
Article

Uniqueness of weak solution for nonlocal (p, q)-Kirchhoff
system

Salah A. Khafagy1 and A. Ezzat Mohamed2,∗

1 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt.
2 Department of Mathematics, Faculty of Science, Fayoum University, Fayoum (63514), Egypt.
* Correspondence: aam35@fayoum.edu.eg

Communicated by: Absar Ul Haq
Received: 11 November 2024; Accepted: 30 November 2024; Published: 20 December 2024.

Abstract: The paper aims to investigate the existence and uniqueness of weak solution, using the Browder
Theorem method, for the nonlocal (p, q)-Kirchhoff system:

−K1
( ∫

Ω |∇ϕ|p
)
∆pϕ + λa(x)|ϕ|p−2ϕ = f1(x, ϕ, ψ), x ∈ Ω

−K2
( ∫

Ω |∇ψ|q
)
∆qψ + λb(x)|ψ|q−2v = f2(x, ϕ, ψ), x ∈ Ω

ϕ = ψ = 0, x ∈ ∂Ω

where Ω is a bounded domain in RN with smooth boundary ∂Ω, with K1, K2 be continuous functions and
f1, f2 be Carathéodory functions.

Keywords: nonlocal elliptic, weak solution, p-Kirchhoff problem.
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1. Introduction

T his paper investigates the existence and uniqueness of weak solutions to the nonlocal (p, q)-Kirchhoff
system, using the Browder Theorem method. The system is given by:

−K1
(∫

Ω |∇ϕ|p
)

∆pϕ + λa(x)|ϕ|p−2ϕ = f1(x, ϕ, ψ), x ∈ Ω,

−K2
(∫

Ω |∇ψ|q
)

∆qψ + λb(x)|ψ|q−2ψ = f2(x, ϕ, ψ), x ∈ Ω,

ϕ = ψ = 0, x ∈ ∂Ω,

(1)

where ∆rz ≡ div(|∇z|r−2∇z) denotes the r-Laplacian for r = p, q, with 1 < r < N, λ is a positive parameter,
and 0 < α ≤ a(x) ≤ β < ∞, 0 < γ ≤ b(x) ≤ δ < ∞. The domain Ω is a bounded subset of RN with smooth
boundary ∂Ω. Additionally, the functions K1, K2, f1, and f2 satisfy the following conditions:

(L1) The functions K1 and K2 are continuous and increasing, such that

0 < ki ≤ Ki(t) ≤ ki,∞, ∀t ∈ [0, ∞), i = 1, 2. (2)

(L2) The functions f1 and f2 : Ω ×R×R → R are Carathéodory functions, decreasing with respect to the
second and third variables, respectively. Specifically, if w2 ≤ w1 and s2 ≤ s1, then

f1(x, w1, s) ≤ f1(x, w2, s) and f2(x, w, s1) ≤ f2(x, w, s2), (3)

for almost every x ∈ Ω and all w1, w2, s1, s2 ∈ R.
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(L3) There exist f̄1 ∈ Lp′(Ω) and f̄2 ∈ Lq′(Ω) such that:| f1(x, w, s)| ≤ c1

[
f̄1(x) + |w|p−1 + |s|q/p′

]
,

| f2(x, w, s)| ≤ c2

[
f̄2(x) + |w|p/q′ + |s|q−1

]
,

(4)

where c1, c2 > 0, p′ = p
p−1 , and q′ = q

q−1 .
Previous studies have focused on nonlocal Kirchhoff-type elliptic systems, such as:{

−M
(∫

Ω |∇u|2
)

∆u = h(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(5)

where M is a continuous function on R+, and h(x, u) is continuous on Ω̄×R (see [1–3]). The stationary version
of the Kirchhoff equation associated with problem (5) is:

utt − M
(∫

Ω
|∇xu|2

)
∆xu = h(x, t),

where M(t) = αt + β with α, β > 0. In [4], the authors established the existence of a positive weak solution for
the nonlocal p-Kirchhoff-type system:{

−
[
K
(∫

Ω |∇u|p
)]p−1 ∆pu = f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(6)

using critical point theory, where f ∈ CAR(Ω̄ ×R+) and K is a continuous increasing function satisfying:

K(t) ≥ k0 > 0 ∀t ∈ R+. (7)

In [5], the authors proved existence and multiplicity results for solutions of (6) using the Genus theory
introduced by Krasnoselskii. The existence and uniqueness of weak solutions for the p-Laplacian system
using the Browder theorem were studied in [6], while [7] generalized these results to the case of weighted
p-Laplacians.

Boulaaras et al. [8] discussed the existence of weak solutions for the sublinear Kirchhoff elliptic system
using the sub-super solutions method:

−M1
(∫

Ω |∇u|2
)

∆u = λ1uα + µ1vβ, x ∈ Ω,

−M2
(∫

Ω |∇v|2
)

∆v = λ2uδ + µ2vγ, x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(8)

where M1, M2 are continuous increasing functions, and λ1, λ2, µ1, µ2 are positive parameters, with α + δ < 1
and β + γ < 1.

The system (1) is classified as a nonlocal problem due to the integrals in the first two equations, which
prevent the equations from being pointwise identities. It is analogous to the stationary version of the Kirchhoff
equation:

ρ
∂2u
∂t2 −

[
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

]
∂2u
∂x2 = 0, (9)

originally presented by Kirchhoff in 1883 (see [9]), where ρ is the mass density, P0 is the initial tension, E is the
Young modulus, h is the cross-sectional area, and L is the length of the string.

The study of Kirchhoff and p-Kirchhoff type problems has been the subject of much attention due to
their theoretical and practical significance. Notable works include [10–14], where topological and variational
techniques were employed to prove the existence of weak solutions.

The Browder Theorem method has been successfully applied to prove the existence of positive weak
solutions for various nonlinear systems (see [6,15–18]).
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This work extends previous studies by considering a system with the p-Laplacian operator, which is
particularly relevant in physical scenarios such as fluid mechanics (see [19]).

The structure of this paper is as follows: Section 2 provides a brief overview of relevant concepts,
definitions, and theorems, along with the space setting for our problem. In Section 3, we present the proof
of the main results.

2. Space Setting and Preliminaries

In this section, we outline important concepts, definitions, and theorems related to the operators used in
this work, which are discussed in detail in [20].

Definition 1. Let K be a real Banach space, and let T : K → K∗ be an operator. For all ϕ, ϕ1, ϕ2, ϕn ∈ K, the
operator T is:

(a) Bounded: if it maps bounded sets to bounded sets, i.e.,

∀r > 0, ∃M > 0 : ∥ϕ∥ ≤ r =⇒ ∥T(ϕ)∥ ≤ M, where M depends on r.

(b) Coercive: if

lim
∥ϕ∥→∞

⟨T(ϕ), ϕ⟩
∥ϕ∥ = ∞.

(c) Monotone: if
⟨T(ϕ1)− T(ϕ2), ϕ1 − ϕ2⟩ ≥ 0.

(d) Strictly monotone: if

⟨T(ϕ1)− T(ϕ2), ϕ1 − ϕ2⟩ > 0 for ϕ1 ̸= ϕ2.

(e) Strongly monotone: if there exists c > 0 such that

⟨T(ϕ1)− T(ϕ2), ϕ1 − ϕ2⟩ ≥ c∥ϕ1 − ϕ2∥2.

(f) Continuous: if ϕn → ϕ implies T(ϕn) → T(ϕ).
(g) Strongly continuous: if ϕn

w−→ ϕ implies T(ϕn) → T(ϕ).
(h) Demicontinuous: if ϕn → ϕ implies T(ϕn)

w−→ T(ϕ).

Remark 1. • Every continuous operator is demicontinuous.
• Every strictly monotone operator is monotone.
• Every strongly monotone operator is coercive if T is linear on a Hilbert space K.

Theorem 1. (Browder Theorem [21]) Let T : K → K∗ be an operator on a reflexive real Banach space K. Moreover, if
the operator T is: bounded, demicontinuous, monotone and coercive on the space K. Hence, the equation T(u) = f has
at least one solution u ∈ K for each f ∈ K∗. If furthermore, T is strictly monotone operator, then the equation T(u) = f
has precisely one solution u ∈ K for every f ∈ K∗.

Next, we recall some background facts concerning the Sobolev spaces:

• W1,p(Ω) is defined as the completion of C∞
0 (Ω) with the norm

∥u∥W1,p(Ω) =

[∫
Ω
|u|p +

∫
Ω
|∇u|p

] 1
p

. (10)

• W1,p
0 (Ω) is defined as the closure of C∞

0 (Ω) in W1,p(Ω) with the norm

∥u∥
W1,p

0 (Ω)
=

[∫
Ω
|∇u|p

] 1
p

, (11)
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for 1 < p < ∞, which are well defined reflexive Banach Spaces. Also, ∥u∥W1,p(Ω) and ∥u∥
W1,p

0 (Ω)
are

equivalent norms.

For simplicity, we consider W1 = W1,p
0 (Ω) and W2 = W1,q

0 (Ω). The space setting of our problem is the
Banach space W = W1 × W2 and the norm of z = (ϕ, ψ) ∈ W is defined as ∥z∥W = ∥ϕ∥W1 + ∥ψ∥W2 , where

∥ϕ∥W1 =
( ∫

Ω |∇ϕ|p
) 1

p and ∥ψ∥W2 =
( ∫

Ω |∇ψ|q
) 1

q . From the continuity of the embedding

W1 × W2 ↪→↪→ Lp(Ω)× Lq(Ω)

there exist positive constants Cp and Cq such that

∥ϕ∥Lp(Ω) ≤ Cp∥ϕ∥W1 , ∥ψ∥Lq(Ω) ≤ Cq∥ψ∥W2 ∀(ϕ, ψ) ∈ W. (12)

Readers can find more details about the space setting in [22] and its references. Throughout this paper,
the notation ⟨·, ·⟩ represents the duality pairing between W and W∗.

3. Existence and Uniqueness Results

In this section, we prove that system (1) has a unique solution via the Browder theorem method.

Definition 2. We say (ϕ, v) ∈ W to be a weak solution for system (1) if

K1
(
∥ϕ∥p

W1

) ∫
Ω
|∇ϕ|p−2∇ϕ · ∇ρ1 + λ

∫
Ω

a(x)|ϕ|p−2ϕρ1 =
∫

Ω
f1(x, ϕ, ψ)ρ1 ∀ρ1 ∈ W1,

K2
(
∥ψ∥q

W2

) ∫
Ω
|∇ψ|q−2∇ψ · ∇ρ2 + λ

∫
Ω

b(x)|ψ|q−2ψρ2 =
∫

Ω
f2(x, ϕ, ψ)ρ2 ∀ρ2 ∈ W2,

where ∥ϕ∥W1 is the usual norm in W1. The following theorem summarizes our main results for problem (1).

Theorem 2. Let (L1)− (L3) are satisfied, then system (1) has a unique solution.

Proof. Suppose λ ∈ R+ and define the operator T : W → W∗ as

T(ϕ, ψ) := J(ϕ, ψ) + λS(ϕ, ψ)− R(x, ϕ, ψ),

where the operators J, S : W → W∗ are given by

⟨J(ϕ, ψ), (ρ1, ρ2)⟩ := ⟨J1(ϕ), ρ1⟩+ ⟨J2(ψ), ρ2⟩ ,

where,

⟨J1(ϕ), ρ1⟩ = K1
(
∥ϕ∥p

W1

) ∫
Ω
|∇ϕ|p−2∇ϕ · ∇ρ1,

⟨J2(ψ), ρ2⟩ = K2
(
∥ψ∥q

W2

) ∫
Ω
|∇ψ|q−2∇ψ · ∇ρ2,

and,
⟨S(ϕ, ψ), (ρ1, ρ2)⟩ := ⟨S1(ϕ), ρ1⟩+ ⟨S2(ψ), ρ2⟩ ,

where,
⟨S1(ϕ), ρ1⟩ =

∫
Ω

a(x)|ϕ|p−2ϕρ1, ⟨S2(ψ), ρ2⟩ =
∫

Ω
b(x)|ψ|q−2ψρ2,

also, the operator R : Ω × W → W∗ is given by

⟨R(x, ϕ, ψ), (ρ1, ρ2)⟩ := ⟨R1(x, ϕ, ψ), ρ1⟩+ ⟨R2(x, ϕ, ψ), ρ2⟩ ,

where,
⟨R1(x, ϕ, ψ), ρ1⟩ =

∫
Ω

f1(x, ϕ, ψ)ρ1, ⟨R2(x, ϕ, ψ), ρ2⟩ =
∫

Ω
f2(x, ϕ, ψ)ρ2,
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∀(ρ1, ρ2) ∈ W. We say (ϕ, ψ) ∈ W to be a weak solution for system (1) if

⟨T(ϕ, ψ), (ρ1, ρ2)⟩ = ⟨J(ϕ, ψ), (ρ1, ρ2)⟩+ λ ⟨S(ϕ, ψ), (ρ1, ρ2)⟩ − ⟨R(x, ϕ, ψ), (ρ1, ρ2)⟩ = 0,

holds for any (ρ1, ρ2) ∈ W. Finding (ϕ, ψ) ∈ W that satisfies the operator equation T(ϕ, ψ) = 0 is the equivalent
of finding a weak solution for system (1).

We split our proof into several steps, in order to apply Browder Theorem:
Step 1. We prove the operators J, S and R are well defined. By Hölder’s inequality, for the operator J, we have

|⟨J1(ϕ), ρ1⟩| ≤
∣∣∣K1

(
∥ϕ∥p

W1

)∣∣∣ ∫
Ω
|∇ϕ|p−1 |∇ρ1|

≤ k1,∞

(∫
Ω
|∇ϕ|p

) 1
p′
( ∫

Ω
|∇ρ1|p

) 1
p

< ∞.

Similarly, for the operator J2. Therefore, since their sum is well defined, then the operator J is well defined.
For the operator S, we have

|⟨S1(ϕ), ρ1⟩| ≤
∫

Ω
a(x)|ϕ|p−1 |ρ1| ≤ β

( ∫
Ω

|ϕ|p
) 1

p′
( ∫

Ω
|ρ1|p

) 1
p

< ∞.

Similarly,

|⟨S2(ψ), ρ2⟩| ≤
∫

Ω
b(x)|ψ|q−1|ρ2| ≤ δ

(∫
Ω
|ψ|q

) 1
q′
(∫

Ω
|ρ2|q

) 1
q
< ∞.

So, both S1 and S2 are well defined, then the operator S is well defined.
Also, the operator R can be written as the sum of R1 and R2. For the operator R1, we get

|⟨R1(x, ϕ, ψ), ρ1⟩| ≤ c1

(∫
Ω

(
f̄1(x) + |ϕ|p−1 + |ψ|q/p′ ) |ρ1|

)
≤ c1

[(∫
Ω
| f̄1(x)|p′

) 1
p′
+

(∫
Ω
|ϕ|p

) 1
p′
+

(∫
Ω
|ψ|q

) 1
p′
](∫

Ω
|ρ1|p

) 1
p

= c1

[∣∣∣∣ f̄1
∣∣∣∣

Lp′ (Ω)
+ ||ϕ||p/p′

Lp(Ω)
+ ||ψ||q/p′

Lq(Ω)

]
||ρ1||Lp(Ω) < ∞.

Similarly, for the operator R2, and hence R is well defined.
Step 2. The operators J, S and R are bounded. Indeed, ∀ϕ, ψ such that ||ϕ||W1

≤ H, ||ψ||W2
≤ L, for the

operator J, we have

||J1(ϕ)||W∗ = sup
||ρ1||W1

≤1
|⟨J1(ϕ), ρ1⟩|

≤ k1,∞ sup
||ρ1||W1

≤1

∫
Ω
|∇ϕ|p−1|∇ρ1|

≤ k1,∞ sup
||ρ1||W1

≤1

(∫
Ω
|∇ϕ|p

) 1
p′
(∫

Ω
|∇ρ1|p

) 1
p

≤ k1,∞Hp/p′ .

Similarly,

||J2(ψ)||W∗ ≤ k2,∞ sup
||ρ2||W2

≤1

(∫
Ω
|∇ψ|q

) 1
q′
(∫

Ω
|∇ρ2|q

) 1
q

≤ k2,∞Lq/q′ .

Hence J is bounded.
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Also, for the operator S, we have

||S1(ϕ)||W∗ = sup
||ρ1||W1

≤1
|⟨S1(ϕ), ρ1⟩| ≤ β sup

||ρ1||W1
≤1

(∫
Ω
|ϕ|p

) 1
p′
(∫

Ω
|ρ1|p

) 1
p

≤ βCp
p Hp/p′ .

Similarly,

||S2(ψ)||W∗ ≤ δ sup
||ρ2||W2

≤1

(∫
Ω
|ψ|q

) 1
q′
(∫

Ω
|ρ2|q

) 1
q

≤ δCq
qLq/q′ .

Then S is bounded.
Finally, for the operator R1, we have

||R1(x, ϕ, ψ)||W∗ = sup
||ρ1||W1

≤1
|⟨R1(x, ϕ, ψ), ρ1⟩|

≤ c1 sup
||ρ1||W1

≤1

∫
Ω

(
f̄1(x) + |ϕ|p−1 + |ψ|q/p′ ) |ρ1|

≤ c1 sup
||ρ1||W1

≤1

[∣∣∣∣ f̄1
∣∣∣∣

Lp′ (Ω)
+ ||ϕ||p/p′

Lp(Ω)
+ ||ψ||q/p′

Lq(Ω)

]
||ρ1||Lp(Ω)

≤ c1Cp(
∣∣∣∣ f̄1

∣∣∣∣
Lp′ (Ω)

+ Cp
p/p′ ∥ϕ∥p/p′

W1
+ Cq

q/p′ ||ψ||q/p′
W2

)

≤ c1Cp
( ∣∣∣∣ f̄1

∣∣∣∣
Lp′ (Ω)

+ Cp
p/p′ Mp/p′ + Cq

q/p′ Nq/p′).

Similarly,

||R2(x, ϕ, ψ)||W∗ = sup
||ρ2||W2

≤1
|⟨R2(x, ϕ, ψ), ρ2⟩|

≤ c2Cq
( ∣∣∣∣ f̄2

∣∣∣∣
Lq′ (Ω)

+ Cq
q/q′ Nq/q′ + Cp

p/q′ Mp/q′).

Hence R is bounded.
Step 3. The operators J, S and R are continuous. Let{

ϕn −→ ϕ in W1 =⇒ ∥ϕn − ϕ∥W1
−→ 0 =⇒ ∥∇ϕn −∇ϕ∥Lp(Ω) −→ 0,

ψn −→ ψ in W2 =⇒ ∥ψn − ψ∥W2
−→ 0 =⇒ ∥∇ψn −∇ψ∥Lq(Ω) −→ 0.

Applying Dominated Convergence Theorem, for the operator J, we have

∥J1(ϕn)− J1(ϕ)∥W∗ = sup
||ρ1||W1

≤1
|⟨J1(ϕn)− J1(ϕ), ρ1⟩|

≤ k1,∞

(∫
Ω

[
|∇ϕn|p−2∇ϕn − |∇ϕ|p−2∇ϕ

]p′
) 1

p′
→ 0 for n → ∞.

Similarly,

∥J2(ψn)− J2(ψ)∥W∗ = sup
||ρ2||W2

≤1
|⟨J2(ψn)− J2(ψ), ρ2⟩|

≤ k2,∞

(∫
Ω

[
|∇ψn|q−2∇ψn − |∇ψ|q−2∇ψ

]q′
) 1

q′
→ 0 for n → ∞.

Hence J is continuous.
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Also, for the operator S, we have

∥S1(ϕn)− S1(ϕ)∥W∗ = sup
||ρ1||W1

≤1
|⟨S1(ϕn)− S1(ϕ), ρ1⟩|

≤ βCp

(∫
Ω

[
|ϕn|p−2ϕn − |ϕ|p−2ϕ

]p′
) 1

p′
→ 0 for n → ∞.

Similarly,

∥S2(ψn)− S2(ψ)∥W∗ ≤ δCq

(∫
Ω

[
|ψn|q−2ψn − |ψ|q−2ψ

]q′
) 1

q′
→ 0 for n → ∞.

Hence S is continuous.
Finally, since f1, f2 be Carathéodory functions satisfy (L3), then the Nemytskij operators R1 acting from

W into Lp′(Ω) and R2 acting from W into Lq′(Ω) are continuous operators (see[20]). Hence R is continuous.
Step 4. We prove T is a monotone operator. Let p ≥ 2, then we have (see [23])

|y2|p ≥ |y1|p + p |y1|p−2 y1(y2 − y1) +
|y2 − y1|p

2p−1 − 1
∀y1, y2 ∈ RN . (13)

From (L1) and using (13) for p ≥ 2, we get

⟨J1(ϕ)− J1(ρ1), ϕ − ρ1⟩ = K1
(
∥ϕ∥p

W1

) ∫
Ω

[
|∇ϕ|p−2∇ϕ − |∇ρ1|p−2∇ρ1

]
(∇ϕ −∇ρ1)

≥ k1

[ ∫
Ω
|∇ϕ|p−2∇ϕ(∇ϕ −∇ρ1)−

∫
Ω
|∇ρ1|p−2∇ρ1(∇ϕ −∇ρ1)

]
≥ 2k1

p(2p−1 − 1)

∫
Ω
|∇ϕ −∇ρ1|p

= k1µp ∥ϕ − ρ1∥
p
W1

,

where µp = 2
p(2p−1−1)

. Similarly, for q ≥ 2

⟨J2(ψ)− J2(ρ2), v − ρ2⟩ ≥
2k2

q(2q−1 − 1)

∫
Ω
|∇ψ −∇ρ2|q

= k2µq ∥ψ − ρ2∥
q
W2

,

where µq = 2
q(2q−1−1)

. Hence, for p, q ≥ 2

⟨J(ϕ, ψ)− J(ρ1, ρ2), (ϕ, ψ)− (ρ1, ρ2)⟩ ≥ k1µp ∥ϕ − ρ1∥
p
W1

+ k2µq ∥ψ − ρ2∥
q
W2

. (14)

Also, we have

⟨S1(ϕ)− S1(ρ1), ϕ − ρ1⟩ =
∫

Ω
a(x)

[
|ϕ|p−2ϕ − |ρ1|p−2ρ1

]
(ϕ − ρ1)

≥ 2
p(2p−1 − 1)

∫
Ω

a(x) |ϕ − ρ1|p

≥ αµp ∥ϕ − ρ1∥
p
Lp(Ω)

≥ 0.

Similarly,
⟨S2(ψ)− S2(ρ2), ψ − ρ2⟩ ≥ γµq ∥ψ − ρ2∥

q
Lq(Ω)

≥ 0.

Hence,
⟨S(ϕ, ψ)− S(ρ1, ρ2), (ϕ, ψ)− (ρ1, ρ2)⟩ ≥ 0. (15)

Also, from (L2), we have
[ f1(x, ϕ, ψ)− f1(x, ρ1, ψ)](ϕ − ρ1) ≤ 0,
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consequently,

⟨R1(x, ϕ, ψ)− R1(x, ρ1, ψ), ϕ − ρ1⟩ =
∫

Ω
[ f1(x, ϕ, ψ)− f1(x, ρ1, ψ)](ϕ − ρ1) ≤ 0,

similarly,
⟨R2(x, ϕ, ψ)− R2(x, ϕ, ρ2), ψ − ρ2⟩ ≤ 0,

so,
⟨R(x, ϕ, ψ)− R(x, ρ1, ρ2), (ϕ, ψ)− (ρ1, ρ2)⟩ ≤ 0. (16)

Equations (14), (15) and (16), for p, q ≥ 2 imply that

⟨T(ϕ, ψ)− T(ρ1, ρ2), (ϕ, ψ)− (ρ1, ρ2)⟩ ≥ k1µp ∥ϕ − ρ1∥
p
W1

+ k2µq ∥ψ − ρ2∥
q
W2

≥ cmin[∥ϕ − ρ1∥
p
W1

+ ∥ψ − ρ2∥
q
W2

],
(17)

where cmin = min{k1µp, k2µq}. Hence, T is monotone.
Step 5. Now, we prove T is a coercive operator. Equation (17) gives us the following:

⟨T(ϕ, ψ), (ϕ, ψ)⟩ ≥ ⟨T(0, 0), (ϕ, ψ)⟩+ cmin
[
∥ϕ∥p

W1
+ ∥ψ∥q

W2

]
.

On the other side,

⟨T(0, 0), (ϕ, ψ)⟩ = ⟨J(0, 0), (ϕ, ψ)⟩+ λ ⟨S(0, 0), (ϕ, ψ)⟩ − ⟨R(x, 0, 0), (ϕ, ψ)⟩

= −
∫

Ω
f1(x, 0, 0)ϕ −

∫
Ω

f2(x, 0, 0)ψ

≥ −c1

∫
Ω

f̄1(x)ϕ − c2

∫
Ω

f̄2(x)ψ

≥ −c1

( ∫
Ω
[ f̄1(x)]p

′
) 1

p′
( ∫

Ω
|ϕ|p

) 1
p

− c2

( ∫
Ω
[ f̄2(x)]q

′
) 1

q′
( ∫

Ω
|ψ|q

) 1
q

≥ −c1Cp
∣∣∣∣ f̄1

∣∣∣∣
Lp′ (Ω)

||ϕ||W1
− c2Cq

∣∣∣∣ f̄2
∣∣∣∣

Lq′ (Ω)
||ψ||W2

,

then,

⟨T(ϕ, ψ), (ϕ, ψ)⟩ ≥ cmin[∥ϕ∥p
W1

+ ∥ψ∥q
W2

]− c1Cp
∣∣∣∣ f̄1

∣∣∣∣
Lp′ (Ω)

||ϕ||W1
− c2Cq

∣∣∣∣ f̄2
∣∣∣∣

Lq′ (Ω)
||ψ||W2

.

So, one can have

lim
⟨T(ϕ, ψ), (ϕ, ψ)⟩

||(ϕ, ψ)||W
= ∞ when ||(ϕ, ψ)||W → ∞.

Hence, T is a coercive operator, consequently, there exists a weak solution for system (1).
Step 6. The uniqueness of weak solution for system (1) directly follows from (17). Let (ϕ1, ψ1), (ϕ2, ψ2) be weak
solutions for system (1) such that (ϕ1, ψ1) ̸= (ϕ2, ψ2). Now, from (14), we have

0 = ⟨T(ϕ1, ψ1)− T(ϕ2, ψ2), (ϕ1, ψ1)− (ϕ2, ψ2)⟩
≥ cmin[∥ϕ1 − ϕ2∥

p
W1

+ ∥ψ1 − ψ2∥
q
W2

] ≥ 0 for p, q ≥ 2,

therefore (ϕ1, ψ1) = (ϕ2, ψ2).
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