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1. Introduction

I n recent years, sharp inequalities involving trigonometric and hyperbolic functions have received a lot of
attention. This is easily explained by their usefulness in all areas of mathematics. Such inequalities, as

well as refinements of the so-called Jordan, Cusa-Huygens and Wilker inequalities, can be found in [1–9], and
the references therein.

In this article, our interest in hyperbolic inequalities remains in establishing the counterpart of recent
developments in trigonometric inequalities. In particular, we extend some results studied in [10]. In fact,
many hyperbolic inequalities already exist. For example, Wilker-type inequalities for hyperbolic functions
have been studied by Wu and Debnath [11]. In addition, the following chain of inequalities is known: For
x ∈ (0, ∞), we have

1
2

[(
sinh x

x

)2
+

tanh x
x

]
>

1
3

[
2 sinh x

x
+

tanh x
x

]
>

1
2

[( x
sinh x

)2
+

x
tanh x

]
>

1
3

[
2x

sinh x
+

x
tanh x

]
> 1. (1)

See [9, Theorems 2.2 or 4.2]. The following inequality, the hyperbolic equivalent of a famous trigonometric
inequality, was derived by Lazarevic: For x ̸= 0, we have(

sinh x
x

)3
> cosh x.

In [4], a deep work was done on this topic. In particular, the theorems below represent sharp hyperbolic
chains of inequalities.

Theorem 1. For every integer n ≥ 1 and x ∈ (0, ∞), we have

0 <
sinh x

x
+

tanh x
2x

− 3
2
<

(
sinh x

x

)2
+

tanh x
x

− 2 < . . .

< f (n, x) =
(

sinh x
x

)n
+

n tanh x
2x

− n + 2
2

. (2)
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Theorem 2. For every integer n ≥ 1 and x ∈ (0, ∞), we have

0 <
x

sinh x
+

x
2 tanh x

− 3
2
<

( x
sinh x

)2
+

x
tanh x

− 2 < . . .

< g(n, x) =
( x

sinh x

)n
+

nx
2 tanh x

− n + 2
2

. (3)

Theorem 3. For every integer n ≥ 2 and x ∈ (0, ∞), we have

0 <

(
sinh x

x

)2
− 2 cosh x

3
− 1

3
<

(
sinh x

x

)3
− cosh x < . . .

<

(
sinh x

x

)n
− n cosh x

3
+

n − 3
3

. (4)

For this last result, the case n = 3 corresponds to the Lazarevic inequality. However, this is not true for
n = 1. In fact, for x ∈ (0, ∞), the following inequality is well known:

sinh x
x

− cosh x
3

− 2
3
< 0.

This illustrates the complex role of n in this kind of chain of inequalities. For example, Theorem 3 states that
Lazarevic-type inequalities hold for any integer n ≥ 2.

In fact, as proved in [4], classical hyperbolic inequalities are enclosed in chains of inequalities. We call the
n-order hyperbolic Huygens-Wilker function the function defined as follows:

f (n, x) =
(

sinh x
x

)n
+

n tanh x
2x

− n + 2
2

. (5)

The inequality f (n, x) > 0 becomes the Huygens inequality and the Wilker inequality for n = 1 and n = 2,
respectively.

In a similar way, for the second hyperbolic Huygens inequality and hyperbolic Wilker inequality, we
obtain the comparison

0 <
x

sinh x
+

x
2 tanh x

− 3
2
<

( x
sinh x

)2
+

x
tanh x

− 2.

See [8]. In this sense, we call the n-order second Huygens-Wilker function the following function:

g(n, x) =
( x

sinh x

)n
+

nx
2 tanh x

− n + 2
2

. (6)

Concerning the Lazarevic inequality, it can be expressed as follows: For x ∈ (0, ∞), we have(
sinh x

x

)3
− cosh x > 0.

Based on it, we call the n-order Lazarevic function the following function:

h(n, x) =
(

sinh x
x

)n
− n cosh x

3
+

n − 3
3

.

These three special n-order functions will be at the center of our findings.
This article is organized as follows: In Section 2, we propose to refine and extend the above inequality

chains. We provide additional inequalities depending on n, which are often reduced to the well-known
correspondences for n = 2 or 3. We also provide some graphics to support the analysis. Section 3 contains the
detailed proofs of the considered intermediate lemmas and corollaries. In Section 4, we discuss and propose
some possible developments from these results.
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2. Main results

2.1. n-order hyperbolic Huygens-Wilker inequalities

In this part, we aim to extend the chain of inequalities described in Equation (1) to that given by Equation
(2). For this purpose, we establish the result below, which extends Theorem 2 demonstrated in [4].

Theorem 4. First of all, let us recall the function in Equation (5), i.e.,

f (n, x) =
(

sinh x
x

)n
+

n tanh x
2x

− n + 2
2

.

For every integer n ≥ 2 and for x ∈ (0, ∞), the following chain of inequalities holds:

. . . >
f (n, x)

n(22 + 5n)
>

f (n − 1, x)
(n − 1)(5n + 17)

>
f (n − 2, x)

(n − 2)(5n + 12)
> . . . .

Proof of Theorem 4. Let us consider the following intermediary function:

ϕ(n, x) =
f (n, x)

n(5n + 22)
=

1
n(5n + 22)

[(
sinh x

x

)n
+

n tanh x
2x

− n + 2
2

]
.

The derivative of ϕ(n, x) with respect to n is given by

∂ϕ(n, x)
∂n

=

(
sinh x

x

)n
ln

(
sinh x

x

)
+ tanh x

2x − 1
2

n (5n + 22)

−

(
sinh x

x

)n
+ n tanh x

2x − n
2 − 1

n2 (5n + 22)
−

5
[(

sinh x
x

)n
+ n tanh x

2x − n
2 − 1

]
n (5n + 22)2

=

(
sinh x

x

)n [
n (5n + 22) ln

(
sinh x

x

)
− 10n − 22

]
n2 (5n + 22)2 − 5 tanh x

2x (5n + 22)2 +
5n2 + 20n + 44

2n2 (5n + 22)2

=

(
sinh x

x

)n [
n (5n + 22) ln

(
sinh x

x

)
− 10n − 22

]
− 5n2 tanh x

2x + 5n2

2 + 10n + 22

n2(5n + 22)2 .

To proceed further, we need the technical lemma below.

Lemma 5.

• The function

−5n2 tanh x
2x

+
5n2 + 20n + 44

2
is always non negative.

• The function

n (5n + 22) ln
(

sinh x
x

)
− 10n − 22

has a unique positive root xn for every integer n ≥ 2. Moreover, the sequence (xn) is decreasing as n grows:

x2 = 2.111605780, x3 = 1.753855952, x4 = 1.542294291, . . .

Note: In order to make the reading easier, the proof of this lemma and all the following lemmas and corollaries
are postponed in Section 3.

In particular, this lemma implies that, for x ≥ xn,

n (5n + 22) ln
(

sinh x
x

)
− 10n − 22 > 0.
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We then deduce that ∂ϕ(n,x)
∂n > 0.

For the case x ∈ (0, xn) and n ≥ 2, a different approach is needed. The result below is a key lemma.

Lemma 6. For every integer n ≥ 2 and for x ∈ (0, xn), where xn is the root of

n (5n + 22) ln
(

sinh x
x

)
− 10n − 22,

so xn < 2.1116, the following inequalities hold:

1. (
sinh x

x

)n
> 1 +

nx2

6
+

n(5n − 2)x4

360
.

2.

1 − x2

3
+

2x4

15
− 17x6

315
<

tanh x
x

< 1 − x2

3
+

2x4

15
− 17x6

315
+

62x8

2835
.

3.
x2

6
− x4

180
+

x6

2835
− x8

37800
< ln

(
sinh x

x

)
<

x2

6
− x4

180
+

x6

2835
.

In the light of this result, let us now consider the numerator of ∂ϕ(n,x)
∂n . We want to minimize it for x ∈

(0, xn). After some tedious development, we find that(
sinh x

x

)n [
n (5n + 22) ln

(
sinh x

x

)
− 10n − 22

]
− 5n2 tanh x

2x
+

5n2

2
+ 10n + 22

>

[
1 +

nx2

6
+

(
1

120
n +

1
72

n (n − 1)
)

x4
]
×[

−10n − 22 + n (5n + 22)
(

x2

6
− x4

180
+

x6

2835
− x8

37800

)]
− 5n2

2

(
1 − x2

3
+

2x4

15
− 17x6

315
+

62x8

2835

)
+

5n2

2
+ 10n + 22 = − 1

40824000
x6nA(n, x),

where

A(n, x) = −472500n3 + 15750x2n3 − 1000n3x4 + 75x6n3 − 3100x4n2 + 5720x4n + 300x6n2

− 132x6n − 3916800n − 316800 − 1701000n2 + 23760x2 + 2156880nx2 + 51000n2x2

=
(

15750x2 − 1000x4 + 75x6 − 472500
)

n3 +
(

300x6 − 1701000 + 51000x2 − 3100x4
)

n2

+
(
−3916800 + 2156880x2 + 5720x4 − 132x6

)
n − 316800 + 23760x2.

Moreover, the partial derivative of A(n, x) with respect to n is

∂A(n, x)
∂n

= 3
(

15750x2 − 1000x4 + 75x6 − 472500
)

n2

+ 2
(

300x6 − 1701000 + 51000x2 − 3100x4
)

n − 3916800 + 2156880x2 + 5720x4 − 132x6.

It has a non positive maximum at n = 2 and x < 2.111605780 since

A(2, x) = 2549880x2 − 18680x4 + 1968x6 − 16390800 < 0.

This implies that A(n, x) < 0, and ∂ϕ(n,x)
∂n > 0. Theorem 4 is thus proved. □

A corollary derived from this theorem is presented below.
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Corollary 7. For n = 2 and for x ∈ (0, ∞), the following inequalities hold:(
sinh x

x

)2
+

tanh x
x

> −14
9

+
64
27

sinh x
x

+
32
27

tanh x
x

>
2
3

[
2 sinh x

x
+

tanh x
x

]
,

and imply the inequalities in Equation (1).

Let us illustrate these inequalities in Figure 1. We consider the following functions:

c(x) =
(

sinh x
x

)2
+

tanh x
x

+
14
9

− 64
27

sinh x
x

− 32
27

tanh x
x

and

d(x) = −14
9

+
64
27

sinh x
x

+
32
27

tanh x
x

− 2
3

[
2 sinh x

x
+

tanh x
x

]
.

This figure shows that c(x) > 0 and d(x) > 0 for x ∈ (0, 4) (the same is, in fact, observed for any x ∈ (0, ∞)).
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Figure 1. Curves of c(x) (left) and d(x) (right) for x ∈ (0, 4)

Another corollary is proposed below by distinguishing the values of a tuning parameter k.

Corollary 8. For every integer n ≥ 2 and for x ∈ (0, ∞), the following inequalities hold:

f (n, x) =
(

sinh x
x

)n
+

n tanh x
2x

− n + 2
2

> kx4, k ≤ n(5n + 22)
360

,

and

f (n, x) =
(

sinh x
x

)n
+

n tanh x
2x

− n + 2
2

< kx4, k >
n(5n + 22)

360
, x ≤ xn,k,

where xn,k is the (unique) positive root of
(

sinh x
x

)n
+ n tanh x

2x − n+2
2 − kx4 = 0.

2.2. n-order hyperbolic second Huygens-Wilker inequalities

The result below proves that the classical inequalities in Equation (3) belong to a chain of inequalities that
is sharper than the one given in Theorem 2 (established in [4]).

Theorem 9. First of all, let us recall the function in Equation (6), i.e.,

g(n, x) =
( x

sinh x

)n
+

nx
2 tanh x

− n + 2
2

.
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For every integer n ≥ 2 and for x ∈ (0, ∞), the following chain of inequalities holds:

. . . <
g(n, x)

n(5n − 2)
<

g(n − 1, x)
(n − 1)(5n − 7)

<
g(n − 2, x)

(n − 2)(5n − 12)
< . . . .

In particular, for n = 2, we have

x2

16 (sinh x)2 +
x

16 tanh x
<

x
3 sinh x

+
x

6 tanh x
− 3

8
.

We then extend the inequalities in Equation (3) as follows:

1
8
<

x
12 sinh x

+
x

24 tanh x
<

x2

16 (sinh x)2 +
x

16 tanh x

<
x

3 sinh x
+

x
6 tanh x

− 3
8

.

Proof of Theorem 9. Let us set

ψ(n, x) =
g(n, x)

n(5n − 2)
=

1
n(5n − 2)

[( x
sinh x

)n
+

nx
2 tanh x

− n + 2
2

]
.

Based on it, we consider the following difference function:

ψ(n, x)− ψ(n − 1, x) =
g(n, x)

n(5n − 2)
− g(n − 1, x)

(n − 1)(5n − 7)

=

( x
sinh x

)n
+ nx

2 tanh x − n
2 − 1

n (5n − 2)
−

( x
sinh x

)n−1
+ (n−1)x

2 tanh x − n+1
2

(n − 1) (5n − 7)

=
( x

sinh x

)n−1
(

x
(sinh x) n (5n − 2)

− 1
(n − 1) (5n − 7)

)
− 5x

2 (5n − 2) (5n − 7) tanh x
+

5n2 + 15n − 14
2n (5n − 2) (n − 1) (5n − 7)

.

The lemma below is needed to continue the proof.

Lemma 10.

• The function
x

(sinh x)n (5n − 2)
− 1

(n − 1) (5n − 7)

is always non positive.
• The function

− 5x
2 (5n − 2) (5n − 7) tanh x

+
5n2 + 15n − 14

2n (5n − 2) (n − 1) (5n − 7)

has a unique positive root xn for every integer n ≥ 2. Moreover, the sequence (xn) is decreasing as n grows:

x2 = 3.594569985, x3 = 2.499381175, x4 = 2.028584013, . . .

In particular, this lemma implies that

− 5x
2 (5n − 2) (5n − 7) tanh x

+
5n2 + 15n − 14

2n (5n − 2) (n − 1) (5n − 7)
> 0

for x ≥ xn. We then deduce that
ψ(n, x)− ψ(n − 1, x) > 0

for x ≥ xn. In order to examine the case x ∈ (0, xn) and n ≥ 2, we need the result below.
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Lemma 11. For every integer n ≥ 2 and for x ∈ (0, ∞), the following inequalities hold:

1.

1 − nx2

6
+

(
1

180
n +

1
72

n2
)

x4 +

(
− 1

1080
n2 − 1

2835
n − 1

1296
n3

)
x6

<
( x

sinh x

)n
< 1 − nx2

6
+

(
1

180
n +

1
72

n2
)

x4.

2.
x

tanh x
< 1 +

1
3

x2 − 1
45

x4 +
2

945
x6 − 1

4725
x8 +

2
93555

x10.

On the basis of this result, we consider the following natural difference function, with the aim of
maximizing it: ( x

sinh x

)n−1
[

x
(sinh x) n (5n − 2)

− 1
(n − 1) (5n − 7)

]
− 5x

2 (5n − 2) (5n − 7) tanh x
+

5n2 + 15n − 14
2n (5n − 2) (n − 1) (5n − 7)

<

[
1 −

(
n − 1

6

)
x2 +

(
− n

45
+

1
120

+
n2

72

)
x4
]
×[

1 − x2

6 + 7x4

360
n (5n − 2)

− 1
(n − 1) (5n − 7)

]

− 5
1 + x2

3 − x4

45 + 2x6

945 − x8

4725 + 2x10

93555
(5n − 2) (5n − 7)

+
5n2 + 15n − 14

2n (5n − 2) (n − 1) (5n − 7)

=
x6

29937600 (5n − 7) n (5n − 2)
B(n, x),

where

B(n, x) = 40425x2n3 − 346500n3 + 554400n2 − 121275x2n2

− 1600x4n + 21780n + 130647x2n − 33957x2 − 388080

= (−346500 + 40425y) n3 + (−121275y + 554400) n2

+
(
−1600y2 + 130647y + 21780

)
n − 33957y − 388080.

Its derivative with respect to n is obtained as

∂B(n, x)
∂n

= 3 (−346500 + 40425y) n2 + 2 (−121275y + 554400) n

− 1600y2 + 130647y + 21780.

It has a non positive maximum at n = 2 and x < 3.594569985 or y = x2 < 12.92093338, as well for B(n, x) since

B(2, x) = −3200y2 + 65637y − 898920 < 0.

This means that ψ(n, x)− ψ(n − 1, x) = g(n,x)
n(5n−2) −

g(n−1,x)
(n−1)(5n−7) < 0. Theorem 9 is then demonstrated. □

The corollary below is derived from this theorem.
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Corollary 12. For n = 2 and for x ∈ (0, ∞), the following inequalities hold:

1
8
<

x
12 sinh x

+
x

24 tanh x
<

x2

16 (sinh x)2 +
x

16 tanh x

<
x

3 sinh x
+

x
6 tanh x

− 3
8

.

Figure 2 provides a graphical analysis of some of these inequalities. Let us consider the following
functions:

p(x) =
x

3 sinh x
+

x
6 tanh x

− 3
8
− x2

16 (sinh x)2 − x
16 tanh x

and

q(x) =
x2

16 (sinh x)2 +
x

16 tanh x
− x

12 sinh x
− x

24 tanh x
.

This figure shows that p(x) > 0 and q(x) > 0 for x ∈ (0, 6) (the same is observed for any x ∈ (0, ∞)).

0 1 2 3 4 5 6

0
.0

0
0

.1
0

0
.2

0

x

p(x)

0 1 2 3 4 5 6

0
.0

0
0

.0
4

0
.0

8
0

.1
2

x

q(x)

Figure 2. Curves of p(x) (left) and q(x) (right) for x ∈ (0, 6)

2.3. n-order Lazarevic inequalities

In this part, we examine the inequalities in Equation (4) and attempt to include them in a chain of
inequalities that is sharper than that given by Theorem 3 (established in [4]).

Theorem 13. Let us consider the function

h(n, x) =
(

sinh x
x

)n
− n cosh x

3
+

n − 3
3

.

Then for every integer n ≥ 3 and for x ∈ (0, ∞) , the following inequalities hold:

h(n, x)
n(n − 7)

>
h(n − 1, x)

(n − 1)(5n − 12)
h(n − 2, x)

(n − 2)(5n − 17)
> . . . .

Proof of Theorem 13. Let us consider

ν(n, x) =
h(n, x)

n(5n − 7)
=

1
n(5n − 7)

[(
sinh x

x

)n
− n cosh x

3
+

n − 3
3

]
.
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The derivative of ν(n, x) with respect to n is

∂ν(n, x)
∂n

=

[(
sinh x

x

)n
ln

(
sinh x

x

)
− 1

3
cosh x +

1
3

]
n−1 (5n − 7)−1

−
[(

sinh x
x

)n
− n

3
cosh x +

n
3
− 1

]
n−2 (5n − 7)−1

− 5
[(

sinh x
x

)n
− n

3
cosh x +

n
3
− 1

]
n−1 (5n − 7)−2

=

(
sinh x

x

)n [
5 ln

(
sinh x

x

)
n2 − 7 ln

(
sinh x

x

)
n − 10n + 7

]
n2 (5n − 7)2

+
5n2 cosh x

3n2 (5n − 7)2 − 5n2 − 30n + 21

3n2 (5n − 7)2 .

To go on the proof, we need the lemma below.

Lemma 14.

• The function
5 cosh x

3 (5n − 7)2 − 5n2 − 30n + 21

3n2 (5n − 7)2

is always non negative.
• The function

ln
(

sinh x
x

)
− 10n + 7

n (5n − 7)

has a unique positive root xn for every integer n ≥ 3. Moreover, the sequence (xn) is decreasing as n grows:

x3 = 2.619951007, x4 = 2.072479003, x5 = 1.772720990, . . .

In particular, this lemma implies that

ln
(

sinh x
x

)
− 10n + 7

n (5n − 7)
> 0

for x ≥ xn. We then deduce that ∂ν(n,x)
∂n > 0 for x ≥ xn.

For the case x ∈ (0, xn) and n ≥ 3, we need the lemma below.

Lemma 15. For every integer n ≥ 2 and for x ∈ (0, xn), the following inequalities hold:

1. (
sinh x

x

)n
< 1 +

nx2

6
+

n(5n − 2)x4

360
+

n(35n2 − 42n + 16)
45360

x6.

2.

1 +
x2

2
+

x4

24
+

x6

720
+

x8

40320
< cosh x.

3.
x2

6
− x4

180
+

x6

2835
− x8

37800
< ln

(
sinh x

x

)
<

x2

6
− x4

180
+

x6

2835
.
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Using this lemma, we want to minimize the following derivative function:

∂ν(n, x)
∂n

=

(
sinh x

x

)n (
5 ln

(
sinh x

x

)
n2 − 7 ln

(
sinh x

x

)
n − 10n + 7

)
n2 (5n − 7)2

+
5n2 cosh x

3n2 (5n − 7)2 − 5n2 − 30n + 21

3n2 (5n − 7)2

>

[
1 +

nx2

6
+

(
n

120
+

n(n − 1)
72

)
x4 +

(
n(n − 1)

720
+

n
5040

+
n(n − 1)(n − 2)

1296

)
x6
]
×[

n (5n − 7)
(

x2

6 − x4

180 + x6

2835 − x8

37800

)
− 10n + 7

]
n2 (5n − 7)2

+
5
(

1 + x2

2 + x4

24 + x6

720 + x8

40320

)
3 (5n − 7)2 − 5n2 − 30n + 21

3n2 (5n − 7)2

= − x6

5143824000n (5n − 7)2 C(n, x),

where

C(n, x) = −412650n3x4 − 3307500x2n4 + 110250x4n4 + 575820x4n2 − 299880x4n − 19845000n3

− 36174600n + 55566000n2 + 5812695nx2 − 952560x2 − 12152700n2x2 + 10584000x2n3

− 1365x8n3 + 1122x8n2 − 336x8n − 7000x6n4 + 525x8n4 − 31970x6n2 + 9772x6n + 27650x6n3

=
(

110250x4 + 525x8 − 3307500x2 − 7000x6
)

n4

+
(
−19845000 + 10584000x2 − 1365x8 + 27650x6 − 412650x4

)
n3

+
(

575820x4 − 12152700x2 + 55566000 + 1122x8 − 31970x6
)

n2

+
(
−299880x4 − 36174600 + 5812695x2 − 336x8 + 9772x6

)
n − 952560x2.

The second derivative of C(n, x) with respect to n is obtained as

12
(

110250x4 + 525x8 − 3307500x2 − 7000x6
)

n2

+ 6
(
−19845000 + 10584000x2 − 1365x8 + 27650x6 − 412650x4

)
n

+ 1151640x4 − 24305400x2 + 111132000 + 2244x8 − 63940x6.

It has a non positive maximum at n = 3 and x < 2.619951007, as well as for C(n, x) since

C(3, x) = 2071440x4 − 75028275x2 − 144244800 + 14760x8 − 78864x6 < 0,

(because C(3, x) has only 4.109378762 as positive root, recalling that x < 2.619951007) and

∂C(3, x)
∂n

= 3920490x4 + 26241x8 − 138545505x2 − 191498x6 − 238593600 < 0,

(because ∂C(3,x)
∂n has only 4.191812255 as positive root and x < 2.619951007).

This means ∂ν(n,x)
∂n > 0. Theorem 13 is thus proved. □

We end this part by an immediate corollary.
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Corollary 16. For n = 3 and for x ∈ (0, ∞), the following inequalities hold:(
sinh x

x

)3
− cosh x > 4

(
sinh x

x

)2
− 8

3
cosh x − 4

3
.

Figure 3 provides graphical evidence of this inequality. We introduce the following function:

r(x) =
(

sinh x
x

)3
− cosh x − 4

(
sinh x

x

)2
+

8
3

cosh x +
4
3

.

This figure shows that r(x) > 0 for x ∈ (0, 4) (the same is observed for any x ∈ (0, ∞)).

0 1 2 3 4

0
5
0

1
0
0

1
5
0

x

r(x)

Figure 3. Curves of r(x) for x ∈ (0, 4)

3. Proofs of the lemmas and corollaries

The proofs of all non-trivial lemmas and corollaries are given below, in the order in which they appear.

Proof of Lemma 5.

• Let us remark that

−5n2 tanh x
2x

+
5n2 + 20n + 44

2
=

(
5n2 + 20n + 44

)
x − 5n2 tanh x

2x
.

The derivative of the numerator is
20n + 44 + 5n2 (tanh x)2 .

Since it is positive, we get the desired result.
• The derivative of ln

(
sinh x

x

)
is (

cosh x
x

− sinh x
x2

)
x (sinh x)−1 .

Since it is positive, the function

n (5n + 22) ln
(

sinh x
x

)
− 10n − 22

has only one real solution for a fixed n.
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This ends the proof of this lemma. □

Proof of Lemma 6.

1. We have the following series representation of sinh x
x :

sinh x
x

= 1 +
x2

6
+

x4

120
+

x6

5040
+ . . . . = ∑

k≥0

x2k

(2k + 1)!
,

for x ∈ (0, ∞). See [12] and [13]. On the other hand, the Taylor expansions of sinh x
x gives, for any k ≥ 1,

sinh x
x

= 1 +
x2

6
+

x4

120
+

x6

5040
+ . . . . +

x2k

(2k + 1)!
+

x2k+2

(2k + 3)!
sinh(θx)

x
,

for θ ∈ (0, 1).

We can remark that, for x ∈ (0, xn), we have

1 +
x2

6
+

x4

120
<

sinh x
x

.

By an induction on n, we get

1 +
nx2

6
+

n(5n − 2)x4

3600
<

(
sinh x

x

)n
.

2. Let us now consider the function

tanh x
x

− 1 +
x2

3
− 2x4

15
+

17x6

315
.

Its derivative is

− 1
105

−105x + 105x (tanh x)2 + 105 tanh x − 70x3 + 56x5 − 34x7

x2 .

The numerator can be written as

−105x + 105x (tanh x)2 + 105 tanh x − 70x3 + 56x5 − 34x7.

Its derivative is
−210x (tanh x)3 + 210x tanh x − 238x6 − 210x2 + 280x4.

On the other hand, the following inequalities are provable:

x − x3

3
< tanh x < x − x3

3
+

2x5

15
,

and they imply that

− 105x + 105x (tanh x)2 + 105 tanh x − 70x3 + 56x5 − 34x7

< −210x
(

x − x3

3

)3

+ 210x
(

x − x3

3
+

2x5

15

)
− 238x6 − 210x2 + 280x4

=
70
9

x8 (x − 3) (x + 3) < 0,

since x < xn < x2 = 2.1116 . . . . As a result, the left inequality is proved.
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Now, let us introduce the function

tanh x − x +
x3

3
− 2x5

15
+

17x7

315
− 62x9

2835
.

Its derivative is

− (tanh x)2 + x2 − 2x4

3
+

17
45

x6 − 62
315

x8.

Owing to the previous left inequality, we deduce that

− (tanh x)2 + x2 − 2x4

3
+

17
45

x6 − 62
315

x8

< −
(

x − x3

3
+

2x5

15
− 17

315
x7
)2

+ x2 − 2x4

3
+

17
45

x6 − 62
315

x8

= − 1
99225

x10
(

5334 − 1428x2 + 289x4
)

,

which is non positive. This prove the right inequality.
3. Let us consider the function

ln
(

sinh x
x

)
− x2

6
+

1
180

x4 − 1
2835

x6.

Its derivative is

945x cosh x − 945 sinh x − 315x2 sinh x + 21x4 sinh x − 2x6 sinh x
945x sinh x

.

After simplifying by cosh x, the numerator can be written as(
−945 − 315x2 + 21x4 − 2x6

)
tanh x + 945x <

(
−315x2 + 21x4 − 2x6

)
x

= x3
(
−315 + 21x2 − 2x4

)
< 0,

because −315 + 21x2 − 2x4 has no root. Then this numerator is non positive for x ∈ (0, xn). The right
inequality is demonstrated.

By the same way, let us introduce the function

ln
(

sinh x
x

)
− x2

6
+

x4

180
− x6

2835
+

x8

37800
.

Its derivative is

1
4725

4725 cosh x − 4725 sinh x − 1575x2 sinh x + 105x4 sinh x − 10x6 sinh x + x8 sinh x
x sinh x

.

The derivative of the numerator is(
8x7 − 60x5 + 420x3 + 1575x

)
sinh x +

(
x8 − 10x6 + 105x4 − 1575x2

)
cosh x

=
[

x8 − 10x6 + 105x4 − 1575x2 +
(

8x7 − 60x5 + 420x3 + 1575x
)

tanh x
]

cosh x.

The bracket terrm is upper than

x8 − 10x6 + 105x4 − 1575x2 +
(

8x7 − 60x5 + 420x3 + 1575x
)(

x − 1
3

x3
)

= 29x8 − 210x6 − 8
3

x10,

which is non negative for x ∈ (0, xn) (because it has no roots). This proves the left inequality.
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This ends the proof of this lemma. □

Proof of Corollary 7. For n = 2, Theorem 4 implies that

1
64

(sinh x)2

x2 +
1
64

tanh x
x

− 1
32

>
1
27

sinh x
x

+
1

54
tanh x

x
− 1

18
.

Furthermore, the last inequality is sharper than Equation (1), i.e.,

1
2

[(
sinh x

x

)2
+

tanh x
x

]
>

1
3

[
2 sinh x

x
+

tanh x
x

]
.

The desired result is obtained. □

Proof of Corollary 8. For n = 2, owing to [11, Theorem 1], we obtain

(sinh x)2

x2 +
tanh x

x
− 2 > kx4, k ≤ 8

45
.

On the other hand, we have

(sinh x)2

x2 +
tanh x

x
− 2 < kx4, k >

8
45

, x ≤ x2,k,

where x2,k is the positive root of
(

sinh x
x

)2
+ tanh x

x − 2 − kx4 = 0.
The stated results are derived from Theorem 4. □

Proof of Lemma 10.

• It is enough to remark that
x

sinh x
< 1 <

n (5n − 2)
(n − 1) (5n − 7)

.

• The derivative of

−5
x

tanh x
+

5n2 + 15n − 14
n (n − 1)

is
−5

sinh x cosh x − x

(sinh x)2

and it is negative. That means the function has only one solution for fixed n.

The proof is completed. □

Proof of Lemma 11.

1. Let us consider the following function:

( x
sinh x

)n
− 1 +

nx2

6
−

(
7

360
n +

1
72

n (n − 1)
)

x4.

Its derivative is given by

1
sinh x

− x cosh x

(sinh x)2
sinh x

x
+

nx
3

− 4
(

7
360

n +
1

72
n (n − 1)

)
x3.

Let us notice that the following inequality holds:

1
sinh x

− x cosh x

(sinh x)2 < −1
3

x +
7
90

x3 − 31
2520

x5.
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We thus deduce that the derivative is lower than

n
(
− x

3
+

7
90

x3 − 31
2520

x5
)
+

nx
3

− 4
(

7
360

n +
1

72
n (n − 1)

)
x3

= − 31
2520

nx5 − n (n − 1)
18

x3 < 0.

Therefore, we assert that( x
sinh x

)n
− 1 +

nx2

6
−

(
7

360
n +

1
72

n (n − 1)
)

x4 < 0,

implying the desired right inequality.

On the other hand, let us consider( x
sinh x

)n
− 1 +

nx2

6
−

(
1

180
n +

1
72

n2
)

x4 −
(
− 1

2835
n − 1

1080
n2 − 1

1296
n3

)
x6,

and use ( x
sinh x

)n+1
=

( x
sinh x

)n ( x
sinh x

)
,

in order to prove by induction on n.

To obtain the left inequality, it is sufficient to prove the following inequality:

x
sinh x

[
1 − nx2

6
+

(
1

180
n +

1
72

n2
)

x4 +

(
− 1

2835
n − 1

1080
n2 − 1

1296
n3

)
x6
]

> 1 −
(

41
9072

n +
31

15120
+

7
2160

n2 +
1

1296
n3

)
x6

−
(
− n

30
− 7

360
− 1

72
n2

)
x4 −

(
n + 1

6

)
x2.

Let us recall that

x
sinh x

> 1 − 1
6

x2 +
7

360
x4 − 31

15120
x6 +

127
604800

x8 − 73
3421440

x10.

We thus derive(
1 − 1

6
x2 +

7
360

x4 − 31
15120

x6 +
127

604800
x8 − 73

3421440
x10

)
×(

1 − nx2

6
+

(
1

180
n +

1
72

n2
)

x4 +

(
− 1

2835
n − 1

1080
n2 − 1

1296
n3

)
x6
)

− 1 +
(

41
9072

n +
31

15120
+

7
2160

n2 +
1

1296
n3

)
x6 +

(
− n

30
− 7

360
− 1

72
n2

)
x4

+

(
n + 1

6

)
x2 =

1
5431878144000

x8 A(n, x),
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where

A(n, x) = 2762242560n + 2305195200n2 + 698544000n3 − 289230480nx2 − 252473760x2n2

− 81496800x2n3 + 29580912x4n + 26153820x4n2 + 8593200x4n3 − 1046196x6n

− 2665782x6n2 − 880110x6n3 + 40880x8n + 107310x8n2 + 89425x8n3 + 1140622560

− 115894800x2

=
(
−880110x6 − 81496800x2 + 89425x8 + 698544000 + 8593200x4

)
n3

+
(

2305195200 + 26153820x4 + 107310x8 − 2665782x6 − 252473760x2
)

n2

+
(

2762242560 − 1046196x6 + 40880x8 + 29580912x4 − 289230480x2
)

n

+ 1140622560 − 115894800x2.

The derivative of A(n, x) with respect to n is

∂A(n, x)
∂n

= 3
(
−880110x6 − 81496800x2 + 89425x8 + 698544000 + 8593200x4

)
n2

+ 2
(

2305195200 + 26153820x4 + 107310x8 − 2665782x6 − 252473760x2
)

n

+ 2762242560 − 1046196x6 + 40880x8 + 29580912x4 − 289230480x2.

This derivative is positive for n ≥ 2, implying that A(n, x) > 0. The left inequality is proved.
2. Let us now consider the difference:

x
tanh x

−
(

1 +
x2

3
− x4

45
+

2
945

x6 − 1
4725

x8 +
2

93555
x10

)
.

Its derivative is given by

1
tanh x

−
x
[
1 − (tanh x)2

]
(tanh x)2 − 2x

3
+

4
45

x3 − 4
315

x5 +
8

4725
x7 − 4

18711
x9.

Moreover, we may easily express

1
tanh x

−
x
[
1 − (tanh x)2

]
(tanh x)2 =

sinh (2x)− 2x
cosh (2x)− 1

= coth(x)− x
(sinh x)2 .

Let us recall that
coth(x) <

1
x
+

1
3

x − 1
45

x3 +
2

945
x5 − 1

4725
x7 +

2
93555

x9

and
x

(sinh x)2 >
1
x
− 1

3
x +

1
15

x3 − 2
189

x5 +
1

675
x7 − 2

10395
x9.

Thus, we have

1
tanh x

−
x
[
1 − (tanh x)2

]
(tanh x)2

<
1
x
+

1
3

x − 1
45

x3 +
2

945
x5 − 1

4725
x7 +

2
93555

x9

−
(

1
x
− 1

3
x +

1
15

x3 − 2
189

x5 +
1

675
x7 − 2

10395
x9
)

=
2x
3

− 4
45

x3 +
4

315
x5 − 8

4725
x7 4

18711
x9 < 0.
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We then derive
x

tanh x
−

(
1 +

x2

3
− x4

45
+

2
945

x6 − 1
4725

x8 +
2

93555
x10

)
< 0.

The desired inequality is obtained.

The lemma is proved. □

Proof of Corollary 12. By Theorem 9, we get

x2

16(sinh x)2 +
x

16 tanh x
<

x
3 sinh x

+
x

6 tanh x
− 3

8
.

The last inequality is sharper than the one in Equation (1); we have

1
2

[( x
sinh x

)2
+

x
tanh x

]
>

1
3

[
2x

sinh x
+

x
tanh x

]
.

This ends the proof. □

Proof of Lemma 14.

• It suffices to notice that

5 cosh x > 5 > 5 − 3(10n − 7)
n2 =

5n2 − 30n + 21

3n2 (5n − 7)2 .

• The derivative of ln
(

sinh x
x

)
is (

cosh x
x − sinh x

x2

)
x

sinh x
= coth x − 1

x
.

Since it is positive, the function has only one solution for fixed n.

This ends the proof. □

Proof of Lemma 15. The proof is analogous to that given in Lemma 11 for the two first points. The third has
already been proved in Lemma 6. □

4. Conclusions

Possibilities of going further and improving the above three theorems are discussed in this section.

4.1. About Theorem 4

In [11, Theorem 2], it is proved that, for any x ̸= 0, λ > 0, µ > 0, q > 0 and p ≥ 2qµ
λ , the following

inequality holds:

fwd =
λ

µ + λ

(
sinh x

x

)p
+

µ

µ + λ

(
tanh x

x

)q
> 1.

For the particular case q = 1, p = n, µ = n, λ = 2, we find

f (n, x) =
(

sinh x
x

)n
+

n
2

(
tanh x

x

)
− n + 2

2
> 0.

Thus, we may naturally expect to discover other properties for fwd similar to those provided for f (n, x).
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4.2. About Theorem 9

It seems that the following inequalities are true:

x3

(sinh x)3 +
3x

2 tanh x
− 5

2
< kx4, k ≥ 13

120
,

and
x3

(sinh x)3 +
3x

2 tanh x
− 5

2
> kx4, k <

13
120

, x ≤ x3,k,

where x3,k is the positive root of x3

(sinh x)3 +
3x

2 tanh x − 5
2 − kx4 = 0.

Hence, by Theorem 9, we get

g(n, x) =
( x

sinh x

)n
+

nx
2 tanh x

− n + 2
2

< kx4, k ≥ n(5n − 2)
360

,

and

g(n, x) =
( x

sinh x

)n
+

nx
2 tanh x

− n + 2
2

> kx4, k <
n(5n − 2)

360
, x ≤ xn,k,

where xn,k is the positive root of
( x

sinh x
)n

+ nx
2 tanh x − n+2

2 − kx4 = 0.

4.3. About Theorem 13

It seems that the following inequalities hold:

h(3, x) =
(

sinh x
x

)3
− cosh x > kx4, k ≤ 1

15
,

and

h(3, x) =
(

sinh x
x

)3
− cosh x < kx4, k >

1
15

, x ≤ x3,k,

where x3,k is the positive root of
(

sinh x
x

)3
− cosh x − kx4 = 0.

Thus, by Theorem 13, we have

h(n, x) =
(

sinh x
x

)n
− n cosh x

3
+

n − 3
3

> kx4, k ≤ n(5n − 7)
360

,

and

h(n, x) =
(

sinh x
x

)n
− n cosh x

3
+

n − 3
3

< kx4, k >
n(5n − 7)

360
, x ≤ xn,k,

where xn,k is the positive root of
(

sinh x
x

)n
− n cosh x

3 + n−3
3 − kx4 = 0.

The rigorous proofs and improvements of these results require further investigation. We leave this to
future work.
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