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1. Introduction

O ver the past century, convex analysis has emerged as a pivotal research area across various scientific
fields, including applied mathematics, physics, optimization, communications and networks,

economics and finance, and automatic control systems. Numerous new concepts of generalized convexity
and concavity have been extensively studied by researchers; for more details, we refer readers to the research
monographs and papers [1–9] and the references therein. Majorization theory has significantly contributed to
convex theory, particularly in the study of inequalities and various mathematical means. The properties of
various binary means are a crucial topic in contemporary inequality research. In recent years, the study of the
Schur convexity of means has garnered increasing attention from scholars (see, e.g., [10–42]).

Definition 1. Let a and b be two positive numbers.

(i) Two means M(a, b) and N(a, b) of a and b are said to be inverses with respect to the geometric mean
G(a, b) =

√
ab if

M(a, b) · N(a, b) =
[G(a, b)]2

M(a, b)
.

In other words, [G(a,b)]2

M(a,b) is a mean which is inverse of M(a, b).

(ii) The invariant of the contra harmonic mean C(a, b) = a2+b2

a+b with respect to the geometric mean G(a, b) =√
ab is defined by

V(a, b) =
ab(a + b)
a2 + b2 . (1)

Remark 1. It is worth noting that this mean V(a, b) can be expressed as

V(a, b) =
ab(a + b)
a2 + b2 =

1
a +

1
b

1
a2 +

1
b2

=
H(a2, b2)

H(a, b)
,
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where H(a, b) = 2
1
a +

1
b

is the harmonic mean of two positive numbers a and b.

In 2017, R. Sampath Kumar and K M. Nagaraja [43] studied the Schur power convexity of V(a, b), and
obtained the following result.

Theorem 2 (see [43]). For a < b, z = b
a > 1, then V(a, b) is

(a) Schur m-power convex, if − 2
3 < m < 1

2 ;
(b) Schur m-power concave if m ∈

(
−∞, −3

2
)
∪
(

1
2 , ∞

)
.

Remark 2. In fact, the condition ”a < b, z = b
a > 1” in Theorem 2 is equivalent to the condition ”0 < a < b”.

Inspired by Theorem 2, we will investigate the Schur power convexity of the following generalized forms
of the invariant contra harmonic mean Vk(a, b) and Vf (a, b) and establish new generalizations of Theorem 2.

Definition 3. Let (a, b) ∈ R2
+ and f be a positive function on R+ (i.e., f (x) > 0 for all x ∈ R+). Define

Vk(a, b) =
H(ak+1, bk+1)

H(ak, bk)

and

Vf (a, b) =
f (a) + f (b)

( f (a))2 + ( f (b))2 .

The following is a generalizations of Theorem 2 which is one of the main results of this paper.

Theorem 4. Let (a, b) ∈ R2
+ and k ∈ N. Then the following statements hold:

(a) If 0 ≤ m ≤ 1, then Vk(a, b) is Schur m-power concave with (a, b) ∈ R2
+;

(b) Vk(a, b) is Schur geometrically concave with (a, b) ∈ R2
+;

(c) Vk(a, b) is Schur harmonically concave with (a, b) ∈ R2
+.

Definition 5. Let (a, b) ∈ R2
+. Define

Vp,q(a, b) =
H(aq, bq)

H(ap, bp)
. (2)

Remark 3. It is easy to see that

Vp,q(a, b) =
H(aq, bq)

H(aq−1, bq−1)

H(aq−1, bq−1)

H(aq−2, bq−2)
· · · H(ap+1, bp+1)

H(ap, bp)
.

As a direct consequence of Theorem 4, we obtain the following corollary which is also a generalizations
of Theorem 2.

Corollary 6. Let (a, b) ∈ R2
+ and p, q ∈ N with p < q. Then the following statements hold:

(a) If 0 ≤ m ≤ 1, then Vp,q(a, b)) is Schur m-power concave with (a, b) ∈ R2
+.

(b) Vp,q(a, b) is Schur geometrically concave with (a, b) ∈ R2
+.

(c) Vp,q(a, b) is Schur harmonically concave with (a, b) ∈ R2
+.

The sufficient conditions for Vf (a, b) to have the Schur-m power concavity are stated in the following
theorem.

Theorem 7. Let (a, b) ∈ R2
+. Then the following statements hold:

(a) If the function f (t) is a decreasing positive convex function and m ≥ 1, then Vf (a, b) is Schur-m power concave
with (a, b) ∈ R2

+.
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(b) If the function f (t) is a increasing positive convex function and 0 ≤ m ≤ 1, then Vf (a, b) is Schur-m power
concave with (a, b) ∈ R2

+.

The detailed proofs of Theorems 4 and 7 will be given in Sections 3. Finally, some applications are
presented in Sections 4.

2. Preliminaries

We first recall some notations, definitions and well-known results, which will be used in this paper. For
n ∈ N (the set of positive integers), we write

Rn = R×R× · · · ×R︸ ︷︷ ︸
n times

= {a = (a1, a2, . . . , an) : ai ∈ R, i = 1, . . . , n}

and
Rn
+ = R+ ×R+ × · · · ×R+︸ ︷︷ ︸

n times

= {a = (a1, a2, . . . , an) : ai > 0, i = 1, . . . , n}

where R := (−∞,+∞) and R+ := (0,+∞). In particular, we denote R1 and R1
+ simply as R and R+

respectively. Recall that a set Ω ⊂ Rn is called convex if for any a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Ω
and α, β ∈ [0, 1] with α + β = 1, we have

αa + βb =(αa1 + βb1, αa2 + βb2, . . . , αan + βbn) ∈ Ω.

Definition 8 (see [44,45]). Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Rn. The vector a is said to be
majorized by b, denoted by a ≺ b, if

t

∑
i=1

a[i] ≤
t

∑
i=1

b[i] for 1 ≤ t ≤ n − 1,

and
n

∑
i=1

ai =
n

∑
i=1

bi,

where a[1] ≥ · · · ≥ a[n] and b[1] ≥ · · · ≥ b[n] are rearrangements of a and b in a descending order.

We need the following known definitions and lemmas.

Definition 9 (see [44,45]). Let D ⊂ Rn. A function f : D → R is said to be

(i) Schur-convex on D if x ≺ y on D implies f (x) ≤ f (y);
(ii) Schur-concave on D if and only if − f is Schur-convex.

Definition 10 (see [46,47]). Let D ⊂ Rn
+ and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn

+.

(i) D is called a geometrically convex set if (xα
1 yβ

1 , . . . , xα
nyβ

n) ∈ D for any x, y ∈ D and α, β ∈ [0, 1] with
α + β = 1.

(ii) f : D → R+ is said to be a Schur-geometrically convex function on D if

(log x1, . . . , log xn) ≺ (log y1, . . . , log yn) on D

implies f (x) ≤ f (y) .
(iii) f : D → R+ is said to be a Schur-geometrically concave function on D if and only if − f is

Schur-geometrically convex function.

Definition 11 (see [48,49]). Let D ⊂ Rn
+.
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(i) D is said to be a harmonically convex set if

ab
ta + (1 − t)b

∈ D

for every a = (a1, . . . , an), b = (b1, . . . , bn) ∈ D and t ∈ [0, 1], where ab = ∑n
i=1 aibi and 1

a =
( 1

a1
, · · · , 1

an

)
.

(ii) A function f : D → R+ is said to be Schur harmonically convex on D if 1
a ≺ 1

b implies f (a) ≤ f (b).
(iii) A function f : D → R+ is said to be Schur harmonically concave on D if and only if − f is a Schur

harmonically convex function.

Definition 12 (see [11,12]). Let D ⊂ Rn
+ and h : R+ → R be defined by

h(x) =


xk − 1

k
, k ̸= 0,

log x, k = 0.
(3)

Then a function g : D → R is said to be Schur m-power convex on D if

(h(a1), . . . , h(an)) ≺ (h(b1), . . . , h(bn))

for all a = (a1, . . . , an) ∈ D and b = (b1, . . . , bn) ∈ D implies g(a) ≤ g(b).
If −g is Schur m-power convex, then we say that g is Schur m-power concave.

Remark 4. If we respectively take h(x) = x, h(x) = log x and h(x) = 1
x in Definition 12, then the definitions

of Schur-convex, Schur-geometrically convex, and Schur-harmonically convex functions can be deduced
respectively.

Lemma 13 (see [44,45]). Let D ⊂ Rn be a convex set with a nonempty interior set D◦. Let f : D → R be continuous
on D and differentiable in D◦. Then the following statements hold:

(i) f is Schur-convex if and only if it is symmetric on D and if

(x1 − x2)

(
∂ f
∂x1

− ∂ f
∂x2

)
≥ 0

holds for any x = (x1, · · · , xn) ∈ D◦.
(ii) f is Schur-concave if and only if it is symmetric on D and if

(x1 − x2)

(
∂ f
∂x1

− ∂ f
∂x2

)
≤ 0

holds for any x = (x1, · · · , xn) ∈ D◦.

Lemma 14 (see [46,47]). Let D ⊂ Rn
+ be a symmetric geometrically convex set with a nonempty interior D◦. Let

f : D → R+ be continuous on Ω and differentiable on D◦. Then the following statements hold:

(i) f is a Schur geometrically convex function if and only if f is symmetric on D and

(x1 − x2)

(
x1

∂ f
∂x1

− x2
∂ f
∂x2

)
≥ 0

holds for any x = (x1, · · · , xn) ∈ D◦.
(ii) f is a Schur geometrically concave function if and only if f is symmetric on D and

(x1 − x2)

(
x1

∂ f
∂x1

− x2
∂ f
∂x2

)
≤ 0

holds for any x = (x1, · · · , xn) ∈ D◦.
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Lemma 15 (see [48,49]). Let D ⊂ Rn
+ be a symmetric harmonically convex set with a nonempty interior D◦. Let

f : D → R+ be continuous on D and differentiable on D◦. Then the following statements hold:

(i) f is a Schur harmonically convex function if and only if f is symmetric on D and

(x1 − x2)

(
x2

1
∂ f
∂x1

− x2
2

∂ f
∂x2

)
≥ 0

holds for any x = (x1, · · · , xn) ∈ D◦.
(ii) f is a Schur harmonically concave function if and only if f is symmetric on D and

(x1 − x2)

(
x2

1
∂ f
∂x1

− x2
2

∂ f
∂x2

)
≤ 0

holds for any x = (x1, · · · , xn) ∈ D◦.

Lemma 16 (see [11,12]). Let D ⊂ Rn
+ be a symmetric set with a nonempty interior D◦ and f : D → R+ be continuous

on D and differentiable in D◦. Then f is Schur m-power convex on D if and only if f is symmetric on D and

xk
1 − xk

2
k

[
x1−k

1
∂ f (x)
∂x1

− x1−k
2

∂ f (x)
∂x2

]
≥ 0, if k ̸= 0 (4)

and

(log x1 − log x2)

[
x1

∂ f (x)
∂x1

− x2
∂ f (x)
∂x2

]
≥ 0, if k = 0 (5)

for all x = (x1, · · · , xn) ∈ D◦.

Lemma 17 (see [12]). Let (a, b) ∈ R2
+. Then we have(

a + b
2

,
a + b

2

)
≺ (a, b), (6)

(
log

√
ab, log

√
ab
)
≺ (log a, log b), (7)

and (
(Mm(a, b))m − 1

m
,
(Mm(a, b))m − 1

m

)
≺
(

am − 1
m

,
bm − 1

m

)
. (8)

where Mm(a, b) =
(

am+bm

2

) 1
m .

3. Proofs of Theorems 4 and 7

First, we show Theorem 4 as follows:

3.1. Proof of Theorem 4.

It is not difficult to verify that

Vk(a, b) =
H(ak+1, bk+1)

H(ak, bk)
=

ak+1b + abk+1

ak+1 + bk+1 .

Then
∂Vk(a, b)

∂a
=

A
(ak+1 + bk+1)2

and
∂Vk(a, b)

∂b
=

B
(ak+1 + bk+1)2 ,
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where

A =[(k + 1)akb + bk+1](ak+1 + bk+1)− (ak+1b + abk+1)[(k + 1)ak]

=(k + 1)a2k+1b + (k + 1)akbk+2 + bk+1ak+1 + b2k+2

− (k + 1)a2k+1b − (k + 1)ak+1bk+1

=(k + 1)akbk+2 + b2k+2 − kak+1bk+1

and

B = (k + 1)bkak+2 + a2k+2 − kbk+1ak+1 (by the symmetry of Vk(a, b)).

So, we have

a1−m A − b1−mB

=a1−m[(k + 1)akbk+2 + b2k+2 − kak+1bk+1]

− b1−m[(k + 1)bkak+2 + a2k+2 − kbk+1ak+1]

=a1−mb1−m[(k + 1)akbk+m+1 + b2k+m+1 − kak+1bk+m]

− a1−mb1−m[(k + 1)bkak+m+1 + a2k+m+1 − kbk+1ak+m]

=a1−mb1−m[(k + 1)akbk(bm+1 − am+1)

+ (b2k+m+1 − a2k+m+1) + kak+1bk+1(am−1 − bm−1)].

(a). Let

∆ : =
am − bm

m

(
a1−m ∂Vk(a, b)

∂a
− b1−m ∂Vk(a, b)

∂b

)
=

am − bm

m
· a1−m A − b1−mB
(ak+1 + bk+1)2 .

For 0 ≤ m ≤ 1, noting that (am − bm)(bm+1 − am+1) ≤ 0, (am − bm)(b2k+m+1 − a2k+m+1) ≤ 0 and (am −
bm)(am−1 − bm−1) ≤ 0 are true. So ∆ ≤ 0. Applying Lemma 15, it follows that Vk(a, b) is Schur-m power
concave with (a, b) ∈ R2

+.

(b). We first calculate

aA − bB =(k + 1)ak+1bk+2 + ab2k+2 − kak+2bk+1

− [(k + 1)bk+1ak+2 + ba2k+2 − kbk+2ak+1]

=(2k + 1)ak+1bk+1(b − a) + ab(b2k+1 − a2k+1).

So, we obtain

∆0 : = (log a − log b)
(

a
∂Vk(a, b)

∂a
− b

∂Vk(a, b)
∂b

)
= (log a − log b) · aA − bB

(ak+1 + bk+1)2

= (log a − log b) · (2k + 1)ak+1bk+1(b − a) + ab(b2k+1 − a2k+1)

(ak+1 + bk+1)2 ≤ 0.

By Lemma 14, Vk(a, b) is Schur geometrically concave with (a, b) ∈ R2
+.
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(c). Since

a2 A − b2B =(k + 1)ak+2bk+2 + a2b2k+2 − kak+3bk+1

− [(k + 1)bk+2ak+2 + b2a2k+2 − kbk+3ak+1]

=a2b2(bk+2 − ak+2) + kak+1bk+1(b2 − a2),

we get

∆1 : = (a − b)
(

a2 ∂Vk(a, b)
∂a

− b2 ∂Vk(a, b)
∂b

)
= (a − b) · a2 A − b2B

(ak+1 + bk+1)2

= (a − b) · a2b2(b2k+2 − a2k+2) + kak+1bk+1(b2 − a2)

(ak+1 + bk+1)2 ≤ 0.

By Lemma 15, Vk(a, b) is Schur harmonically concave with (a, b) ∈ R2
+.

The proof of Theorem 4 is completed.

Next, we prove Theorem 7.

3.2. Proof of Theorem 7.

Since
∂Vf (a, b)

∂a
=

A
[( f (a))2 + ( f (b))2]2

,
∂Vf (a, b)

∂b
=

B
[( f (a))2 + ( f (b))2]2

,

where

A = f ′(a)[( f (a))2 + ( f (b))2]− 2 f (a)[( f (a) + ( f (b)] f ′(a)

= f ′(a)[( f (a))2 + ( f (b))2 − 2 f (a)( f (a) + f (b))]

= f ′(a)[( f (b))2 − ( f (a))2 − 2 f (a) f (b)]

and
B = f ′(b)[( f (a))2 − ( f (b))2 − 2 f (a) f (b)],

we obtain

a1−m A − b1−mB

=a1−m f ′(a)[( f (b))2 − ( f (a))2 − 2 f (a) f (b)]

=− b1−m f ′(b)[( f (a))2 − ( f (b))2 − 2 f (a) f (b)]

=[( f (b))2 − ( f (a))2][a1−m f ′(a) + b1−m f ′(b)]− 2 f (a) f (b)(a1−m f ′(a)− b1−m f ′(b))

and

∆ f : =
am − bm

m

(
a1−m ∂Vf (a, b)

∂a
− b1−m ∂Vf (a, b)

∂b

)

=
am − bm

m
· a1−m A − b1−mB
( f (a) + f (b))2 .

From the symmetry of function Vf (a, b) with respect to a and b, it can be assumed that a ≤ b. Let u(t) =

t1−m f ′(t). Then
u′(t) = (1 − m)t−m f ′(t) + t1−m f ′′(t).
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(a). If f (t) is a decreasing convex function and m ≥ 1, then f ′(t) ≤ 0 and f ′′(t) ≥ 0. So it follows that u′(t) ≥ 0,
( f (b))2 − ( f (a))2 ≤ 0 and

a1−m f ′(a) + b1−m f ′(b) ≤ 0,

which imply
−2 f (a) f (b)(a1−m f ′(a)− b1−m f ′(b)) ≥ 0.

Hence we have a1−m A − b1−mB ≥ 0. Since am − bm ≤ 0, we get ∆ f ≤ 0. Applying Lemma 16, we show that
Vf (a, b) is Schur-m power concave with (a, b) ∈ R2

+.

(b). If f (t) is a increasing convex function and 0 ≤ m ≤ 1, we have u′(t) ≥ 0, and then a1−m f ′(a)− b1−m f ′(b) ≤
0. Since f (t) is increasing, it follows that

[( f (b))2 − ( f (a))2][a1−m f ′(a) + b1−m f ′(b)] ≥ 0.

Therefore a1−m A − b1−mB ≥ 0, which implies ∆ f ≤ 0. By Lemma 16, we prove that Vf (a, b) is Schur-m power
concave with (a, b) ∈ R2

+.
The proof of Theorem 7 is complete.

4. Applications and open problems

In this section, we will give some interesting applications of Theorems 4 and 7.

Theorem 18. Let (a, b) ∈ R2
+ and p, q ∈ N with p < q. If 0 ≤ m ≤ 1, then

(Mm(a, b))q−p ≤ a−q + b−q

a−p + b−p . (9)

Proof. Since 0 ≤ m ≤ 1, by Theorem 4 and (8), we have

Vp,q (Mm(a, b), Mm(a, b)) ≥ Vp,q(a, b),

this is

2
2

(Mm(a,b))p

2
2

(Mm(a,b))q

≥
2

1
ap +

1
bp

2
1

aq +
1

bq

, (10)

rearranging gives the inequality (9).

Theorem 19. Let 0 < a, b ≤ 1
2 . If m ≥ 1, then(

log
(

1
a − 1

))2
+
(

log
(

1
b − 1

))2

log
(

1
a − 1

) (
1
b − 1

) ≥ log
(

1
Mm(a, b)

− 1
)

. (11)

Proof. Let g(t) = log
(

1
t − 1

)
for 0 < t < 1

2 . Since g′(t) = −1
(1−t)t ≤ 0 and g′′(t) = 1−2t

(1−t)2x2)
≥ 0, g(t) is a

decreasing convex function on R. For m ≥ 1, from (8) and Theorem 7(a), we have

Vg (Mm(a, b), Mm(a, b)) ≥ Vg(a, b),
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this is

log
(

1
a − 1

)
+ log

(
1
b − 1

)
(

log
(

1
a − 1

))2
+
(

log
(

1
b − 1

))2 ≤
log
(

1
Mm(a,b) − 1

)
+ log

(
1

Mm(a,b) − 1
)

(
log
(

1
Mm(a,b) − 1

))2
+
(

log
(

1
Mm(a,b) − 1

))2

=
1

log
(

1
Mm(a,b) − 1

) ,

rearranging gives the inequality (11).

Theorem 20. Let (a, b) ∈ R2
+. If 0 ≤ m ≤ 1, then

e2a + e2b

ea + eb ≥ Mm(a, b). (12)

Proof. It is known that f (t) = et is a increasing convex function on R. For 0 ≤ m ≤ 1, using (8) and applying
Theorem 7(b), we get

Vf (Mm(a, b), Mm(a, b)) ≥ Vf (a, b),

this is

ea + eb

e2a + e2b ≤ eMm(a,b) + eMm(a,b)

(eMm(a,b))2 + (eMm(a,b))2
=

1
eMm(a,b)

, (13)

rearranging gives the inequality (14).

Theorem 21. Let (a, b) ∈ R2
+. If m ≥ 1, then(

1 −
∫ a

0 e−
x2
2 dx

)2
+

(
1 −

∫ b
0 e−

x2
2 dx

)2

(
1 −

∫ a
0 e−

x2
2 dx

)
+

(
1 −

∫ b
0 e−

x2
2 dx

) ≥ 1 −
∫ Mm(a,b)

0
e−

x2
2 dx (14)

Proof. It is known that f (t) = 1 −
∫ t

0 e−
x2
2 dx for t ≥ 0 is a decreasing convex function on R. For m ≥ 1, from

(8) and using Theorem 7 (a), we obtain

Vf (Mm(a, b), Mm(a, b)) ≥ Vf (a, b),

this is (
1 −

∫ a
0 e−

x2
2 dx

)
+

(
1 −

∫ b
0 e−

x2
2 dx

)
(

1 −
∫ a

0 e−
x2
2 dx

)2
+

(
1 −

∫ b
0 e−

x2
2 dx

)2

≤

(
1 −

∫ Mm(a,b)
0 e−

x2
2 dx

)
+

(
1 −

∫ Mm(a,b)
0 e−

x2
2 dx

)
(1 −

∫ Mm(a,b)
0 e−

x2
2 dx)2 + (1 −

∫ Mm(a,b)
0 e−

x2
2 dx)2

=
1

1 −
∫ Mm(a,b)

0 e−
x2
2 dx

,

rearranging gives the inequality (14).

Here we present a selection of open problems that are related to the Schur power convexity and concavity.

Proposition 22. What is the Schur power convexity of Vk(a, b) when m > 1 or m < 0(m ̸= −1)?

Proposition 23. If the function f (t) is a decreasing concave function or increasing concave function and 0 ≤ m ≤ 1,
then what is the Schur power convexity of Vf (a, b)?
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5. Conclusions

In this paper, we establish new generalizations of Sampath Kumar-Nagaraja Theorem (i.e. Theorem 2) as
follows:

• (See Theorem 4):
Let (a, b) ∈ R2

+ and k ∈ N. Then the following statements hold:

(a) If 0 ≤ m ≤ 1, then Vk(a, b) is Schur m-power concave with (a, b) ∈ R2
+;

(b) Vk(a, b) is Schur geometrically concave with (a, b) ∈ R2
+;

(c) Vk(a, b) is Schur harmonically concave with (a, b) ∈ R2
+.

• (See Corollary 6):
Let (a, b) ∈ R2

+ and p, q ∈ N with p < q. Then the following statements hold:

(a) If 0 ≤ m ≤ 1, then Vp,q(a, b)) is Schur m-power concave with (a, b) ∈ R2
+.

(b) Vp,q(a, b) is Schur geometrically concave with (a, b) ∈ R2
+.

(c) Vp,q(a, b) is Schur harmonically concave with (a, b) ∈ R2
+.

• (See Theorem 7):
Let (a, b) ∈ R2

+. Then the following statements hold:

(a) If the function f (t) is a decreasing positive convex function and m ≥ 1, then Vf (a, b) is Schur-m
power concave with (a, b) ∈ R2

+.
(b) If the function f (t) is a increasing positive convex function and 0 ≤ m ≤ 1, then Vf (a, b) is Schur-m

power concave with (a, b) ∈ R2
+.

Finally, some interesting applications are presented in Section 4.
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