only if x ̸= 0. If x = 0 the number yε is a divisor of zero.
The set of zero divisors of the ring D is denoted by D and we have

D = {yε | y ∈ R} . (8)

For the sequel we admit that D is endowed with the usual topology of R2. We recall now, according to the
work [8], some concepts and results regarding dual functions.

Let Ω be an open subset of D, z = x + yε ∈ Ω and f : Ω −→ D a dual function. The Cauchy-Riemann
conditions can be generalized for dual function as follows.
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Proposition 2. Let f be a dual function in Ω ⊂ D2, which can be written in terms of its real and dual parts as

f (z) = p (x, y) + q (x, y) ε. (9)

and suppose that the partial derivatives of f exist. Then,
1. f is holomorphic in Ω if and only if the following formulas hold

∂p
∂x

=
∂q
∂y

,

∂p
∂y

= 0.
(10)

2. f is holomorphic in Ω if and only if its partial derivatives satisfy

∂ f
∂y

= ε
∂ f
∂x

. (11)

We deduce in particular that if the function f is holomorphic, then

d f
dz

=
∂ f
∂x

. (12)

A dual function defined in Ω ⊂ D is said to be homogeneous if

f (real (z)) ∈ R. (13)

The following proposition ensures that every regular real function can be extended to the algebra of dual
numbers.

Proposition 3 (Continuation of real functions). Let f : O −→ R be a real function, where O is an open connected
domain of R. Denote by the set ΩO = {z = x + yε ∈ D | x ∈ O} .

1. Suppose that f ∈ C2 (O) . Then, there exists a unique homogeneous holomorphic dual function f̃ : ΩO ⊂ D −→
D satisfying

f̃ (x) = f (x) ∀x ∈ O, (14)

where
f̃ (x) = f (x)− f ′ (x) yε. (15)

If in addition, if f ∈ Cq (O) , q ≥ 2, then f̃ ∈ Cq−2 (ΩO) . In Particular, if f ∈ C∞ (O) , then f̃ ∈ C∞ (ΩO) , we say in
such case that f is an analytic function in ΩO.

Further, as stated in the paper [5], the set of dual integers Z (ε) can be defined as

Z (ε) = {m = m0 + m1ε | m0, m1 ∈ Z} . (16)

The set Z (ε) can be seen as a generated Z−module having (1, ε) as system of generators. It is worth
noting that Z (ε) can be also obtained as the quotient of the polynomial ring Z [X] by the ideal generated by
the polynomial X2, i.e.

Z (ε) ≃ Z [X]

⟨X2⟩ . (17)

The set of zero divisors of the ring Z (ε) denoted by D (ε) coincides with the ideal generated by ε. This
means that

D (ε) = εZ (ε) = {m = m0ε | m0 ∈ Z} . (18)

A dual integer m = m0 + m1ε is said to be positive if m0 > 0. The set of positive dual integers given by

Z+ (ε) = {m = m0 + m1ε ∈ Z (ε) | m0 > 0} , (19)
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forms a commutative monoid under multiplication. We suggests here a generalization of the factorial map for
positive dual integers. To this end, let us introduce the following definition.

Definition 1. The factorial of the integer m = m0 + m1ε ∈ Z+ (ε) is defined by the formula

m! =
m0

∏
n=1

(n + m1ε) . (20)

As consequence, we have

(m0 + 1 + m1ε)! = (m0 + m1ε)! (m0 + 1 + m1ε) . (21)

In the following statement, we provide an expression of the dual factorial using harmonic numbers.

Proposition 4. Let m = m0 + m1ε ∈ Z+ (ε) . We have

m! = m0!
(
1 + m1Hm0,1ε

)
. (22)

Proof. Let m = m0 + m1ε ∈ Z+ (ε) , in view of (20) we can write

m! = m0!
m0

∏
n=1

(
1 +

m1

n
εi
)

.

Thus

m! = m0!e
m0

m0
∑

n=1

1
n ε

= m0!

(
1 + m0

m0

∑
n=1

1
n

ε

)
.

Then, the desired outcome is achieved.

Moreover, the p−th generalized harmonic number, denoted here by Hp,q, is defined as, see [20]

Hp,q =
p

∑
n=1

1
nq . (23)

The p−th generalized harmonic number can be also generalized for dual integers as follows.

Hm0+m1ε,q =
m0

∑
n=1

1
(n + m1ε)q . (24)

In the below proposition we provide an expression of Hm0+m1ε,q with respect the real m0−th generalized
harmonic numbers.

Proposition 5. The (m0 + m1ε)−th generalized harmonic number Hm0+m1ε,q satisfy the formula

Hm0+m1ε,q = Hm0,q − m1qHm0,q+1ε. (25)

Proof. Let us proceed as follows. We have

Hm0+m1ε,q =
m0

∑
n=1

1
(n + m1ε)q =

m0

∑
n=1

1
nq
(
1 + q m1

n ε
) =

m0

∑
n=1

1
nq − qm1

m0

∑
n=1

1
nq+1 ε.

This allows us to accomplish the proof.
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Denote now by Fm0 the sum of reciprocals of factorials up to m0, i.e.

Fm0 =
m0

∑
n=0

1
n!

. (26)

This map can be also generalized for dual integers as

Fm0+m1ε =
m0

∑
n=1

1
(n + m1ε)!

, (27)

where m0 ≥ 1. Taking into account (22), one easily finds

Fm0+m1ε = Fm0 − 1 − m1ε
m0

∑
n=1

Hn,1

n!
. (28)

Throughout this paper, we will use the following special functions.
σ+ (x) =

x∫
0

es log sds,

σ− (x) =
x∫

0
e−s log sds.

(29)

Notice that
σ− (x) =

∂γ

∂a
(1, x) , (30)

where γ is the lower incomplete gamma function, see [19], given by

γ (a, x) =
x∫

0

sa−1e−sds.

Furthermore, it is straightforward to verify that the functions σ+ and σ− can be also expressed as follows
σ+ (x) = (ex − 1) log x −

x∫
0

es−1
s ds,

σ− (x) = (1 − e−x) log x +
x∫

0

e−s − 1
s

ds.
(31)

In order to establish some theorems in this paper the following lemma is required.

Lemma 1. Let us consider the sequence of functions
(

fp (x)
)

p≥1 given by the belwo reccurence relation

d fp

dx
=

fp−1 (x)
x

for p ≥ 1, (32)

where
f0 (x)

v(0)∼ x. (33)

Then, the following formula holds

fp (x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1 f0 (s)
s

ds for p ≥ 1. (34)

Proof. Formula (32) gives for p = 1

f1 (x) =
x∫

0

f0 (s)
s

ds.
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Making use again (32), we can infer for p = 2

f2 (x) =
x∫

0

1
t

t∫
0

f0 (s)
s

dsdt.

Thus, by integration by parts we obtain

f2 (x) = log x
x∫

0

f0 (s)
s

ds −
x∫

0

log s
f0 (s)

s
ds =

x∫
0

(log x − log s)
f0 (s)

s
ds.

Thus, the formula (34) is satisfied for the both cases p = 1 and p = 2. In order to prove the formula for every
p ≥ 1, we use a proof by induction. To do this, we suppose that the statement is truth for some p ≥ 1 and
show that it remains true for p + 1. Indeed, (34) can be written

fp (x) =
1

(p − 1)!

p−1

∑
k=0

(
p − 1

k

)
(−1)p−k−1 logk x

x∫
0

logp−k−1 s
f0 (s)

s
ds. (35)

Furthermore, (32) implies that

fp+1 (x) =
x∫

0

fp (s)
s

ds. (36)

Making together (35) and (36), we can infer

fp+1 (x) =
1

(p − 1)!

p−1

∑
k=0

(−1)p−k−1
(

p − 1
k

) x∫
0

logk t
t

t∫
0

logp−k−1 s
f0 (s)

s
dsdt.

We employ now an integration by parts, designating for this purpose

u =

t∫
0

logp−k−1 s
f0 (s)

s
ds and dv =

logk t
t

dt.

Then

du = logp−k−1 t
f0 (t)

t
and v =

1
k + 1

logk+1 t.

This leads to

fp+1 (x) =
1

(p − 1)!

p−1

∑
k=0

(−1)p−k−1
(

p − 1
k

) 1
k + 1

logk+1 x
x∫

0

logp−k−1 s
f0 (s)

s
ds

− 1
k + 1

x∫
0

logp s
f0 (s)

s
ds


=

1
p!

p−1

∑
k=0

(−1)p−k−1
(

p
k + 1

)logk+1 x
x∫

0

logp−k−1 s
f0 (s)

s
ds −

x∫
0

logp s
f0 (s)

s
ds


=

1
p!

p

∑
k′=1

(−1)p−k′
(

p
k′

)logk′ x
x∫

0

logp−k′ s
f0 (s)

s
ds −

x∫
0

logp s
f0 (s)

s
ds


=

1
p!

p

∑
k′=0

(−1)p−k′
(

p
k′

)
logk′ x

x∫
0

logp−k′ s
f0 (s)

s
ds.
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This yields

fp+1 =
1
p!

x∫
0

(log x − log s)p f0 (s)
s

ds.

That is, the statement holds true for p + 1, establishing the induction proof.

3. Applications of log−Series

In the context of multidual numbers, the theory of log−Series was initially introduced in the reference
[18]. This paper will specifically focus on the study of log−Series within the algebra of dual numbers. We will
start by recalling foundational concepts of the theory in question, as outlined in reference [18].

Definition 2. A log−series of the real variable x is an infinite series of the form

+∞

∑
m0=1

(p (m0, m1) + q (m0, m1) ε) xm0+m1ε. (37)

Here, the dual sequence p (m0, m1) + q (m0, m1) ε represents the coefficient of the term xm0+m1ε in the
series.

Furthermore, the log−series (40) can be also written

xm1ε
+∞

∑
m0=1

(p (m0, m1) + q (m0, m1) ε) xm0 . (38)

So, the log−series converges if and only the below real power series p (m0, m1) and q (m0, m1) converge
simultaneously.

In addition, it is well known, as noted in [8], that the term xm1ε is defined for x ≥ 0, in such a manner that

xm1ε =

{
0 if x = 0,

1 + m1ε log x if x > 0.
(39)

Denote by Ri, i = 1, 2, the radius of convergence of the real power series p (m0, m1) and q (m0, m1) ,
respectively. Obviously, the log−series (40) converges for every x ∈ [0, R[ , where

R = min (R1, R2) , (40)

On the other hand, we will have, making use (39)

xm1ε
+∞

∑
m0=1

(p (m0, m1) + q (m0, m1) ε) xm0 = (1 + m1ε log x)
+∞

∑
m0=1

(p (m0, m1) + q (m0, m1) ε) xm0 .

This yields

lim
x−→0

+∞

∑
m0=1

(p (m0, m1) + q (m0, m1) ε) xm0+m1ε = 0. (41)

We conclude that if the log−series (37) converges then its limit is continuous at 0.
Moreover, if the log−series converges its sum will be referred to as a log−function. We will investigate

in this paper several log−series and we will applicate the obtained results to determinate the sums of certain
series involves the factorial map, the generalized harmonic numbers and the sums of reciprocals of factorials.
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3.1. Application 1

Let us introduce for p ≥ 0 the two log−series given by

+∞

∑
m0=1

xm0+m1ε

(m0 + m1ε)p (m0 + m1ε)!
, (42)

+∞

∑
m0=1

(−1)m0 xm0+m1ε

(m0 + m1ε)p (m0 + m1ε)!
. (43)

It can be easily demonstrated that the both log−series converge for every x ∈ [0,+∞[ . Denote by φ+
p,m1

(x)
and φ−

p,m1
(x) their sums, respectively.

The below statement provides the analytical expression of the functions φ+
p,m1

(x) and φ−
p,m1

(x) .

Theorem 1. The following formulas hold

φ+
0,m1

(x) = ex − 1 + exσ− (x)m1ε, (44)

φ−
0,m1

(x) = e−x − 1 − e−xσ+ (x)m1ε. (45)

If p ≥ 1, then

φ+
p,m1

(x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s

ds +
m1ε

(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s

ds, (46)

φ−
p,m1

(x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1 e−s − 1
s

ds +
m1ε

(p − 1)!

x∫
0

(log x − log s)p−1 e−sσ+ (s)
s

ds. (47)

Proof. Suppose first that p = 0, i.e.

φ+
0,m1

(x) =
+∞

∑
m0=1

xm0+m1ε

(m0 + m1ε)!
, (48)

φ−
0,m1

(x) =
+∞

∑
m0=1

(−1)m0 xm0+m1ε

(m0 + m1ε)!
, (49)

So, we find
φ+

0,m1
(x) = expm1

(x)− 1.

For further details regarding the exponential log−function expm1
refer to the cited source [18]. Hence, we get

φ+
0,m1

(x) = expm1
(x)− 1

= ex − 1 + exσ− (x)m1ε.

On the other hand, by calculating the derivative of φ−
0,m1

(x) , it follows

dφ−
0,m1

dx
= −xm1ε − φ−

0,m1
(x) . (50)

It is straightforward to verify that the solution of the homogeneous ODE corresponding to (50) is given by

φ−
0,m1

(x) = Ce−x,

where C represents a dual constant.
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Using the method of variation of the parameter, the below equation holds

C′ (x) e−x = −xm1ε

= −1 − m1ε log x.

Then, since φ−
0,m1

(0) = 0, (45) immediately follows. Let us now assume that p ≥ 1. By calculating the
derivatives of both functions φ+

p,m1
and φ−

p,m1
, yields

dφ+
p,m1

dx
=

xm1ε

(1 + m1ε)p +
+∞

∑
m0=2

xm0−1+m1ε

(m0 + m1ε)p (m0 − 1 + m1ε)!
,

dφ−
p,m1

dx
=

−xm1ε

(1 + m1ε)p +
+∞

∑
m0=2

(−1)m0 xm0−1+m1ε

(m0 + m1ε)p (m0 − 1 + m1ε)!
.

Which leads to

dφ+
p,m1

dx
=

xm1ε

(1 + m1ε)p +
1
x

+∞

∑
m0=2

xm0+m1ε

(m0 + m1ε)p−1 (m0 + m1ε)!
,

dφ−
p,m1

dx
=

−xm1ε

(1 + m1ε)p +
1
x

+∞

∑
m0=2

(−1)m0 xm0+m1ε

(m0 + m1ε)p−1 (m0 + m1ε)!
.

Then, we can infer that

dφ+
p,m1

dx
=

φ+
p,m1

(x)
x

,

dφ−
p,m1

dx
=

φ+
p,m1

(x)
x

.

Consequently, Lemma 5 allows us to deduce that

dφ+
p,m1

dx
=

1
(p − 1)!

x∫
0

(log x − log s)p−1 φ+
0,m1

(x)

s
ds,

dφ−
p,m1

dx
=

1
(p − 1)!

x∫
0

(log x − log s)p−1 φ−
0,m1

(x)

s
ds.

Therefore, to conclude the proof it is enough to substitute the expressions of the functions φ+
0,m1

and φ−
0,m1

,
provided by formulas (44) and (45), into (46) and (47), respectively.

Theorem 2. We have

+∞

∑
m0=1

Hm0,1

m0!
xm0 = (ex − 1) log x + exσ− (x) , (51)

+∞

∑
m0=1

(−1)m0
Hm0,1

m0!
xm0 =

(
e−x − 1

)
log x − e−xσ+ (x) . (52)

If p ≥ 1, fhe below formulas hold

+∞

∑
m0=1

xm0

mp
0 m0!

=
1

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s

ds, (53)
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+∞

∑
m0=1

(−1)m0 xm0

mp
0 m0!

=
1

(p − 1)!

x∫
0

(log x − log s)p−1 e−s − 1
s

ds, (54)

and

+∞

∑
m0=1

Hm0,1

mp
0 m0!

xm0 =
1

(p − 1)!

x∫
0

(log x − log s)p−1
(

es − 1
s

log s − esσ− (s)
s

)
ds, (55)

+∞

∑
m0=1

(−1)m0
Hm0,1

mp
0 m0!

xm0 =
1

(p − 1)!

x∫
0

(log x − log s)p−1
(

e−s − 1
s

log s − e−sσ+ (s)
s

)
ds. (56)

Proof. Let us first start with the case p = 0. The first assertion (51) has been proved in the paper [18]. In order
to prove (52), we follow these steps. We have

φ−
0,m1

(x) =
+∞

∑
m0=1

(−1)m0 xm0+m1ε

(m0 + m1ε)!

= (1 + m1ε log x)
+∞

∑
m0=1

(−1)m0 xm0

m0!
(
1 + Hm0,1m1ε

)
= (1 + m1ε log x)

+∞

∑
m0=1

(−1)m0

m0!
(
1 − Hm0,1m1ε

)
xm0

=
+∞

∑
m0=1

(−1)m0

m0!
(
1 +

(
log x − Hm0,1

)
m1ε

)
xm0 .

Hence, in view of (44), we find
+∞

∑
m0=1

(−1)m0

m0!
xm0 = e−x − 1,

as well as (
e−x − 1

)
log x −

+∞

∑
m0=1

(−1)m0
Hm0,1

m0!
xm0 = e−xσ+ (x) .

Thus, the case p = 0 is accomplished. If p ≥ 1 the function φ+
p,m1

(x) becomes

φ+
p,m1

(x) =
+∞

∑
m0=1

xm0+m1ε

(m0 + m1ε)p (m0 + m1ε)!

= (1 + m1ε log x)
+∞

∑
m0=1

xm0

mp
0 m0!

(
1 + p m1

m0
ε
) (

1 + Hm0,1m1ε
)

= (1 + m1ε log x)
+∞

∑
m0=1

1
mp

0 m0!

(
1 −

(
Hm0,1 +

p
m0

)
m1ε

)
xm0

=
+∞

∑
m0=1

1
mp

0 m0!

(
1 +

(
log x − Hm0,1 −

p
m0

)
m1ε

)
xm0 .

As consequence, Theorem 1 permits us to find

+∞

∑
m0=1

xm0

mp
0 m0!

=
1

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s

ds, (57)
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and

+∞

∑
m0=1

1
mp

0 m0!

(
log x − Hm0,1 −

p
m0

)
xm0 =

1
(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s

ds. (58)

Combining formula (57) and (58), we obtain

+∞

∑
m0=1

Hm0,1

mp
0 m0!

xm0 = −p
+∞

∑
m0=1

1

mp+1
0 m0!

xm0 +
log x

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s

ds.

Hence

+∞

∑
m0=1

Hm0,1

mp
0 m0!

xm0 = −p
+∞

∑
m0=1

1

mp+1
0 m0!

xm0 +
log x

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s

ds − 1
(p − 1)!

x∫
0

(log x − log s)p es − 1
s

ds

=
1

(p − 1)!

x∫
0

(log x − log s)p−1
(

es − 1
s

log s − esσ− (s)
s

)
.

Additionally, the following formula can be readily established

φ−
p,m1

(x) =
+∞

∑
m0=1

(−1)m0 xm0+m1ε

(m0 + m1ε)p (m0 + m1ε)!

=
+∞

∑
m0=1

(−1)m0

mp
0 m0!

(
1 +

(
log x − Hm0,1 −

p
m0

)
m1ε

)
xm0 . (59)

Making together formulas (47) and (59), one has

+∞

∑
m0=1

(−1)m0

mp
0 m0!

xm0 =
1

(p − 1)!

x∫
0

(log x − log s)p−1 e−s − 1
s

ds,

and

1
(p − 1)!

x∫
0

(log x − log s)p−1 e−sσ+ (s)
s

ds =
log x

(p − 1)!

x∫
0

(log x − log s)p−1 e−s − 1
s

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p e−sσ+ (s)
s

ds −
+∞

∑
m0=1

(−1)m0
Hm0,1

mp
0 m0!

xm0 .

Which eventually gives (56) and enables us to complete the proof.

3.2. Application 2

Given for every p ≥ 1 the following log−series

+∞

∑
m0=1

Hm0+m1ε,p

(m0 + m1ε)!
xm0+m1ε, (60)
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+∞

∑
m0=1

(−1)m0
Hm0+m1ε,p

(m0 + m1ε)!
xm0+m1ε. (61)

It is straightforward to show that the both log−series converge for every x ∈ [0,+∞[ . Denote by ψ+
q,m1

(x) and
ψ−

q,m1
(x) their sums, respectively.

Theorem 3. We have

ψ+
1,m1

(x) = ex
x∫

0

1 − e−s

s
ds + m1εex

x∫
0

σ− (s)
s

ds, (62)

ψ−
1,m1

(x) = e−x
x∫

0

1 − es

s
ds − m1εe−x

x∫
0

σ+ (s)
s

ds. (63)

For every p ≥ 2, we have

ψ+
p,m1

(x) =
ex

(p − 2)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−2 es − 1

s
dsdt

+ m1ε
ex

(p − 2)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−2 esσ− (s)

s
dsdt, (64)

ψ−
p,m1

(x) =
e−x

(p − 2)!

x∫
0

t∫
0

et

t
(log t − log s)p−2 e−s − 1

s
dsdt

− m1ε
e−x

(p − 2)!

x∫
0

t∫
0

et

t
(log t − log s)p−2 e−sσ+ (s)

s
dsdt. (65)

Proof. The functions ψ+
p,m1

(x) and ψ−
p,m1

(x) can be written

ψ+
p,m1

(x) =
+∞

∑
m0=1

(
m0

∑
n=1

1
(n + m1ε)p

)
xm0+m1ε

(m0 + m1ε)!
,

ψ−
p,m1

(x) =
+∞

∑
m0=1

(−1)m0

(
m0

∑
n=1

1
(n + m1ε)p

)
xm0+m1ε

(m0 + m1ε)!
.

Which implies by computing the derivatives

dψ+
p,m1

dx
=

xm1ε

(1 + m1ε)p + ψ+
p,m1

(x) + λ+
p,m1

(x) , (66)

dψ−
p,m1

dx
= − xm1ε

(1 + m1ε)p − ψ−
p,m1

(x)− λ−
p,m1

(x) , (67)

where the functions λ+
p,m1

and λ−
p,m1

are given by

λ+
p,m1

(x) =
+∞

∑
m0=1

xm0+m1ε

(m0 + m1ε)! (m0 + 1 + m1ε)p , (68)

λ−
p,m1

(x) =
+∞

∑
m0=1

(−1)m0 xm0+m1ε

(m0 + m1ε)! (m0 + 1 + m1ε)p . (69)
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Clearly, there are two cases to deal with separately. The first one corresponds to p = 1. Here, the functions
λ+

1,m1
and λ+

1,m1
can be expressed as

λ+
1,m1

(x) =
+∞

∑
m0=1

xm0+m1ε

(m0 + 1 + m1ε)!

=
1
x

(
ex − 1 + exσ+ (x)m1ε − x1+m1ε

1 + m1ε

)
,

and

λ−
1,m1

(x) =
+∞

∑
m0=1

(−1)m0 xm0+m1ε

(m0 + 1 + m1ε)!

=
−1
x

(
+∞

∑
m0=1

(−1)m0 xm0+m1ε

(m0 + m1ε)!
− x1+m1ε

1 + m1ε

)

=
−1
x

(
e−x − 1 − e−xσ+ (x)m1ε +

x1+m1ε

1 + m1ε

)
.

The preceding formulas result in

dψ+
1,m1

dx
= ψ+

1,m1
(x) +

1
x
(
ex − 1 + e−xσ− (x)m1ε

)
, (70)

dψ−
1,m1

dx
= −ψ−

1,m1
(x) +

1
x
(
e−x − 1 − e−xσ+ (x)m1ε

)
. (71)

The solutions of the homogenious ODE corresponding to (70) and (71) are given by

ψ+
1,m1

(x) = C1ex and ψ−
1,m1

(x) = C2e−x,

where C1 and C2 are two dual constants. We now apply the method of variation of parameters to obtain

C1 (x) =

x∫
0

1 − e−s

s
ds + m1ε

x∫
0

σ− (s)
s

ds + C1,

C1 (x) =

x∫
0

1 − es

s
ds − m1ε

x∫
0

σ+ (s)
s

ds + C2,

Thus, since ψ−
1,m1

(0) = 0 and ψ+
1,m1

(0) = 0, the desired results follow.
The second case regarding p ≥ 2. We observe here that

λ+
p,m1

(x) =
dφ+

p,m1

dx
− xm1ε

(1 + m1ε)p ,

λ−
p,m1

(x) = −
dφ−

p,m1

dx
− xm1ε

(1 + m1ε)p ,

This allows us to obtain, keeping in mind (66) and (67)

dψ+
p,m1

dx
= ψ+

p,m1
(x) +

dφ+
p,m1

dx
,

dψ−
p,m1

dx
= −ψ−

p,m1
(x) +

dφ−
p,m1

dx
,
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On the other hand, using the Theorem 1, we can assert that

dφ+
p,m1

dx
=

1
(p − 2)!x

x∫
0

(log x − log s)p−2 es − 1
s

ds +
m1ε

(p − 2)!x

x∫
0

(log x − log s)p−2 esσ− (s)
s

ds.

dφ−
p,m1

dx
=

1
(p − 2)!x

x∫
0

(log x − log s)p−1 e−s − 1
s

ds +
m1ε

(p − 2)!x

x∫
0

(log x − log s)p−1 e−sσ+ (s)
s

ds.

This yields

dψ+
p,m1

dx
= ψp,m1 (x) +

1
(p − 2)!x

x∫
0

(log x − log s)p−2 es − 1
s

ds

+
m1ε

(p − 2)!x

x∫
0

(log x − log s)p−2 esσ− (s)
s

ds; (72)

dψ−
p,m1

dx
= −ψ−

p,m1
(x) +

1
(p − 2)!x

x∫
0

(log x − log s)p−1 e−s − 1
s

ds

+
m1ε

(p − 2)!x

x∫
0

(log x − log s)p−1 e−sσ+ (s)
s

ds. (73)

Obviously, the homogeneous ODE corresponding to (72) and (73) admit the following functions as solutions

ψp,m1 (x) = C1ex and ψp,m1 (x) = C2e−x,

where C1 and C2 are two dual constants. By the method of variation of the parameter. It comes

C′
1 (x) =

e−x

(p − 2)!x

x∫
0

(log x − log s)p−2
(

es − 1
s

+
esσ− (s)

s
m1ε

)
ds,

C′
2 (x) =

ex

(p − 2)!x

x∫
0

(log x − log s)p−2
(

e−s − 1
s

+
e−sσ+ (s)

s
m1ε

)
ds,

So, since ψ−
p,m1

(0) = 0 and ψ+
p,m1

(0) = 0, formulas (64) and (65) are satisfied, thereby completing the proof.

Theorem 4. We have

+∞

∑
m0=1

H2
m0,1 + Hm0,2

m0!
xm0 = ex log x

x∫
0

1 − e−s

s
ds − ex

x∫
0

σ− (s)
s

ds, (74)

+∞

∑
m0=1

(−1)m0
H2

m0,1 + Hm0,2

m0!
xm0 = e−x log x

x∫
0

1 − es

s
ds − e−x

x∫
0

σ+ (s)
s

ds. (75)

If p ≥ 2, the following formulas are fulfilled

+∞

∑
m0=1

Hm0,p

m0!
xm0 =

ex

(p − 2)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−2 es − 1

s
dsdt, (76)

+∞

∑
m0=1

Hm0,1Hm0,p

m0!
xm0 =

1
(p − 2)!

ex log x
x∫

0

t∫
0

e−t

t
(log t − log s)p−2 es − 1

s
dsdt
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− p
(p − 1)!

ex
x∫

0

t∫
0

e−t

t
(log t − log s)p−1 es − 1

s
dsdt

− 1
(p − 2)!

ex
x∫

0

t∫
0

e−t

t
(log t − log s)p−2 esσ− (s)

s
dsdt, (77)

and

+∞

∑
m0=1

(−1)m0
H2

m0,1 + Hm0,2

m0!
xm0 =e−x log x

x∫
0

1 − es

s
ds − e−x

x∫
0

σ+ (s)
s

ds, (78)

+∞

∑
m0=1

(−1)m0
Hm0,1Hm0,p

m0!
xm0 =

e−x log x
(p − 2)!

x∫
0

t∫
0

et

t
(log t − log s)p−2 e−s − 1

s
dsdt

− p
(p − 1)!

e−x
x∫

0

t∫
0

et

t
(log t − log s)p−1 e−s − 1

s
dsdt

− 1
(p − 2)!

e−x
x∫

0

t∫
0

et

t
(log t − log s)p−2 e−sσ+ (s)

s
dsdt. (79)

Proof. Formulas (60) and (61) imply using (22) and (25)

ψ+
p,m1

(x) =
+∞

∑
m0=1

Hm0,p − m1 pHm0,p+1ε

m0!
(
1 + m1Hm0,1ε

) xm0+m1ε

= (1 + m1ε log x)
+∞

∑
m0=1

(
Hm0,p − m1 pHm0,p+1ε

) (
1 − m1Hm0,1ε

)
m0!

xm0

ψ−
p,m1

(x) =
+∞

∑
m0=1

(−1)m0
Hm0,p − m1 pHm0,p+1ε

m0!
(
1 + m1Hm0,1ε

) xm0+m1ε

= (1 + m1ε log x)
+∞

∑
m0=1

(−1)m0

(
Hm0,p − m1 pHm0,p+1ε

) (
1 − m1Hm0,1ε

)
m0!

xm0 .

So, the following formulas fold

ψ+
p,m1

(x) =
+∞

∑
m0=1

1
m0!

(
Hm0,p +

(
Hm0,p log x − Hm0,pHm0,1 − pHm0,p+1

)
m1ε

)
xm0 , (80)

ψ−
p,m1

(x) =
+∞

∑
m0=1

(−1)m0

m0!
(

Hm0,p +
(

Hm0,p log x − Hm0,p Hm0,1 − pHm0,p+1
)

m1ε
)

xm0 , (81)

Let us start with the case p = 1. One can easily obtain making use (62), (63), (80) and (81)

+∞

∑
m0=1

Hm0,1

m0!
xm0 = ex

x∫
0

1 − e−s

s
ds,

+∞

∑
m0=1

(−1)m0
Hm0,1

m0!
xm0 = e−x

x∫
0

1 − es

s
ds,

and

+∞

∑
m0=1

H2
m0,1 + Hm0,2

m0!
xm0 = ex log x

x∫
0

1 − e−s

s
ds − ex

x∫
0

σ− (s)
s

ds,
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+∞

∑
m0=1

(−1)m0
H2

m0,1 + Hm0,2

m0!
xm0 = e−x log x

x∫
0

1 − es

s
ds − e−x

x∫
0

σ+ (s)
s

ds,

Moreover, for p ≥ 2, we can infer taking into account (64), (65), (80) and (81)

ex

(p − 2)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−2 es − 1

s
dsdt + m1ε

ex

(p − 2)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−2 es

s
σ− (s) dsdt

=
+∞

∑
m0=1

1
m0!

(
Hm0,p +

(
Hm0,p log x − Hm0,p Hm0,1 − pHm0,p+1

)
m1ε

)
xm0 ,

and

e−x

(p − 2)!

x∫
0

t∫
0

et

t
(log t − log s)p−2 e−s − 1

s
dsdt + m1ε

e−x

(p − 2)!

x∫
0

t∫
0

et

t
(log t − log s)p−2 e−sσ+ (s)

s
dsdt

=
+∞

∑
m0=1

(−1)m0

m0!
(

Hm0,p +
(

Hm0,p log x − Hm0,p Hm0,1 − pHm0,p+1
)

m1ε
)

xm0 .

Thus, we deduce that

+∞

∑
m0=1

Hm0,p

m0!
xm0 =

ex

(p − 2)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−2 es − 1

s
dsdt,

+∞

∑
m0=1

(−1)m0
Hm0,p

m0!
xm0 =

e−x

(p − 2)!

x∫
0

t∫
0

et

t
(log t − log s)p−2 e−s − 1

s
dsdt,

and

+∞

∑
m0=1

Hm0,pHm0,1

m0!
xm0 =

ex log x
(p − 2)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−2 es − 1

s
dsdt

− p
ex

(p − 1)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−1 es − 1

s
dsdt

− ex

(p − 2)!

x∫
0

t∫
0

e−t

t
(log t − log s)p−2 esσ− (s)

s
dsdt,

and

+∞

∑
m0=1

(−1)m0
Hm0,p Hm0,1

m0!
xm0 =

e−x log x
(p − 2)!

x∫
0

t∫
0

et

t
(log t − log s)p−2 e−s − 1

s
dsdt

− p
e−x

(p − 1)!

x∫
0

t∫
0

et

t
(log t − log s)p−1 e−s − 1

s
dsdt

− e−x

(p − 2)!

x∫
0

t∫
0

et

t
(log t − log s)p−2 e−sσ+ (s)

s
dsdt.
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3.3. Application 3

Given m =
n
∑

i=0
miε

i ∈ Z+
n (ε) and consider the two log−series given by

+∞

∑
m0=1

Fm0+m1ε

(m0 + m1ε)p xm0+m1ε, (82)

+∞

∑
m0=1

(−1)m0
Fm0+m1ε

(m0 + m1ε)p xm0+m1ε. (83)

It easy to verify that the both log−series converge for every x ∈ [0, 1[ . Denote by µ+
p,m1

(x) and µ−
p,m1

(x) their
sums, respectively.

Theorem 5. We have

µ+
0,m1

(x) =
1

1 − x
(
ex − 1 + exσ− (x)m1ε

)
, (84)

µ−
0,m1

(x) =
1

1 + x
(
e−x − 1 − e−xσ+ (x)m1ε

)
. (85)

For every p ≥ 1, we have

µ+
p,m1

(x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s (1 − s)

ds

+m1ε
1

(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s (1 − s)

ds, (86)

µ−
p,m1

(x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1 e−s − 1
s (1 + s)

ds

+m1ε
1

(p − 1)!

x∫
0

(log x − log s)p−1 e−sσ+ (s)
s (1 + s)

ds. (87)

Proof. Suppose first that p = 0. We have

µ+
0,m1

(x) =
+∞

∑
m0=1

Fm0+m1εxm0+m1ε,

µ−
0,m1

(x) =
+∞

∑
m0=1

(−1)m0 Fm0+m1εxm0+m1ε,

Then,

µ+
0,m1

(x) = xm1ε
+∞

∑
m0=1

(
m0

∑
n=1

1
(n + m1ε)!

)
xm0

= xm1ε
+∞

∑
m0=1

1
(m0 + m1ε)!

+∞

∑
n=m0

xn

=
xm1ε

1 − x

(
+∞

∑
m0=1

xm0

(m0 + m1ε)!

)

=
1

1 − x

+∞

∑
m0=1

xm0+m1ε

(m0 + m1ε)!

=
1

1 − x
(
ex − 1 + m1exσ− (x) ε

)
,
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and

µ−
0,m1

(x) = xm1ε
+∞

∑
m0=1

(−1)m0

(
m0

∑
n=1

1
(n + m1ε)!

)
xm0

= xm1ε
+∞

∑
m0=1

1
(m0 + m1ε)!

+∞

∑
n=m0

(−1)n xn

=
xm1ε

1 + x

(
+∞

∑
m0=1

(−1)m0 xm0

(m0 + m1ε)!

)

=
1

1 + x

+∞

∑
m0=1

(−1)m0 xm0+m1ε

(m0 + m1ε)!

=
1

1 + x
(
e−x − 1 − e−xσ+ (x)m1ε

)
.

These eventually yield (84) and (85). For p ≥ 1, we proceed as follows. Note that

µ+
p,m1

(x) =
+∞

∑
m0=1

Fm0+m1ε

(m0 + m1ε)p xm0+m1ε

=
+∞

∑
m0=1

(
m0

∑
n=1

1
(n + m1ε)!

)
xm0+m1ε

(m0 + m1ε)p ,

and

µ−
p,m1

(x) =
+∞

∑
m0=1

(−1)m0
Fm0+m1ε

(m0 + m1ε)p xm0+m1ε

=
+∞

∑
m0=1

(−1)m0

(
m0

∑
n=1

1
(n + m1ε)!

)
xm0+m1ε

(m0 + m1ε)p .

The above two formulas imply by calculating the derivatives of the two hand sides, respectively, that

dµ+
p,m1

dx
=

+∞

∑
m0=1

(
m0

∑
n=1

1
(n + m1ε)!

)
xm0−1+m1ε

(m0 + m1ε)p−1

=
µ+

p−1,m1
(x)

x
,

and

dµ−
p,m1

dx
=

+∞

∑
m0=1

(−1)m0

(
m0

∑
n=1

1
(n + m1ε)!

)
xm0−1+m1ε

(m0 + m1ε)p−1

=
µ−

p−1,m1
(x)

x
.

Thus, Lemma 5 permits us to find

µ+
p,m1

(x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1 µ+
0,m1

(x)

s
ds,

and

µ−
p,m1

(x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1 µ−
0,m1

(x)

s
ds.
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These permit us to conclude exploiting (84) and (85)

µ+
p,m1

(x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1

s (1 − s)
(
es − 1 + esσ− (s)m1ε

)
ds

=
1

(p − 1)!

x∫
0

es − 1
s (1 − s)

(log x − log s)p−1 ds

+
m1ε

(p − 1)!

x∫
0

es

s (1 − s)
(log x − log s)p−1 σ− (s) ds,

and

µ−
p,m1

(x) =
1

(p − 1)!

x∫
0

(log x − log s)p−1

s (1 + s)
(
e−s − 1 − e−sσ+ (s)m1ε

)
ds

=
1

(p − 1)!

x∫
0

e−s − 1
s (1 + s)

(log x − log s)p−1 ds

+
m1ε

(p − 1)!

x∫
0

e−s

s (1 + s)
(log x − log s)p−1 σ+ (s) ds.

Which allows us to finalize the proof.

Theorem 6. We have

+∞

∑
m0=1

Fm0 xm0 =
ex + x − 1

1 − x
, (88)

+∞

∑
m0=1

(−1)m0 Fm0 xm0 =
e−x − x − 1

1 + x
, (89)

and

+∞

∑
m0=1

(
m0

∑
n=1

Hn,1

n!

)
xm0 =

ex − 1
1 − x

log x − exσ− (x)
1 − x

, (90)

+∞

∑
m0=1

(−1)m0

(
m0

∑
n=1

Hn,1

n!

)
xm0 =

e−x − 1
1 + x

log x +
e−xσ+ (x)

1 + x
, (91)

For every p ≥ 1, we have

+∞

∑
m0=1

Fm0

mp
0

xm0 = Lip (x) +
1

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s (1 − s)

ds, (92)

+∞

∑
m0=1

(−1)m0
Fm0

mp
0

xm0 = Lip (−x) +
1

(p − 1)!

x∫
0

(log x − log s)p−1 e−s − 1
s (1 + s)

ds, (93)

+∞

∑
m0=1

1
mp

0

(
m0

∑
n=1

Hn,1

n!

)
xm0 =

1
(p − 1)!

x∫
0

(log x − log s)p−1

s (1 − s)
(
(es − 1) log s − esσ− (s)

)
ds, (94)

+∞

∑
m0=1

(−1)m0 1
mp

0

(
m0

∑
n=1

Hn,1

n!

)
xm0 =

1
(p − 1)!

x∫
0

(log x − log s)p−1

s (1 + s)
((

e−s − 1
)

log s − e−sσ+ (s)
)

ds, (95)
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where Lip represents the polylogarithm function given by

Lip (x) =
+∞

∑
n=1

xk

kp . (96)

For further details regarding the function Lip, see the references [21,22].

Proof. For every p ≥ 0, we have

µ+
p,m1

(x) =
+∞

∑
m0=1

1
mp

0

(
Fm0 − 1 − m1ε

m0

∑
n=1

Hn,1

n!

)(
1 − p

m1

m0
ε

)
xm0+m1ε

=
+∞

∑
m0=1

Fm0 − 1
mp

0
xm0 + m1ε

+∞

∑
m0=1

1
mp

0

(
(Fm0 − 1) log x − p

Fm0 − 1
m0

−
m0

∑
n=1

Hn,1

n!

)
xm0 , (97)

and

µ−
p,m1

(x) =
+∞

∑
m0=1

(−1)m0

mp
0

(
Fm0 − 1 − m1ε

m0

∑
n=1

Hn,1

n!

)(
1 − p

m1

m0
ε

)
xm0+m1ε

=
+∞

∑
m0=1

(−1)m0
Fm0 − 1

mp
0

xm0 + m1ε
+∞

∑
m0=1

(−1)m0

mp
0

(
(Fm0 − 1) log x − p

Fm0 − 1
m0

−
m0

∑
n=1

Hn,1

n!

)
xm0 . (98)

Suppose first that p = 0. We can infer using (97) and (98) that

µ+
0,m1

(x) =
+∞

∑
m0=1

(Fm0 − 1) xm0 + m1ε
+∞

∑
m0=1

(
(Fm0 − 1) log x −

m0

∑
n=1

Hn,1

n!

)
xm0 ,

and

µ−
0,m1

(x) =
+∞

∑
m0=1

(−1)m0 (Fm0 − 1) xm0 + m1ε
+∞

∑
m0=1

(−1)m0

(
(Fm0 − 1) log x −

m0

∑
n=1

Hn,1

n!

)
xm0 .

So, we deduce keeping in mind (84) and (85) that

+∞

∑
m0=1

Fm0 xm0 =
ex − 1
1 − x

+
+∞

∑
m0=1

xm0

=
ex + x − 1

1 − x
,

and

+∞

∑
m0=1

(−1)m0 Fm0 xm0 =
e−x − 1
1 + x

+
+∞

∑
m0=1

(−1)m0 xm0

=
e−x − x − 1

1 + x
.

Also, the following formulas come

+∞

∑
m0=1

(
m0

∑
n=1

Hn,1

n!

)
xm0 = log x

+∞

∑
m0=1

1
mp

0
(Fm0 − 1) xm0 − ex

1 − x
σ− (x)

=
1

1 − x
(
(ex − 1) log x − exσ− (x)

)
,
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and

+∞

∑
m0=1

(−1)m0

(
m0

∑
n=1

Hn,1

n!

)
xm0 = log x

+∞

∑
m0=1

(−1)m0 (Fm0 − 1) xm0 − e−x

1 + x
σ+ (x)

=
1

1 + x
((

e−x − 1
)

log x + e−xσ+ (x)
)

.

Considering now the case p ≥ 1. Combining (86) and (97) we find

=
+∞

∑
m0=1

Fm0 − 1
mp

0
xm0 −

+∞

∑
m0=1

1
mp

0

(
(Fm0 − 1) log x − p

Fm0 − 1
m0

−
m0

∑
n=1

Hn,1

n!

)
xm0 m1ε

=
1

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s (1 − s)

ds + m1ε
1

(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s (1 − s)

ds.

This yields

+∞

∑
m0=1

Fm0

mp
0

xm0 =
+∞

∑
m0=1

1
mp

0
xm0 +

1
(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s (1 − s)

ds

= Lip (x) +
1

(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s (1 − s)

ds,

and

+∞

∑
m0=1

1
mp

0

(
m0

∑
n=1

Hn,1

n!

)
xm0 = log x

+∞

∑
m0=1

Fm0 − 1
mp

0
xm0 − p

+∞

∑
m0=1

Fm0 − 1

mp+1
0

xm0

− 1
(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s (1 − s)

ds

=
1

(p − 1)!
log x

x∫
0

(log x − log s)p−1 es − 1
s (1 − s)

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p es − 1
s (1 − s)

ds

− ex

(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s (1 − s)

ds.

Hence, we get

+∞

∑
m0=1

1
mp

0

(
m0

∑
n=1

Hn,1

n!

)
xm0 =

log x
(p − 1)!

x∫
0

(log x − log s)p−1 es − 1
s (1 − s)

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p es − 1
s (1 − s)

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p−1 esσ− (s)
s (1 − s)

ds.
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This provides (92) and (94). To establish (93) and (95) it is enough to combine (87) and (98) in order to derive
the following formulas

+∞

∑
m0=1

(−1)m0
Fm0

mp
0

xm0 = Lip (−x) +
1

(p − 1)!

x∫
0

(log x − log s)p−1 e−s − 1
s (1 + s)

ds,

and

+∞

∑
m0=1

(−1)m0 1
mp

0

(
(Fm0 − 1) log x − p

Fm0 − 1
m0

−
m0

∑
n=1

Hn,1

n!

)
xm0

=
1

(p − 1)!

x∫
0

(log x − log s)p−1 e−sσ+ (s)
s (1 + s)

ds.

So, we get

+∞

∑
m0=1

(−1)m0 1
mp

0

(
m0

∑
n=1

Hn,1

n!

)
xm0 = log x

+∞

∑
m0=1

(−1)m0
Fm0 − 1

mp
0

xm0 − p
+∞

∑
m0=1

(−1)m0
Fm0 − 1

mp+1
0

xm0

− 1
(p − 1)!

x∫
0

(log x − log s)p−1 e−s

s (1 + s)
σ+ (s) ds

=
log x

(p − 1)!

x∫
0

(log x − log s)p−1 e−s − 1
s (1 + s)

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p e−s − 1
s (1 + s)

ds

− ex

(p − 1)!

x∫
0

(log x − log s)p−1 e−sσ+ (s)
s (1 + s)

ds.

Hence, we find

+∞

∑
m0=1

(−1)m0 1
mp

0

(
m0

∑
n=1

Hn,1

n!

)
xm0 =

1
(p − 1)!

log x
x∫

0

(log x − log s)p−1 e−s − 1
s (1 + s)

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p e−s − 1
s (1 + s)

ds

− 1
(p − 1)!

x∫
0

(log x − log s)p−1 e−s

s (1 + s)
σ+ (s) ds.

Which eventually yields the desired results and completes the proof of the theorem.
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