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1. Introduction

I n 1922, Banach [1] formulated the Banach contraction principle, a foundational result that is now widely
used to prove the existence and uniqueness of solutions for a variety of mathematical and physical

problems. Since its introduction, the Banach contraction mapping principle has been generalized and refined
in numerous ways, leading to a wealth of articles dedicated to its improvement [2–22].

In 2001, Turinici [23] introduced the concept of order-theoretic fixed point results, which provided a novel
approach to proving fixed point theorems. Later, in 2004, Ran and Reurings [24] developed an order-theoretic
version of the Banach contraction principle and demonstrated its application to matrix equations. Samet and
Turinici [25] further advanced this line of research by establishing fixed point results for nonlinear contractions
based on the symmetric closure of an amorphous binary relation.

Alam and Imdad [26] developed a relation-theoretic fixed point theorem that extends the Banach
contraction principle to arbitrary binary relations, thereby unifying various order-theoretic results that have
been previously established.

In [27], Alam and Imdad introduced a novel variant of the Banach contraction principle for complete
metric spaces endowed with a binary relation. Unlike previous fixed point theorems, their approach does
not require the standard metrical concepts of contraction, completeness, and continuity, instead relying on
relation-theoretic analogues of these notions.

Sawangsup et al. [6] developed a new class of fixed point theorems called F-contraction theorems that
improve on Wardowski’s original result [28]. They introduced a new binary relation on the space that does
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not have to be transitive or a partial order, and showed that under this relation, the F-contraction mapping is
well-defined and has a fixed point.

Motivated by the above discussion, we present some new existence and uniqueness results for
coincidence points in metric spaces equipped with an arbitrary binary relation. To prove our results, we
introduce the concepts of R-completeness, R-closedness, R-continuity, (g,R)-continuity, R-compatibility, and
R-connectedness. As corollaries of our results, we obtain several well-known theorems from the literature on
metric fixed point theory. Finally, we provide some examples that illustrate our main results and highlight
their originality.

Throughout this paper, we let R denote a non-empty binary relation on a set, but for brevity we refer to R
simply as a binary relation. Furthermore, we use N,Q and R to represent the sets of natural numbers, rational
numbers, and real numbers, respectively, and denote the sets of natural numbers, rational numbers and real
numbers wherein N0= N∪ {0}.

2. Preliminaries

We start this section by presenting some basic relevant definitions, propositions, lemmas and theorems.

Definition 1. [3] Let X be a nonempty set. A subset R of X2 is called a binary relation on X.
Notice that for each pair x, y ∈ X, one of the following holds:
(i) (x, y) ∈ R; means that “x is R-related to y” or “x relates to y under R”. Sometimes, we write xRy instead

of (x, y) ∈ R.
(ii) (x, y) /∈ R; means that “x is not R-related to y” or “x doesn’t relate to y under R”.
Trivially, X2 and ∅ being subsets of X2 are binary relations on X, which are respectively called the

universal relation (or full relation) and empty relation.

Definition 2. [26] Let R be a binary relation on a nonempty set X and x, y ∈ X. We say that x and y are
R-comparative if either (x, y) ∈ R or (y, x) ∈ R. We denote it by [x, y] ∈ R.

Proposition 1. [27] If (X, d) is a metric space, R is a binary relation on X, f and g are two self-mappings on X and
λ ∈ [ 0, 1) , then the following contractive conditions are equivalent:

(a) d( f x, f y) ≤ λd(gx, gy), ∀x, y ∈ X with (gx, gy) ∈ R,
(b) d( f x, f y) ≤ λd(gx, gy), ∀x, y ∈ X with [gx, gy] ∈ R.

Proof. The implication (b)⇒(a) is trivial. On the other hand, suppose that (a) holds. Take x, y ∈ X with
[gx, gy] ∈ R. If (gx, gy) ∈ R, then (b) is directly follow from (a). Otherwise, in case (gy, gx) ∈ R, using
symmetry of d and (a), we obtain

d( f x, f y) = d( f y, f x) ≤ λd(gy, gx) = λd(gx, gy) (1)

Implies that (a) =⇒ (b).

Proposition 2. If (X, d) is a metric space, R is a binary relation on X, f and g are two self-mappings on X and
λ ∈ [ 0, 1) , then the following contractivity conditions are equivalent:

(a) d( f x, f y) ≤ λ (M(gx, gy)) , ∀x, y ∈ X with (gx, gy) ∈ R,

where

M(gx, gy) = max

d(gx, gy), d(gx, f x)d(gy, f y)
d(gx,gy) , d(gx, f x)d(gy, f y)

d(gx,gy)+d(gx, f y)+d(gy, f x)
d(gx, f x)d(gx, f y)+d(gy, f x)d(gy, f y)

d(gy, f x)+d(gx, f y)

 (2)

(b) d( f x, f y) ≤ λ (M(gx, gy)) , ∀x, y ∈ X with [gx, gy] ∈ R,
where
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M(gx, gy) = max

d(gx, gy), d(gx, f x)d(gy, f y)
d(gx,gy) , d(gx, f x)d(gy, f y)

d(gx,gy)+d(gx, f y)+d(gy, f x)
d(gx, f x)d(gx, f y)+d(gy, f x)d(gy, f y)

d(gy, f x)+d(gx, f y)

 (3)

Proof. The implications follow from the proof of Proposition 3.

Definition 3. [4] A binary relation R on a nonempty set X is called reflexive if (x, x) ∈ R ∀x ∈ X, symmetric
if whenever (x, y) ∈ R then (y, x) ∈ R, antisymmetric if whenever (x, y) ∈ R and (y, x) ∈ R then x = y,
transitive if whenever (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R,

(i) complete or connected or dichotomous if [x, y] ∈ R ∀x, y ∈ X,
(ii) weakly complete or weakly connected or trichotomous if [x, y] ∈ R or x = y ∀x, y ∈ X.

Definition 4. [23,29,30] A binary relation R defined on a nonempty set X is called
(a) amorphous if R has no specific properties at all,
(b) strict order or sharp order if R is irreflexive and transitive,
(c) near-order if R is antisymmetric and transitive,
(d) pseudo-order if R is reflexive and antisymmetric,
(e) quasi-order or preorder if R is reflexive and transitive,
(f) partial order if R is reflexive, antisymmetric and transitive,
(g) simple order if R is weakly complete strict order,
(h) weak order if R is complete preorder,
(i) total order or linear order or chain if R is complete partial order,
(j) tolerance if R is reflexive and symmetric,
(k) equivalence if R is reflexive, symmetric and transitive.
Note that universal relation X2 on a nonempty set X remains a complete equivalence relation.

Definition 5. [3] Let X be a nonempty set and R a binary relation on X.
(1) The inverse or transpose or dual relation of R, denoted by R−1 and is defined by

R−1 =
{
(x, y) ∈ X2 : (x, y) ∈ R

}
. (4)

(2) The symmetric closure of R, denoted by Rs, is defined to be the set R ∪ R−1 by

Rs = R ∪ R−1. (5)

Indeed, Rs is the smallest symmetric relation on X containing R.

Proposition 3. [26] For a binary relation R on a nonempty set X,

(x, y) ∈ Rs ⇔ [x, y] ∈ R. (6)

Definition 6. [26] Let X be a nonempty set, E ⊆ X and R a binary relation on X. Then, the restriction of R to
E, denoted by R|E, is defined to be the set R ∩ E2 by

R|E = R ∩ E2. (7)

Indeed, R|E is a relation on E induced by R.

Definition 7. [31] Let X be a nonempty set and R a binary relation on X. A sequence {xn} ⊂ X is called
R-preserving if

(xn, xn+1) ∈ R ∀ n ∈ N0. (8)
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Definition 8. [26] Let X be a nonempty set and f a self-mapping on X. A binary relation R on X is called
f -closed if for all x, y ∈ X,

(x, y) ∈ R ⇒ ( f x, f y) ∈ R. (9)

Definition 9. Let X be a nonempty set and f and g two self-mappings on X. A binary relation R on X is called
( f , g)-closed if for all x, y ∈ X,

(gx, gy) ∈ R ⇒ ( f x, f y) ∈ R. (10)

Notice that under the restriction g = I, the identity mapping on X, Definition 2 reduces to Definition 8.

Proposition 4. [27] Let X be a nonempty set, R a binary relation on X and f and g two self-mappings on X. If R is
( f , g)-closed, then Rs is also ( f , g)-closed.

Definition 10. Let (X, d) be a metric space and R a binary relation on X. We say that (X, d) is R -complete if
every R-preserving Cauchy sequence in X converges.

Remark 1. Every complete metric space is R-complete, for any binary relation R. Particularly, under the
universal relation the notion of R-completeness coincides with usual completeness.

Definition 11. [31] Let (X, d) be a metric space and R a binary relation on X. A subset E of X is called R-closed
if every R-preserving convergent sequence in E converges to a point of E.

Remark 2. Every closed subset of a metric space is R-closed, for any binary relation R. Particularly, under the
universal relation the notion of R-closedness coincides with usual closedness.

Proposition 5. An R-complete subspace of a metric space is R-closed.

Proof. Let (X, d) be a metric space. Suppose that Y is an R-complete subspace of X. Take an R-preserving

sequence {xn} ⊂ Y such that xn
d→ x ∈ X. Since each convergent sequence is Cauchy, {xn} is an R-preserving

Cauchy sequence in Y. Hence, R-completeness of Y implies that the limit of {xn} must lie in Y , that is, x ∈ Y.
Therefore, Y is R-closed.

Proposition 6. An R-closed subspace of an R-complete metric space is R-complete.

Proof. Let (X, d) be an R-complete metric space. Suppose that Y is R-closed subspace of X. Let {xn} be an

R-preserving Cauchy sequence in Y. As X is R-complete, there exists x ∈ X such that xn
d→ x and so {xn}

is an R-preserving sequence converging to x. Hence, R-closeness of Y implies that x ∈ Y. Therefore, Y is
R-complete.

Definition 12. [27] Let (X, d) be a metric space, R a binary relation on X and x ∈ X. A mapping f : X → X is

called R-continuous at x if for any R-preserving sequence {xn} such that xn
d→ x, we have f (xn)

d→ f (x). f is
called R-continuous if it is R-continuous at each point of X.

Note that every continuous mapping is R-continuous, for any binary relation R. Particularly, under the
universal relation the notion of R-continuity coincides with usual continuity.

Definition 13. [27] Let (X, d) be a metric space, R a binary relation on X, g a self mapping on X and x ∈ X. A
mapping f : X → X is called (g, R)-continuous at x if for any sequence {xn} such that

{
gxn

}
is R-preserving

and g (xn)
d→ g(x), we have f (xn)

d→ f (x). Moreover, f is called (g, R)-continuous if it is (g, R)-continuous at
each point of X.

Notice that under the restriction g = I, the identity mapping on X, Definition 13 reduces to Definition 12.
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Remark 3. Every g-continuous mapping is (g, R)-continuous, for any binary relation R. Particularly, under
the universal relation the notion of (g, R)-continuity coincides with usual g-continuity.

Definition 14. Let (X, d) be a metric space, R be a binary relation on X and f and g two self-mappings on X.
We say that f and g are R-compatible if for any sequence {xn} ⊂ X such that {fxn} and {gxn} are R-preserving
and limn→∞ g (xn) = limn→∞ f (xn), we have

lim
n→∞

d (gfxn, f gxn) = 0. (11)

Remark 4. In a metric space (X, d) endowed with a binary relation R, commutativity ⇒ weak commutativity
⇒ compatibility ⇒ R-compatibility ⇒ weak compatibility.

Definition 15. [26] Let (X, d) be a metric space. A binary relation R on X is called d-self-closed if for any

R-preserving sequence {xn} such that xn
d→ x, there exists a subsequence

{
xnk

}
of {xn} with

[
xnk , x

]
∈ R ∀ k ∈

N0.

Definition 16. [27] Let (X, d) be a metric space and g a self-mapping on X. A binary relation R on X is called

(g, d)-self-closed if for any R-preserving sequence {xn} such that xn
d→ x, there exists a subsequence

{
xnk

}
of

{xn} with
[
gxnk , gx

]
∈ R ∀ k ∈ N0.

Notice that under the restriction g = I, the identity mapping on X, Definition 16 reduces to Definition 15.

Definition 17. [2] Let X be a nonempty set and R a binary relation on X. A subset E of X is called R-directed
if for each pair x, y ∈ E, there exists z ∈ X such that (x, z) ∈ R and (y, z) ∈ R.

Definition 18. [31] Let X be a nonempty set and R a binary relation on X. For x, y ∈ X, a path of length
k (where k is a natural number) in R from x to y is a finite sequence {z0, z1, z2, . . . , zk} ⊂ X satisfying the
following conditions:

(i) z0 = x and zk = y,
(ii) (zi, zi+1) ∈ R for each i(0 ≤ i ≤ k − 1).
Notice that a path of length k involves k + 1 elements of X, although they are not necessarily distinct.

Definition 19. Let X be a nonempty set and R a binary relation on X. A subset E of X is called R -connected if
for each pair x, y ∈ E, there exists a path in R from x to y.

Given a binary relation R and two self-mappings f and g defined on a nonempty set X, we use the
following notations:

(i) C( f , g) = {x ∈ X : gx = f x}, i.e., the set of all coincidence points of f and g,
(ii) C( f , g) = {x ∈ X : x = gx = f x, x ∈ X}, i.e., the set of all points of coincidence of f and g,
(iii) X( f , R) = {x ∈ X : (x, f x) ∈ R},
(iv) X( f , g, R) = {x ∈ X : (gx, f x) ∈ R}.

Theorem 1. [26] Let (X, d) be a complete metric space, R a binary relation on X and f a self-mapping on X. Suppose
that the following conditions hold:

(i) R is f -closed,
(ii) either f is continuous or R is d-self-closed,
(iii) X( f , R) is nonempty,
(iv) there exists λ ∈ [ 0, 1) such that

d( f x, f y) ≤ λd(x, y), ∀x, y ∈ X with (x, y) ∈ R (12)

Then f has a fixed point. Moreover, if
(v) X is Rs -connected,
then f has a unique fixed point.
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Lemma 1. [5] Let X be a nonempty set and g a self-mapping on X. Then there exists a subset E ⊆ X such that
g(E) = g(X) and g : E → X is one-one.

Lemma 2. [32] Let X be a nonempty set and f and g two self-mappings on X. If f and g are weakly compatible, then
every point of coincidence of f and g is also a coincidence point of f and g.

Definition 20. [6,33] Let X be a nonempty set and f and g two self-mappings on X. Then
(i) an element x ∈ X is called a coincidence point of f and g if

g(x) = f (x), (13)

(ii) if x ∈ X is a coincidence point of f and g and x ∈ X such that x = g(x) = f (x), then x is called a point of
coincidence of f and g,

(iii) if x ∈ X is a coincidence point of f and g such that x = g(x) = f (x), then x is called a common fixed
point of f and g,

(iv) f and g are called commuting if

g (fx) = f (gx) ∀x, y ∈ X (14)

(v) f and g are called weakly compatible (or partially commuting or coincidentally commuting) if f and
g commute at their coincidence points, i.e., for any x ∈ X,

gx = f x ⇒ gf(x) = f g(x). (15)

Definition 21. [34,35] Let (X, d) be a metric space and f and g two self-mappings on X. Then
(i) f and g are called weakly commuting if for all x ∈ X,

d(g f x, f gx) ≤ d(gx, f x) (16)

(ii) f and g are called compatible if limn→∞ d (gfxn, f gxn) = 0 whenever {xn} is a sequence in X such that

lim
n→∞

g (xn) = lim
n→∞

f (xn) (17)

(iii) f is called g-continuous at some x ∈ X if for all sequences {xn} ⊂ X,

g (xn)
d→ g(x) ⇒ f (xn)

d→ f (x). (18)

Moreover, f is called g-continuous if it is g-continuous at each point of X.

3. Main Results

Theorem 2. Let X and Y be nonempty set equipped with a binary relation R and a metric d such that (X, d) is an
R-complete subspace of X. Let f , g : X → X be two self-mappings. Suppose that the following conditions hold:

(a) f (X) ⊆ g(X) ∩ Y,
(b) R is ( f , g)-closed,
(c) X( f , g, R) is nonempty,
(d) there exists λ ∈ [ 0, 1) such that
d( f x, f y) ≤ λ (M(gx, gy)) , ∀x, y ∈ X with (gx, gy) ∈ R,
where

M(gx, gy) = max

d(gx, gy), d(gx, f x)d(gy, f y)
d(gx,gy) , d(gx, f x)d(gy, f y)

d(gx,gy)+d(gx, f y)+d(gy, f x)
d(gx, f x)d(gx, f y)+d(gy, f x)d(gy, f y)

d(gy, f x)+d(gx, f y)

 (19)

Moreover, if
(e) f and g are R-compatible,
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(f) g is R-continuous,
(g) either f is R-continuous or R is ( f , d)-self-closed,
Then f and g have a coincidence point.

Proof. Observe that hypothesis (a) is equivalent to saying that f (X) ⊆ g(X) and f (X) ⊆ Y. In light of
assumption (c), we choose x0 be an arbitrary element of X( f , g, R), then (gx0, f x0) ∈ R. If g (x0) = f (x0),
then, the proof is complete. Otherwise, if g (x0) ̸= f (x0), then from f (X) ⊆ g(X), we can choose x1 ∈ X such
that g (x1) = f (x0).

Again from f (X) ⊆ g(X), we can choose x2 ∈ X such that g (x2) = f (x1) . Continuing this process, we
construct a sequence {xn} ⊂ X such that

g (xn+1) = f (xn) for all n ∈ N0. (20)

We now claim that
{

gxn
}

is R-preserving sequence, i.e.,

(gxn, gxn+1) ∈ R for all n ∈ N0. (21)

To show this, by induction. For n = 0 in (19) and the fact that x0 ∈ X( f , g, R), we have
(gx0, gx1) ∈ R
Which show that (19) holds.
Continuing this process for n = 1 and the fact that x1 ∈ X( f , g, R), we have

(gx1, gx2) ∈ R

Suppose that (4) holds for n = k > 1, i.e.,

(gxk, gxk+1) ∈ R. (22)

Since, R is ( f , g)-closed, we get

( f xk, f xk+1) ∈ R. (23)

Also, for n = k + 1, we get that

(gxk+1, gxk+2) ∈ R. (24)

Hence, (4) holds by induction, for all n ∈ N0.
Similarly, the sequence {fxn} is also R-preserving sequence, i.e.,

( f xn, f xn+1) ∈ R f oralln ∈ N0. (25)

Using (3),(4) and assumption (d), we obtain
d (gxn, gxn+1) = d ( f xn−1, f xn) ≤ λ (M (gxn−1, gxn)) , ∀x, y ∈ X
where
M (gxn−1, gxn) =

max

d (gxn−1, gxn) , d(gxn−1, f xn−1)d(gxn , f xn)
d(gxn−1,gxn)

, d(gxn−1, f xn−1)d(gxn , f xn)
d(gxn−1,gxn)+d(gxn−1, f xn)+d(gxn , f xn−1)

,
d(gxn−1, f xn−1)d(gxn−1, f xn)+d(gxn , f xn−1)d(gxn , f xn)

d(gxn , f xn−1)+d(gxn−1, f xn)

 (26)

= max {d (gxn−1, gxn) , d (gxn, gxn+1) , d (gxn−1, gxn) , d (gxn−1, gxn)}

M (gxn−1, gxn) ≤ max {d (gxn−1, gxn) , d (gxn, gxn+1)} (27)

If for some n ≥ 1, we have d (gxn−1, gxn) ≤ d (gxn, gxn+1).
From (8), we get
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d (gxn, gxn+1) ≤ λd (gxn−1, gxn) < d (gxn, gxn+1) (28)

a contradiction. Thus, for all n ≥ 1, we have

max {d (gxn−1, gxn) , d (gxn, gxn+1)} = d (gxn−1, gxn) (29)

Using (27) and (29), we get

d (gxn, gxn+1) ≤ λd (gxn−1, gxn) f oralln ≥ 1 (30)

By induction, we have

d (gxn, gxn+1) ≤ λd (gxn−1, gxn) ≤ λ2d (gxn−2, gxn−1) ≤ . . . ≤ λnd (gx0, gx1) (31)

for all n∈ N. So that
d (gxn, gxn+1) ≤ λnd (gx0, gx1) , ∀n∈ N. (32)

For n < m and (32), we obtain

d (gxn, gxm) ≤ d (gxn, gxn+1) + d (gxn+1, gxn+2) + . . . + d (gxm−1, gxm)

≤
(
λn + λn+1 + . . . + λm−1) d (gx0, gx1)

= λn−λm

1−λ d (gx0, gx1)

≤ λn

1 − λ
d (gx0, gx1) → 0, (33)

as m, n → ∞. Thus,
{

gxn
}

is a Cauchy sequence.
Since by (20), we have

{
gxn

}
⊂ f (X) ⊆ Y so that

{
gxn

}
is R-preserving Cauchy sequence in Y. As Y is

R-complete, there exists u ∈ Y such that
lim

n→∞
g (xn) = u. (34)

Using (20) and (34), we get
lim

n→∞
f (xn) = u. (35)

Now, assume that (e), (f) and (h) hold. Using (22), (34) and assumption (f) (R-continuity of g), we get

lim
n→∞

g (gxn) = g
(

lim
n→∞

gxn

)
= g(u). (36)

Again, using (25), (35) and assumption (f) (R-continuity of g), we have

lim
n→∞

g (fxn) = g
(

lim
n→∞

fxn

)
= g(u). (37)

Since {fxn} and
{

gxn
}

are R-preserving from (21) and (25) and also, limn→∞ g (xn) = limn→∞ f (xn) = u
from (34) and (35), on using assumption (e) (R-compatibility of f and g), we get

lim
n→∞

d (gfxn, fgxn ) = 0 (38)

We now show that u is a coincidence point of f and g. By assumption (e), (f) and (g). We have the two
cases:

Case 1 Suppose that f is R-continuous. Using (21), (34) and R-continuity of f , we get

lim
n→∞

f (gxn) = f
(

lim
n→∞

gxn

)
= f (u). (39)

By (37), (38), (39) and continuity of d, we get

d(gu, f u) = d
(

lim
n→∞

gfxn, lim
n→∞

f gxn

)
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= lim
n→∞

d (gfxn, fgxn ) = 0. (40)

Hence, d(gu, f u) = 0, that is gu = f u. Thus, f and g have a coincidence point.

Case 2 Suppose that R is ( f , d)-self-closed. Since
{

gxn
}

is R-preserving from (21) and g (xn)
d→ u from

(3.16), by using (g, d)-self-closedness of R, there exists a subsequence {gxnr} of
{

gxn
}

such that

[ggxnr , gu] ∈ R (41)

for all r ∈ N0.
Since g (xnr )

d→ u, so equations (34)-(38) hold for also {xnr} instead of {xn}. Using (41), assumption (d)
and Proposition 2, we get

d (fgxnr , f u) ≤ λd (ggxnr , gu) (42)

for all r ∈ N0.
By triangular inequality, (36),(37), (38) and (42), we get

d(gu, f u) ≤ d (gu, g f xnr ) + d (gfxnr , g f xnr ) + d (fgxnr , f u)

≤ d (gu, g f xnr ) + d (gfxnr , g f xnr ) + d (fgxnr , f u) → 0 (43)

as r → ∞ so that gu = f u.
Thus, u ∈ X is a coincidence point of f and g.

Theorem 3. Let X and Y be nonempty set equipped with a binary relation R and a metric d such that (X, d) is an
R-complete subspace of X. Let f , g : X → X be two self-mappings. Suppose that the following conditions hold:

(a) f (X) ⊆ g(X) ∩ Y,
(b) R is ( f , g)-closed,
(c) X( f , g, R) is nonempty,
(d) there exists λ ∈ [ 0, 1) such that
d( f x, f y) ≤ λ (M(gx, gy)) , ∀x, y ∈ X with (gx, gy) ∈ R,
where

M(gx, gy) = max

d(gx, gy), d(gx, f x)d(gy, f y)
d(gx,gy) , d(gx, f x)d(gy, f y)

d(gx,gy)+d(gx, f y)+d(gy, f x) ,
d(gx, f x)d(gx, f y)+d(gy, f x)d(gy, f y)

d(gy, f x)+d(gx, f y)


Moreover, if
(e) f and g are R-compatible,
(f) g is R-continuous,
(g) either f is R-continuous or R is ( f , d)-self-closed,
Also, assume that
(h) Y ⊆ g(X),
(i) either f is (g, R)-continuous or f and g are continuous or R|Y is d-self closed. Then f and g have a coincidence

point.

Proof. The other proof follows from the proof of Theorem 2
Also, assume that (h) and (i) hold. Owing to assumption (h) (Y ⊆ g(X)), we can find some z ∈ X such

that u = g(z). With (34) and (35), we have

lim
n→∞

g (xn) = g(z). (44)

lim
n→∞

f (xn) = g(z). (45)

We can now show that z is a coincidence point of f and g. By assumption (i), we have the following three
cases:
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Case 1 Suppose that f is (g, R)-continuous, then using (21) and 44, we get

lim
n→∞

f (xn) = f (z). (46)

Consider, (45) and 46, we get
g(z) = f (z).
Hence, f and g have a coincidence point.
Case 2 Suppose that f and g are continuous. Owing to Lemma 1, there exists a subset E ⊆ X such that

g(E) = g(X) and g : E → X is one-one. Define T : g(E) → g(X) by

T (ga) = f (a), ∀g(a) ∈ g(E) (47)

where a ∈ E.
Since g : E → X is one-one and f (X) ⊆ g(X), T is well defined. Again since f and g are continuous,

it follows that T is continuous. Using the fact g(X) = g(E), assumptions (a) and (h) reduce to respectively
f (X) ⊆ g(X) ∩ Y and Y ⊆ g(E), which follows that, without loss of generality, we are able to construct
{xn}∞

n=1 ⊂ E satisfying (20) and to choose z ∈ E.
Consider, (44), (45), (47) and continuity of T, we get

f (z) = T (gz) = T
(

lim
n→∞

gxn

)
= lim

n→∞
T (gxn) = lim

n→∞
f (xn) = g(z). (48)

Implies, f (z) = g(z).
Thus, z ∈ E is a coincidence point of f and g.

Case 3 Suppose that R|Y is d-self-closed. Since
{

gxn
}

is R|Y-preserving from (21) and g (xn)
d→ g(z) ∈ Y

from (44), using d-self-closedness of R|Y, there exists a subsequence {gxnr} of
{

gxn
}

such that

[gxnr , gz] ∈ R|Y (49)

for all r ∈ N0.
On using 44, 49, assumption (d) and Proposition 2, we get

d ( f xnr , f z) ≤ λ (M (gxnr , gz))

where

M (gxnr , gz) = max



d (gxnr , gz) ,
d (gxnr , f xnr ) d (gz, f z)

d (gxnr , gz)
,

d (gxnr , f xnr ) d (gz, f z)
d (gxnr , gz) + d (gxnr , f z) + d (gz, f xnr )

,

d (gxnr , f xnr ) d (gxnr , f z) + d (gz, f xnr ) d (gz, f z)
d (gz, f xnr ) + d (gxnr , f z)


(50)

d ( f xnr , f z) ≤ λM (gxnr , gz) −→ 0 (51)

as n −→ ∞.
So that

lim
n→∞

f (xnr ) = f (z). (52)

Using 45 and 52, we get g(z) = f (z).
Thus, f and g have a coincidence point.
Now, as a consequence, we particularize Theorem 2 by assuming the R-completeness of whole space

X.

Corollary 4. Let X be a nonempty set equipped with a binary relation R and a metric d such that (X, d) is an R-complete
metric space. Let f , g : X → X be two self-mappings. Suppose that the following conditions hold:
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(a) f (X) ⊆ g(X),
(b) R is ( f , g)-closed,
(c) X( f , g, R) is nonempty,
(d) there exists λ ∈ [ 0, 1) such that
d( f x, f y) ≤ λ (M(gx, gy)) , ∀x, y ∈ X with (gx, gy) ∈ R,
where

M(gx, gy) = max

d(gx, gy), d(gx, f x)d(gy, f y)
d(gx,gy) , d(gx, f x)d(gy, f y)

d(gx,gy)+d(gx, f y)+d(gy, f x) ,
d(gx, f x)d(gx, f y)+d(gy, f x)d(gy, f y)

d(gy, f x)+d(gx, f y)

 (53)

Moreover, if
(e) f and g are R-compatible,
(f) g is R-continuous,
(g) either f is R-continuous or R is ( f , d)-self-closed,
Then f and g have a coincidence point.

Proof. The result proof follows easily on setting Y = X in Theorem 2.

Remark 5. If g is onto in Corollary 3.3, then we can drop assumption (a) as in this case it trivially holds.

Corollary 5. Let X be a nonempty set equipped with a binary relation R and a metric d such that (X, d) is an R-complete
metric space. Let f , g : X → X be two self-mappings. Suppose that the following conditions hold:

(a) f (X) ⊆ g(X),
(b) R is ( f , g)-closed,
(c) X( f , g, R) is nonempty,
(d) there exists λ ∈ [ 0, 1) such that
d( f x, f y) ≤ λ (M(gx, gy)) , ∀x, y ∈ X with (gx, gy) ∈ R,
where

M(gx, gy) = max



d(gx, gy),

d(gx, f x)d(gy, f y)
d(gx, gy)

,

d(gx, f x)d(gy, f y)
d(gx, gy) + d(gx, f y) + d(gy, f x)

,

d(gx, f x)d(gx, f y) + d(gy, f x)d(gy, f y)
d(gy, f x) + d(gx, f y)


(54)

Moreover, if
(e) f and g are R-compatible,
(f) g is R-continuous,
(g) either f is R-continuous or R is ( f , d)-self-closed,
Also, assume that
(h) there exists an R-closed subspace Y of X such that f (X) ⊆ Y ⊆ g(X),
(i) either f is (g, R)-continuous or f and g are continuous or R|Y is d-self closed. Then f and g have a coincidence

point.

Proof. The result corresponds to the proof in Theorem 3 easily on the setting Y = X with part (h) and (i)
follows, using Proposition 6.

Remark 6. We can remove assumption (h) as it trivially holds for Y = g(X) = X using Proposition 2.18.
Whenever, f is onto, owing to assumption (a), g must be onto and hence again same conclusion is immediate.

In the following Theorem we show the existence and uniqueness of a coincidence point.
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Theorem 6. In addition to the hypotheses of Theorem 2, suppose that the following condition holds:
(j) f (X) is R|sg(X)-connected.
Then f and g have a unique point of coincidence.

Proof. Following the arguments of the proof Theorem 2, C( f , g) ̸= ∅. Suppose x, y ∈ C( f , g), then, there exist
x, y ∈ X such that

x = g(x) = f (x)andy = g(y) = f (y) (55)

To show that x = y. Since f (x), f (y) ∈ f (X) ⊆ g(X), by assumption (j), there exists a path say
{gz0, gz1, gz2, . . . , gzk} of some finite length k in R|sg(X) from f (x) to f (y) where z0, z1, z2, . . . , zk ∈ X. With
(55), we may choose z0 = x and zk = y. Thus, we have[

gzi, gzi+1
]
∈ R|g(X) f oreachi(0 ≤ i ≤ k − 1). (56)

Define the constant sequences z0
n = x and zk

n = y, then using (55), we have
g
(
z0

n+1
)
= f

(
z0

n
)
= x and

g
(

zk
n+1

)
= f

(
zk

n

)
= y f oralln ∈ N0. (57)

Let z1
0 = z1, z2

0 = z2, . . . , zk−1
0 = zk−1. Since f (X) ⊆ g(X), on the lines similar to that of Theorem 2, we can

define sequences
{

z1
n
}

,
{

z2
n
}

, . . . ,
{

zk−1
n

}
in X such that

g
(

z1
n+1

)
= f

(
z1

n

)
, g

(
z2

n+1

)
= f

(
z2

n

)
, . . . , g

(
zk−1

n+1

)
= f

(
zk−1

n

)
f oralln ∈ N0. (58)

Hence, we have
g
(

zi
n+1

)
= f

(
zi

n

)
f oralln ∈ N0and f oreachi(0 ≤ i ≤ k) (59)

Now, we claim that [
gzi

n, gzi+1
n

]
∈ R, f oralln ∈ N0and for eachi(0 ≤ i ≤ k − 1) (60)

Inductively, it follows from (56) that (60) holds for n = 0. Suppose that (60) holds for n = r > 0, i.e.,[
gzi

r, gzi+1
r

]
∈ R f oreachi(0 ≤ i ≤ k − 1) (61)

Since, R is ( f , g)-closed, using Proposition 2.13, we obtain[
f zi

r, f zi+1
r

]
∈ R f oreachi(0 ≤ i ≤ k − 1), (62)

which on using (60), gives rise [
gzi

r+1, gzi+1
r+1

]
∈ R f oreachi(0 ≤ i ≤ k − 1). (63)

It follows that (60) holds for n = r + 1.
Thus, by induction, (60) holds for all n ∈ N0. Now for all n ∈ N0 and for each i(0 ≤ i ≤ k − 1), denote

βi
n =: d

(
gzi

n, gzi+1
n

)
. Then, we claim that

lim
n→∞

βi
n = 0 (64)

On using (59), (60), assumption (d) and Proposition 2, for each i(0 ≤ i ≤ k − 1) and for all n ∈ N0, we obtain
βi

n+1 = d
(

gzi
n+1, gzi+1

n+1

)
= d

(
f zi

n, f zi+1
n

)
≤ λ

(
M

(
gzi

n, gzi+1
n

))
where
M

(
gzi

n, gzi+1
n

)
=
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max


d
(

gzi
n, gzi+1

n
)

,
d(gzi

n , f zi
n)d(gzi+1

n , f zi+1
n )

d(gzi
n ,gzi+1

n )
,

d(gzi
n , f zi

n)d(gzi+1
n , f zi+1

n )
d(gzi

n ,gzi+1
n )+d(gzi

n , f zi+1
n )+d(gzi+1

n , f zi
n)

,

d(gzi
n , f zi

n)d(gzi
n , f zi+1

n )+d(gzi+1
n , f zi

n)d(gzi+1
n , f zi+1

n )
d(gzi+1

n , f zi
n)+d(gzi

n , f zi+1
n )


≤ λd

(
gzi

n, gzi+1
n

)
(65)

= λβi
n. (66)

By induction, we have

βi
n+1 ≤ λβi

n ≤ λ2β
i
n−1 ≤ . . . ≤ λn+1β

i
0 (67)

so that
βi

n+1 ≤ λn+1β
i
0. (68)

Implies
lim

n→∞
βi

n = 0 f oreachi(0 ≤ i ≤ k − 1). (69)

Thus, we have (64) for each i(0 ≤ i ≤ k − 1).
By triangular inequality and (64), we obtain

d (x, y) ≤ β0
n + β1

n + . . . + βk−1
n → 0asn → ∞ (70)

Hence, x = y.

Theorem 7. In addition to the hypotheses of Theorem 6, suppose that the following condition holds:
(k) one of f and g is one-one.
Then f and g have a unique coincidence point.

Proof. Following the argument of Theorem 2, C( f , g) ̸= ∅. Take x, y ∈ C( f , g), then, by Theorem 3.7, we have

g(x) = f (x) = f (y) = g(y). (71)

Since f or g is one-one, we have x = y.

Theorem 8. In addition to the hypotheses in condition (h) and (i) of Theorem 6, suppose that the following condition
holds:

(l) f and g are weakly compatible.
Then f and g have a unique common fixed point.

Proof. Owing to Remark 4 as well as assumption (l), the mappings f and g are weakly compatible. Take
x ∈ C( f , g) and denote g(x) = f (x) = x. Then by Lemma 2, x ∈ C( f , g). It follows from Theorem 6 with y = x
that g(x) = g (x), i.e., x = g (x), which yields that

x = g (x) = f (x).
Hence, x is a common fixed point of f and g. To prove uniqueness, assume that x∗is another common

fixed point of f and g. Then again from Theorem 6, we have
x∗ = g (x∗) = g (x) = x.
Hence, x∗ = x.
We now present some examples that demonstrate the practical implications of our main theorems.

Example 1. Consider X = R endowed with usual metric and also define a binary relation
R =

{
(x, y) ∈ R2 : |x| − |y| ≥ 0

}
. Then (X, d) is an R-complete metric space. Consider the mappings

f , g : X → X defined by f (x) = x2

3 and g(x) = x2

2 for all x ∈ X.
Obviously, R is ( f , g)-closed. Now, for x, y ∈ X with (gx, gy) ∈ R, we have
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d( f x, f y) =
∣∣∣∣ x2

3
− y2

3

∣∣∣∣ = 2
3

∣∣∣∣ x2

2
− y2

2

∣∣∣∣ < 3
4
(d(gx, gy))

Thus, f and g satisfy hypothesis (d) of Theorem 2 with λ = 3
4 . By a routine calculation, one can verify

all the hypothesis in (e), (f) and (g) of Theorem 2. Hence, all the hypothesis of Theorem 2 are satisfied for
Y = X, which guarantees that f and g have a coincidence point in X. Moreover, observe that (j) holds and
henceforth in light of Theorem 6, f and g have a unique point of coincidence (x = 0), which remains also a
unique common fixed point of Theorem 8.

Example 2. Consider X = R equipped with usual metric and also define a binary relation
R =

{
(x, y) ∈ R2 : x ≥ 0, y∈ Q

}
. Consider the mappings f , g : X → X defined by f (x) = 1 and g(x) =

x2 − 3 for all x ∈ X. Clearly, R is ( f , g)-closed.
Now, for x, y ∈ X with (gx, gy) ∈ R, we have

d( f x, f y) = |1 − 1| = 0 ≤
∣∣∣x2 − y2

∣∣∣ = λd(gx, gy)

Thus, f and g satisfy assumption (d) of Theorem 2 for any arbitrary λ ∈ [ 0, 1) . Also, the mappings f
and g are not R-compatible and hence (e), (f) and (g) does not hold. But the subspace Y := g(x) = [ −3, ∞)

is R-complete and f and g are continuous, i.e., all the hypothesis mentioned in (h) and (i) are satisfied. Hence,
in light of Theorem 2, f and g have a coincidence point in X. Further, in this example (j) holds and henceforth,
owing to Theorem 6, f and g have a unique point of coincidence (x = 1).

It is important to note that neither the mapping f nor the mapping g is one-to-one. This means that
property (k), which guarantees the uniqueness of coincidence points, cannot be applied to Theorem 8. Indeed,
in this example, there are two different coincidence points: x = 2 and x = −2. Furthermore, the mappings
f and g are not weakly compatible, meaning that property (l) cannot be used to ensure the uniqueness of a
common fixed point. In fact, in this case, there is no common fixed point for f and g.

4. Applications

In this section, we obtain some results as consequences of our main results.

4.1. Coincidence points in ordered metric spaces via comparable mappings.

We begin by considering results involving comparable mappings, as introduced in works such as Turinici
[36], Nieto and Rodriguez Lopez [40], and Alam and Imdad [28].

Definition 22. [6]. Let (X,≼) be an ordered set and f and g two self-mappings on X. We say that f is
g-comparable if for any x, y ∈ X,

g(x) ≺≻ g(y) ⇒ f (x) ≺≻ f (y) (72)

Remark 7. It is clear that f is g-comparable iff ≺≻ is ( f , g)-closed.

Definition 23. [41]. Let (X,≼) be an ordered set and {xn} ⊂ X.
(i) the sequence {xn} is said to be termwise bounded if there is an element z ∈ X such that each term of

{xn} is comparable with z, i.e.,
xn ≺≻ z ∀ n ∈ N0 (73)

so that z is a c-bound of {xn} and
(ii) the sequence {xn} is said to termwise monotone if consecutive terms of {xn} are comparable, i.e.,

labeleq4.3(xn ≺≻ xn ∀ n ∈ N0. (74)

Remark 8. Clearly, {xn} is termwise monotone iff it is ≺≻-preserving.

Definition 24. [41] Given a mapping g : X → X, we say that an ordered metric space (X, d,≼) has g-TCC
(termwise monotone-convergence-c-bound) property if every termwise monotone sequence {xn} in X such
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that xn
d→ x has a subsequence, whose g-image is termwise bounded by g-image of limit (of the sequence) as

a c-bound, i.e., g
(

xnk

)
≺≻ g(x) for all k ∈ N0.

Notice that under the restriction g = I, the identity mapping on X, Definition 4.5 transforms to the notion
of TCC property.

Remark 9. Clearly, (X, d,≼) has TCC property (resp. g-TCC property) iff ≺≻ is d-self-closed (resp.
(g, d)-self-closed).

Corollary 9. [41] Let (X, d) be an ordered metric space and Y a complete subspace of X. Let f and g be two self-mappings
on X. Suppose that the following conditions hold:

(a) f (X) ⊆ g(X) ∩ Y,
(b) f is g-comparable,
(c) there exists x0 ∈ X such that g (x0) ≺≻ f (x0),
(d) there exists λ ∈ [ 0, 1) such that

d( f x, f y) ≤ λd(gx, gy), ∀x, y ∈ X with gx ≺≻ gy, (75)

Moreover, if
(e) f and g are compatible,
(f) g is continuous,
(g) either f is continuous or (Y, d,≼) has g-TCC property,
Also, assume that
(h) Y ⊆ g(X),
(i) either f is g-continuous or f and g are continuous or (Y, d,≼) has TCC property.
Then f and g have a coincidence point.

Corollary 10. Let (X, d) be an ordered metric space and Y a complete subspace of X. Let f and g be two self-mappings
on X. Suppose that the following conditions hold:

(a) f (X) ⊆ g(X) ∩ Y,
(b) f is g-comparable,
(c) there exists x0 ∈ X such that g (x0) ≺≻ f (x0),
(d) there exists λ ∈ [ 0, 1) such that
d( f x, f y) ≤ λ (M(gx, gy)) , ∀x, y ∈ X with gx ≺≻ gy,
where

M(gx, gy) = max



d(gx, gy),

d(gx, f x)d(gy, f y)
d(gx, gy)

,

d(gx, f x)d(gy, f y)
d(gx, gy) + d(gx, f y) + d(gy, f x)

,

d(gx, f x)d(gx, f y) + d(gy, f x)d(gy, f y)
d(gy, f x) + d(gx, f y)


(76)

Moreover, if
(e) f and g are compatible,
(f) g is continuous,
(g) either f is continuous or (Y, d,≼) has g-TCC property,
Also, assume that
(h) Y ⊆ g(X),
(i) either f is g-continuous or f and g are continuous or (Y, d,≼) has TCC property.
Then f and g have a coincidence point.
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4.2. Coincidence theorems under symmetric closure of a binary relation

We now consider results that involve the symmetric closure of a binary relation, which have been studied
in works such as Samet and Turinici [25] and Berzig [38]. In this context, R is a binary relation on a nonempty
set X, and S denotes the symmetric closure of R, that is, S := Rs.

Definition 25. [38]. Let f and g be two self-mappings on X. We say that f is g-comparative if for any x, y ∈ X,

(gx, gy) ∈ S ⇒ ( f x, f y) ∈ S. (77)

Remark 10. It is clear that f is g-comparative iff S is ( f , g)-closed.

Definition 26. [2]. (X, d, S) is regular if the following condition holds: if the sequence {xn} in X and the point
x ∈ X are such that

(xn, xn+1) ∈ S f orallnand lim
n→∞

(
xnk , x

)
= 0, (78)

then there exists a subsequence
{

xnk

}
of {xn} such that

(
xnk , x

)
∈ S for all k.

Remark 11. Clearly, (X, d, S) is regular iff S is d-self-closed.

Corollary 11. [38] Let (X, d) be a metric space, R a binary relation on X and f and g two self-mappings on X. Suppose
that the following conditions hold:

(a) f (X) ⊆ g(X),
(b) f is g-comparative,
(c) there exists x0 ∈ X such that (gx0, gx0) ∈ S,
(d) there exists λ ∈ [ 0, 1) such that

d( f x, f y) ≤ λd(gx, gy), ∀x, y ∈ X with (gx, gy) ∈ S, (79)

(e) (X, d) is complete and g(X) is closed,
(f) (X, d, S) is regular.
Then f and g have a coincidence point.

Corollary 12. Let (X, d) be a metric space, R a binary relation on X and f and g two self-mappings on X. Suppose that
the following conditions hold:

(a) f (X) ⊆ g(X),
(b) f is g-comparative,
(c) there exists x0 ∈ X such that (gx0, gx0) ∈ S,
(d) there exists λ ∈ [ 0, 1) such that
d( f x, f y) ≤ λ (M(gx, gy)) , ∀x, y ∈ X with (gx, gy) ∈ S,
where

M(gx, gy) = max



d(gx, gy),

d(gx, f x)d(gy, f y)
d(gx, gy)

,

d(gx, f x)d(gy, f y)
d(gx, gy) + d(gx, f y) + d(gy, f x)

,

d(gx, f x)d(gx, f y) + d(gy, f x)d(gy, f y)
d(gy, f x) + d(gx, f y)


(80)

(e) (X, d) is complete and g(X) is closed,
(f) (X, d, S) is regular.
Then f and g have a coincidence point.
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Conclusion

In this article, we extend fundamental metrical notions such as completeness, closedness, continuity,
g-continuity, and compatibility to the relation-theoretic context. Utilizing these generalized concepts, we
establish new results regarding the existence and uniqueness of coincidence points for mappings on metric
spaces defined by arbitrary binary relations. Notably, when the relation is universal, our findings encompass
classic coincidence point theorems. Additionally, our results lead to several well-known metrical coincidence
point theorems. Finally, we provide illustrative examples to validate the effectiveness of our results.
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