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1. Introduction

M ultidual numbers were first introduced by F. Messelmi in [1] as a generalization of dual numbers
to higher dimensions. This concept involves a unit number satisfying εn+1 = 0, thereby creating an

(n+ 1)-dimensional associative, commutative, and unitary generalized Clifford algebra generated by ε, known
as multidual algebra. The author explored functions of multidual variables, generalizing the Cauchy-Riemann
formulas and presenting results on the continuation of multidual functions.

In [2], the concept was extended to complex numbers, resulting in multidual complex numbers, and the
study encompassed multidual complex functions and their inverses. The algebraic properties of multidual
numbers were thoroughly discussed in [1,3,4], and differential calculus of multidual functions was the subject
of [5]. This paper introduced anti-hyperholomorphic and co-hyperholomorphic functions, generalized Dirac
operators, and established several significant results. Furthermore, multidual analysis has been applied in
various technological fields, including Mechanics, Robotics, Aeronautics, and Electronics, as detailed in [6–14].

The primary aim of this paper is to define the multidual Gamma function as a multidual continuation of
the real Gamma function and to investigate its properties.

The paper is organized as follows: The second section reviews the basic properties of multidual analysis,
including hyperholomorphic functions and the continuation of real functions to the algebra of multidual
numbers. The third section extends the real Gamma function to multidual numbers and examines its
properties. An intriguing result concerning the real Gamma function, utilizing multidual analysis and
involving harmonic numbers, will also be established.

2. Prliminaries

A multidual number z is defined according to the work in [1] as an ordered (n + 1)-tuple of real numbers
(x0, x1, . . . , xn) associated with the real unit 1 and the powers of the multidual unit ε, where ε is an (n +

1)-nilpotent number, i.e., εn+1 = 0 and εi ̸= 0 for i = 1, . . . , n. Specifically, a multidual number is typically
denoted in the form

z =
n

∑
i=0

xiε
i. (1)

Here, we assume that ε0 = 1.
The set of multidual numbers is denoted by Dn and is defined as

Dn =

{
z =

n

∑
i=0

xiε
i | xi ∈ R, where εn+1 = 0 and εi ̸= 0 for i = 1, . . . , n

}
. (2)
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There are various ways to choose the multidual unit ε. A basic example is given by the matrix

ε =


0 0 . . . 0

1 0
. . . 0

...
. . . . . . 0

0 . . . 1 0

 .

If z = ∑n
i=0 xiε

i is a multidual number, we denote by real(z) the real part of z, given by

real(z) = x0. (3)

The multidual numbers form a commutative ring with characteristic 0. Moreover, the inherited
multiplication gives the multidual numbers the structure of an (n + 1)-dimensional generalized Clifford
Algebra. For n = 1, D1 represents the Clifford algebra of dual numbers. For more details regarding dual
numbers, see references [2,16,17]. In abstract algebra terms, the multidual ring can be obtained as the quotient
of the polynomial ring R[X] by the ideal generated by the polynomial Xn+1, i.e.,

Dn ≃ R[X]

⟨Xn+1⟩ . (4)

It is also important to point out that every multidual number possesses a matrix representation that can
be formulated as follows:

Let us denote by Gn+1(R) the subset of Mn+1(R) given by

Gn+1(R) =
{

A = (xij) ∈ Mn+1(R) |
xij = 0 if i < j,

xi+1,j+1 = xij if j ≤ i ≤ n

}
. (5)

An element A of Gn+1(R) can be written as

A =


a0 0 . . . 0
a1 a0 . . . 0
...

. . . . . .
...

an . . . a1 a0

 . (6)

It is clear that Gn+1(R) is a subring of Mn+1(R) having the structure of an (n+ 1)-dimensional associative,
commutative, and unitary algebra. If a0 ̸= 0, Gn+1 becomes a field. In particular, the set Gn+1(R) can also be
seen as a subgroup of GL(n + 1).

Introducing now the following mapping

R : Dn −→ Gn+1 (R) ,

R
(

n
∑

i=0
xiε

i
)
= A =


x0 0 . . . 0
x1 x0 . . . 0
...

. . . . . .
...

xn . . . x1 x0

 (7)

The result below shows the relationship between the sets Dn and Gn+1 (R) .

Theorem 1. R is an isomorphism of algebras.

If z is a multidual number, the conjugate of z denoted by z̄ is the multidual number given by

zz̄ = detR (z) = real (z)n+1 . (8)
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Hence, z =
n
∑

i=0
xiε

i has a unique conjugate if and only if real (z) = x0 ̸= 0. If x0 = 0 the number
n
∑

i=1
xiε

i is

a divisor of zero in the ring Dn. Denote by D the set of zero divisors of the ring Dn, i.e.

D =

{
n

∑
i=1

xiε
i | xi ∈ R

}
. (9)

For the sequel we admit that Dn is endowed with the usual topology of Rn+1. We recall now, according to
the work [1], some results regarding multidual functions.

Let Ω be an open subset of Dn, z =
n
∑

i=0
xiε

i ∈ Ω and f : Ω −→ Dn a multidual function. The

Cauchy-Riemann conditions can be generalized for multidual function as follows.

Theorem 2. Let f be a multidual function in Ω ⊂ Dn, which can be written in terms of its real and multidual parts as

f (z) =
n

∑
i=0

fi (x0, x1, ..., xn) εi. (10)

and suppose that the partial derivatives of f exist. Then,
1. f is hyperholomorphic in Ω if and only if the following formulas hold

∂ fi
∂xj

=
∂ fi−j

∂x0
if j ≤ i,

∂ fi
∂xj

= 0 if j > i.
(11)

2. f is hyperholomorphic in Ω if and only if its partial derivatives satisfy

∂ f
∂xj

= εj ∂ f
∂x0

, j = 0, ..., n. (12)

This allows us to deduce in particluar that if the function f is hyperholomorphic then

d f
dz

=
∂ f
∂x0

. (13)

A multidual function defined in Ω ⊂ Dn is said to be homogeneous if

f (real (z)) ∈ R. (14)

The following Theorem asserts us that we can extend any homogeneous hyperholomorphic function
defined in a subset Ω ⊂ Dn to the whole multidual subset P1 (Ω)× Rn ⊂ Dn, where P1 (Ω) represents the
first projection of Ω on R.

Theorem 3 (Continuation of hyperholomorphic functions). Let f be an homogeneous multidual function in Ω ⊂ Dn,
which can be written in terms of its real and multidual parts as in the expression (10) and suppose that the partial
derivatives of f exist. If f is hyperholomorphic in Ω, then the functions fi verify

1. f0 ∈ Cn+1 (P1 (Ω)) .
2. fi ∈ Cn−i+1 (P1 (Ω)×Ri) , i = 1, ..., n.
3. f can be holomorphically extended to the multidual subset P1 (Ω)×Rn ⊂ Dn.

The following proposition ensures that every regular real function can be extended to the algebra of
multidual numbers.

Proposition 4 (Continuation of real functions). Let f : O −→ R be a real function, where O is an open connected
domain of R.
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1. Suppose that f ∈ Cn+1 (O) . Then, there exists a unique homogeneous hyperholomorphic multidual function
f̃ : O ×Rn ⊂ Dn −→ Dn satisfying

f̃ (x0) = f (x0) ∀x0 ∈ O. (15)

2. For i = 1, ..., n and j = 1, ..., i, there exists polynomials Pij ∈ R [x1, ..., xi] where deg
(

Pij
)
≤ i, such that

f̃ (z) = f (x0) +
n

∑
i=1

i

∑
j=1

Pij (x1, ..., xi) f (i−j+1) (x0) εi. (16)

If in addition f ∈ Cq (O) , q ≥ n + 1, then f̃ ∈ Cq−n (O ×Rn) . In Particular, if f ∈ C∞ (O) , then f̃ ∈
C∞ (O ×Rn) , we say in such case that f is an analytic function in O ×Rn.

In the following proposition, we give some properties regarding the generator polynomials Pij appearing
in formula (16).

Proposition 5. The generator polynomials verify the following statements:
Pij = 0 ∀i = 1, ..., n and j = i + 1, ..., n,
∂Pij
∂xk

= 0 ∀i = 1, ..., n, k = 1, ..., i and j = 1, ..., k − 1,
∂Pij
∂xk

= Pi−k,j−k+1 ∀i = 2, ..., n, k = 1, ..., i − 1 and j = k, ..., i − 1,
Pii (x1, ..., xi) = xi ∀i = 1, ..., n.

(17)

3. Multidual Gamma Function

We focus in this sectionr on the generalization of the real Gamma function to multidual numbers and
we will intereste to show some results regading real Gamma function making use the properties of multidual
Gamma function.

Let Γ be the real Gamma function given by

Γ (x) =
+∞∫
0

tx−1e−tdt, (18)

It is will known that Γ ∈ C∞ (]0,+∞[) , then by Proposition 4 there exists a unique multidual
continuation function still denoted by Γ, called multidual Gamma function, defined in the subset (Dn)

∗
+ ={

z =
n
∑

i=0
xiε

i ∈ Dn | xi > 0
}

by

Γ (z) =
+∞∫
0

tz−1e−tdt ∀z ∈ (Dn)
∗
+ . (19)

We will sketch in the following some of the main properties of the multidual Gamma function.

Proposition 6. 1. ∀z ∈ (Dn)
∗
+ the multidual Gamma function satisfies the functional equation

Γ (z + 1) = zΓ (z) . (20)

2. ∀k ∈ N∗ we have

Γ(k) (z) =
+∞∫
0

(log t)k tz−1e−tdt. (21)

The proof is an immediate consequence of the formula (19).
We will need the following notations

B0 = (Dn)
∗
+ =

{
z =

n
∑

i=1
xiε

i ∈ Dn | x0 > 0
}

,
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B1 =

{
z =

n
∑

i=1
xiε

i ∈ Dn | x0 > −1 and x0 ̸= 0
}

,

B2 =

{
z =

n
∑

i=1
xiε

i ∈ Dn | x0 > −2 and x0 ̸= −1, 0
}

,

...

Bm =

{
z =

n
∑

i=1
xiε

i ∈ Dn | x0 > −m and x0 ̸= 0,−1, ...,−m + 1
}

.

So far we know that Γ (z) is defined and hyperholomorphic on B0. Our strategy is to
hyperholomorphically extende Γ from B0 to Bm. To this aim, proposition allows us to write

Γ (z) =
Γ (z + 1)

z
.

The right side of this equation is hyperholomorphic on B1. Since it agrees with Γ on B0 it represents a
hyperholomorphic continuation from B0 to B1.

Similarly, equation can be expressed as Γ (z + 1) =
Γ (z + 2)
(z + 1)

. So,

Γ (z) =
Γ (z + 2)
z (z + 1)

.

The right side of this equation is hyperholomorphic on B2. Since it agrees with Γ on B0 it is a
hyperholomorphic continuation from B0 to B2.

We can so iterate this procedure as far as to get

Γ (z) =
Γ (z + m)

z (z + 1) ... (z + m − 1)
. (22)

The right side of this equation is analytic on Bm. Since it agrees with Γ on B0 it is an hyperholomorphic
continuation from B0 to Bm. We conclude that the function Γ can be extended to the set Bm ={

z =
n
∑

i=1
xiε

i ∈ Dn | x0 ̸= −m, m ∈ N
}

.

Theorem 7. For every k ∈ N∗ and x0 ̸= −m, m ∈ N. The following formulas hold

Γ′ (x0 + k) =
k−1

∏
r=0

(x0 + r)

(
Γ′ (x0) + Γ (x0)

k−1

∑
r=0

1
x0 + r

)
, (23)

and
i

∑
j=1

Pij (x1, ..., xi) Γ(i−j+1) (x0 + k)

=
k−1

∏
r=0

(x0 + r)
i

∑
j=1

(
Pij (x1, ..., xi) Γ(i−j+1) (x0) + Γ (x0) Pij (y1, ..., yi)

)
+

i−1

∑
j=1

(
j

∑
m=1

Pjm (x1, ..., xi) Γ(j−m−1) (x0)

)(
i−j

∑
m=1

Pi−j,m
(
y1, ..., yi−j

))
, (24)

where

yi =
k−1

∑
r=0

i

∑
j=1

Pij

(
x1

x0 + r
, ...,

xi
x0 + r

)
(−1)i−j (i − j)!. (25)

Proof. We know from formula (20) that for all k ∈ N∗ we have

Γ (z + k) = Γ (z)
k−1

∏
r=0

(z + r) . (26)
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So, if z =
n
∑

i=0
xiε

i, we can write

Γ (z + k) = Γ (z)
k−1

∏
r=0

(
x0 + r +

n

∑
i=1

xiε
i

)

= Γ (z)
k−1

∏
r=0

(x0 + r)
k−1

∏
r=0

(
1 +

n

∑
i=1

xi
x0 + r

εi

)

= Γ (z)
k−1

∏
r=0

(x0 + r)
k−1

∏
r=0

e

n
∑

i=1
yriε

i

, (27)

where

e

n
∑

i=1
yriε

i

= 1 +
n

∑
i=1

xi
x0 + r

εi. (28)

This leads to

Γ (z + k) = Γ (z)
k−1

∏
r=0

(x0 + r) e

k−1
∑

r=o

n
∑

i=1
yriε

i

. (29)

Denoting now by yi the sum yi =
k−1
∑

r=o
yri, we obtain keeping in mind (16)

Γ (z + k) = Γ (z)
k−1

∏
r=0

(x0 + r)

(
1 +

n

∑
i=1

i

∑
j=1

Pij (y1, ..., yi) εi

)
. (30)

Using again (16), we find

Γ (x0 + k) +
n

∑
i=1

i

∑
j=1

Pij (x1, ..., xi) Γ(i−j+1) (x0 + k) εi

=

(
Γ (x0) +

n

∑
i=1

i

∑
j=1

Pij (x1, ..., xi) Γ(i−j+1) (x0) εi

)
×

k−1

∏
r=0

(x0 + r)

(
1 +

n

∑
i=1

i

∑
j=1

Pij (y1, ..., yi) εi

)
. (31)

Further, (11) gives
n

∑
i=1

yiε
i = log

(
1 +

n

∑
i=1

xi
x0 + r

εi

)
.

Then, we can infer thinks to (16)

n

∑
i=1

yiε
i =

n

∑
i=1

i

∑
j=1

Pij

(
x1

x0 + r
, ...,

xi
x0 + r

)
log(i−j+1) (1) εi. (32)

This yields

yi =
k−1

∑
r=0

i

∑
j=1

Pij

(
x1

x0 + r
, ...,

xi
x0 + r

)
(−1)i−j (i − j)!.
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Which implis that

Γ (x0 + k) +
n

∑
i=1

i

∑
j=1

Pij (x1, ..., xi) Γ(i−j+1) (x0 + k) εi

= Γ (x0)
k−1

∏
r=0

(x0 + r) +
k−1

∏
r=0

(x0 + r)
n

∑
i=1

i

∑
j=1

Pij (x1, ..., xi) Γ(i−j+1) (x0) εi+

Γ (x0)
k−1

∏
r=0

(x0 + r)
n

∑
i=1

i

∑
j=1

Pij (y1, ..., yi) εi+

k−1

∏
r=0

(x0 + r)
n

∑
i=2

i−1

∑
j=2

(
j

∑
m=1

Pjm (x1, ..., xi) Γ(j−m−1) (x0)

)
×

(
i−j

∑
m=1

Pi−j,m
(
y1, ..., yi−j

))
εi.

One can easily, using the propertis of the generator polynomials conclude, that

Γ′ (x0 + k) =
k−1
∏

r=0
(x0 + r)

(
Γ′ (x0) + Γ (x0)

k−1
∑

r=0

1
x0+r

)
,

and
i

∑
j=1

Pij (x1, ..., xi) Γ(i−j+1) (x0 + k)

=
k−1
∏

r=0
(x0 + r)

i
∑

j=1

(
Pij (x1, ..., xi) Γ(i−j+1) (x0) + Γ (x0) Pij (y1, ..., yi)

)
+

i−1
∑

j=1

(
j

∑
m=1

Pjm (x1, ..., xi) Γ(j−m−1) (x0)

)(
i−j
∑

m=1
Pi−j,m

(
y1, ..., yi−j

))

This allows us to achieve the proof.

Example 1. We investigate the particular case n = 2. We have for k ∈ N∗

Γ (z + k) = Γ (z)
k−1

∏
r=0

(z + r) .

So, for z = x0 + x1ε + x2ε2, we can write

Γ (z + k) = Γ (z)
k−1

∏
r=0

(
x0 + r + x1ε + x2ε2

)
= Γ (z)

k−1

∏
r=0

(x0 + r)
k−1

∏
r=0

(
1 +

x1

x0 + r
ε +

x2

x0 + r
ε2
)

= Γ (z)
k−1

∏
r=0

(x0 + r)
k−1

∏
r=0

eyr1+yr2ε2
, (33)

where
eyr1ε+yr2ε2

= 1 +
x1

x0 + r
ε +

x2

x0 + r
ε2. (34)

Equation gives 
yr1 =

x1

x0 + r
,

yr2 =
x2

x0 + r
− 1

2

(
x1

x0 + r

)2
.

(35)
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Thus, one finds

Γ (z + k) =
k−1

∏
r=0

(x0 + r) Γ (z)

exp

(
x1

(
k−1

∑
r=0

1
x0 + r

)
ε +

(
x2

(
k−1

∑
r=0

1
x0 + r

)
−

x2
1

2

k−1

∑
r=0

1

(x0 + r)2

)
ε2

)
. (36)

For x ∈ R∗, let us denote by Hp,q (x) the p−th harmonic number given by

Hp,q (x) =
p

∑
r=0

1
(x + r)q . (37)

Hence, equation can be witten making use

Γ (z + k) =
k−1

∏
r=0

(x0 + r) Γ (z)×

exp

(
x1Hk−1,1 (x0) ε +

(
x2Hk−1,1 (x0)−

x2
1

2
Hk−1,2 (x0)

)
ε2

)

=
k−1

∏
r=0

(x0 + r) Γ (z) [1 + x1Hk−1,1 (x0) ε+(
x2

1 Hk−1,1 (x0)
2 + x2Hk−1,1 (x0)−

x2
1

2
Hk−1,2 (x0)

)
ε2

]
. (38)

So, we can infer

Γ (x0 + k) +
n

∑
i=1

i

∑
j=1

Pij (x1, ..., xi) Γ(i−j+1) (x0 + k) εi

=

[
Γ (x0) +

n

∑
i=1

i

∑
j=1

Pij (x1, ..., xi) Γ(i−j+1) (x0) εi

]

=
k−1

∏
r=0

(x0 + r) [1 + x1Hk−1,1 (x0) ε+(
x2

1 Hk−1,1 (x0)
2 + x2Hk−1,1 (x0)−

x2
1

2
Hk−1,2 (x0)

)
ε2

]
.

Consequently, we deduce making use some algebraic manipulations

Γ (x0 + k) =
k−1

∏
r=0

(x0 + r) Γ (x0) , (39)

Γ′ (x0 + k) =
k−1

∏
r=0

(x0 + r)
(
Γ′ (x0) + Γ (x0) Hk−1,1 (x0)

)
, (40)

Γ′′ (x0 + k) =
k−1

∏
r=0

(x0 + r)
(
Γ′′ (x0) + Γ′ (x0) Hk−1,1 (x0) +

Γ (x0)
(

Hk−1,1 (x0)
2 − Hk−1,2 (x0)

))
. (41)
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