

Article **On the relative growth of Dirichlet series absolutely**

Myroslav M. Sheremeta1,[∗]

- 1 Ivan Franko National University of Lviv, Lviv, Ukraine
- ***** Correspondence: m.m.sheremeta@gmail.com

Received: 06 June 2024; Accepted: 28 June 2024; Published: 30 June 2024.

Abstract: Let $\Lambda = (\lambda_n)$ be an increasing sequence of non-negative numbers tending to $+\infty$, with $\lambda_0 = 0$. We denote by $S(\Lambda, 0)$ a class of Dirichlet series $F(s) = \sum_{n=0}^{\infty} f_n \exp\{s\lambda_n\}$, $s = \sigma + it$, which have an abscissa of absolute convergence $\sigma_a = 0$. For $\sigma < 0$, we define $M_F(\sigma) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\}\.$ The growth of the function $F \in S(\Lambda, 0)$ is analyzed in relation to the function $G(s) = \sum_{n=0}^{\infty} g_n \exp\{s\lambda_n\} \in S(\Lambda, 0)$, via the growth of the function $1/|M_G^{-1}(M_F(\sigma))|$ as $\sigma \uparrow 0$. We investigate the connection between this growth and the behavior of the coefficients f_n and g_n in terms of generalized orders.

Keywords: Dirichlet series, relative growth, generalized order.

MSC: 30B50

1. Introduction

L et *f* and *g* be entire transcendental functions, and let $M_f(r) = \max\{|f(z)| : |z| = r\}$. To study the relative growth of the functions *f* and *g*, Ch. Roy [\[1\]](#page-8-0) introduced the order

$$
\varrho_g[f] = \lim_{r \to +\infty} \frac{\ln M_g^{-1}(M_f(r))}{\ln r}
$$

and the lower order

$$
\lambda_g[f] = \lim_{r \to +\infty} \frac{\ln M_g^{-1}(M_f(r))}{\ln r},
$$

which identify the growth of f relative to g with the growth of the function $M_g^{-1}(M_f(r))$ as $r\to +\infty.$

Research on the relative growth of entire functions has been extended by S.K. Datta, T. Biswas, and other mathematicians (see, for example, [\[2–](#page-8-1)[5\]](#page-9-0)) using maximal terms, Nevanlinna's characteristic function, and *k*-logarithmic orders. In [\[6\]](#page-9-1), the relative growth of entire functions of two complex variables is considered, and in [\[7\]](#page-9-2), the relative growth of entire Dirichlet series is studied in terms of *R*-orders.

Suppose that $\Lambda = (\lambda_n)$ is an increasing sequence tending to $+\infty$ of non-negative numbers, with $\lambda_0 = 0$. By $S(\Lambda, A)$, we denote a class of Dirichlet series

$$
F(s) = \sum_{n=1}^{\infty} f_n \exp\{s\lambda_n\}, \quad s = \sigma + it,\tag{1}
$$

with the abscissa of absolute convergence $\sigma_a = A \in (-\infty, +\infty]$. For $\sigma < A$, we define

$$
M_F(\sigma) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\},
$$

and note that the function $M_F(\sigma)$ is continuous and increases to $+\infty$ on $(-\infty, A)$. Therefore, there exists a function $M_F^{-1}(x)$ inverse to $M_F(\sigma)$, which increases to *A* on $(|a_0|, +\infty)$.

We denote by *L* a class of continuous non-negative functions α on $(-\infty, +\infty)$ such that $\alpha(x) = \alpha(x_0) \ge 0$ for $x \le x_0$ and $\alpha(x) \uparrow +\infty$ as $x_0 \le x \to +\infty$. We say that $\alpha \in L^0$ if $\alpha \in L$ and $\alpha((1 + o(1))x) = (1 + o(1))\alpha(x)$ as $x \to +\infty$. Finally, $\alpha \in L_{si}$ if $\alpha \in L$ and $\alpha(cx) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$, i.e., α is a slowly increasing function. Clearly, $L_{si} \subset L^0$.

If $\alpha \in L$, $\beta \in L$, and $F \in S(\Lambda, +\infty)$, then the quantities

$$
\varrho_{\alpha,\beta}[F] := \overline{\lim}_{\sigma \to +\infty} \frac{\alpha(\ln M_F(\sigma))}{\beta(\sigma)}, \quad \lambda_{\alpha,\beta}[F] := \underline{\lim}_{\sigma \to +\infty} \frac{\alpha(\ln M_F(\sigma))}{\beta(\sigma)}
$$

are called the generalized (α, β) -order and the generalized lower (α, β) -order of *F*, respectively [\[8,](#page-9-3)[9\]](#page-9-4). We say that *F* has generalized regular (α, β) -growth if

$$
0<\lambda_{\alpha,\beta}[F]=\varrho_{\alpha,\beta}[F]<+\infty.
$$

If $G \in S(\Lambda, +\infty)$ and

$$
G(s) = \sum_{n=1}^{\infty} g_n \exp\{s\lambda_n\},\tag{2}
$$

.

then the growth of the function *F* with respect to the function *G* is identified with the growth of the function $M_G^{-1}(M_F(\sigma))$ as σ → +∞. The generalized (*α*, *β*)-order $\varrho_{\alpha,\beta}[F]_G$ and the generalized lower (*α*, *β*)-order *λ*_{*α*,*β*}[*F*]_{*G*} of the function *F* ∈ *S*($Λ$, +∞) with respect to a function *G* ∈ *S*($Λ$, +∞) are defined as follows:

$$
\varrho_{\alpha,\beta}[F]_G := \overline{\lim_{\sigma \to +\infty}} \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)}, \quad \lambda_{\alpha,\beta}[F]_G := \underline{\lim_{\sigma \to +\infty}} \sigma \to +\infty \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)}
$$

In the articles [\[10\]](#page-9-5) and [\[11\]](#page-9-6), the relationship between $\varrho_{\alpha,\beta}[F]_G$, $\lambda_{\alpha,\beta}[F]_G$, and $\varrho_{\alpha,\beta}[F]$, $\lambda_{\alpha,\beta}[F]$, $\varrho_{\alpha,\beta}[G]$, and $\lambda_{\alpha,\beta}[G]$ is studied, and formulas are found for calculating $\rho_{\alpha,\beta}[F]_G$ and $\lambda_{\alpha,\beta}[F]_G$ in terms of the coefficients f_n and g_n . In particular, the following theorem is proved in [\[10\]](#page-9-5).

Theorem 1. Let $\alpha \in L_{\textit{si}}$, $\beta \in L^0$, and $\frac{d\beta^{-1}(c\alpha(x))}{d\ln x}$ $\frac{d}{d \ln x}$ = *O*(1) *as* $x \to +\infty$ *. Suppose that* $\alpha(\lambda_{n+1})$ = $(1 + o(1))\alpha(\lambda_n)$ and $\ln n = o(\lambda_n \beta^{-1}(c\alpha(\lambda_n)))$ as $n \to \infty$ for each $c \in (0, +\infty)$, and that $\varrho_{\alpha,\beta}[F] < +\infty$. If the function G has *generalized regular* (*α*, *β*)*-growth and*

$$
\kappa_n[G] := \frac{\ln |g_n| - \ln |g_{n+1}|}{\lambda_{n+1} - \lambda_n} \nearrow +\infty \quad \text{as} \quad n_0 \leq n \to \infty,
$$

then

$$
\varrho_{\beta,\beta}[F]_G = \overline{\lim_{n \to \infty}} \frac{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)}
$$

except for cases when either $\varrho_{\alpha,\beta}[F] = \varrho_{\alpha,\beta}[G] = 0$ or $\varrho_{\alpha,\beta}[F] = \varrho_{\alpha,\beta}[G] = +\infty$. If, moreover, $\kappa_n[F] \nearrow +\infty$ as $n_0 \leq n \to \infty$, then

$$
\lambda_{\beta,\beta}[F]_G = \lim_{n \to \infty} \frac{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)}
$$

except for cases when either $\lambda_{\alpha,\beta}[F] = \lambda_{\alpha,\beta}[G] = 0$ *or* $\lambda_{\alpha,\beta}[F] = \lambda_{\alpha,\beta}[G] = +\infty$.

In the proposed article we will study the growth of the function $F \in S(\Lambda, 0)$ with respect to the function $G \in S(\Lambda, 0)$.

2. Definitions and supporting results

For $F \in S(\Lambda, 0)$, $\alpha \in L$ and $\beta \in L$ the quantities

$$
\varrho_{\alpha,\beta}^0[F] := \overline{\lim_{\sigma \uparrow 0}} \frac{\alpha(\ln M_F(\sigma))}{\beta(1/|\sigma|)}, \quad \lambda_{\alpha,\beta}^0[F] := \underline{\lim_{\sigma \uparrow 0}} \frac{\alpha(\ln M_F(\sigma))}{\beta(1/|\sigma|)}\tag{3}
$$

are called [\[12\]](#page-9-7) the generalized (α, β) -order and the generalized lower (α, β) -order of *F* accordingly. If *G* ∈ *S*(Λ,0) then the function $M_G(\sigma)$ can be bounded on $(-∞, 0)$, but if $\lim_{n\to\infty} |g_n| = +∞$ then $M_G(\sigma)$ is continuous and increasing to $+\infty$ on $(-\infty,0)$ and, thus, there exists the function $M_G^{-1}(x) < 0$ inverse to $M_G(\sigma)$, which increase to 0 on (|g₀|, +∞). In what follows we will assume that $\lim_{n\to\infty} |g_n| = \lim_{n\to\infty} |f_n| = +\infty$.

Since $M_G^{-1}(x) \uparrow 0$ as $|g_0| \le x \uparrow +\infty$, we have $|M_G^{-1}(x)| \downarrow 0$ as $|g_0| \le x \uparrow +\infty$, $|M_G^{-1}(M_F(\sigma))| \downarrow 0$ and, thus, $1/|M_G^{-1}(M_F(\sigma))|$ $\uparrow +\infty$ as $\sigma_0 \leq \sigma \uparrow 0$ for some $\sigma_0 < 0$. Therefore, we can identify the growth of the function $F \in S(\Lambda, 0)$ in respect to the function $G \in S(\Lambda, 0)$ with the growth of the function $1/|M_G^{-1}(M_F(\sigma))|$ as $\sigma_0 \leq \sigma \uparrow 0$, i. e., determine (α, β) -order and lower (α, β) -order as

$$
\varrho_{\alpha,\beta}^{00}[F]_G = \overline{\lim}_{\sigma \uparrow 0} \frac{\alpha(1/|M_G^{-1}(M_F(\sigma)))|}{\beta(1/|\sigma|)}, \quad \lambda_{\alpha,\beta}^{00}[F]_G = \underline{\lim}_{\sigma \uparrow 0} \frac{\alpha(1/|M_G^{-1}(M_F(\sigma)))|}{\beta(1/|\sigma|)}.
$$
 (4)

Lemma 2. Let $\alpha \in L$ and $\beta \in L$. Except for cases, when either $\varrho^{0}_{\alpha,\beta}[F] = \varrho^{0}_{\alpha,\beta}[G] = 0$ or $\varrho^{0}_{\alpha,\beta}[F] = \varrho^{0}_{\alpha,\beta}[G] = +\infty$, the inequality $\varrho_{\beta,\beta}^{00}[F]_G\geq \varrho_{\alpha,\beta}^0[F]/\varrho_{\alpha,\beta}^0[G]$ is true, and under the condition of generalized regularity of (α,β) -growth of G, *this inequality turns into equality.*

Except for cases, when either $\lambda^0_{\alpha,\beta}[F]=\lambda^0_{\alpha,\beta}[G]=0$ or $\lambda^0_{\alpha,\beta}[F]=\lambda^0_{\alpha,\beta}[G]=+\infty$, the inequality $\lambda^{00}_{\beta,\beta}[F]_G\leq$ $\lambda_{\alpha,\beta}^0[F]/\lambda_{\alpha,\beta}^0[G]$ is true, and under the condition of generalized regularity of (*α*, *β*)-growth of *G*, this inequality turns into equality.

Proof. Indeed,

$$
\varrho_{\beta,\beta}^{00}[F]_G = \overline{\lim}_{x \to +\infty} \frac{\beta(1/|M_G^{-1}(x))|)}{\beta(1/|M_F^{-1}(x)|)} = \overline{\lim}_{x \to +\infty} \frac{\alpha(\ln x)}{\beta(1/|M_F^{-1}(x)|)} \frac{\beta(1/|M_G^{-1}(x)|)}{\alpha(\ln x)} \n\ge \overline{\lim}_{x \to +\infty} \frac{\alpha(\ln x)}{\beta(1/|M_F^{-1}(x)|)} \frac{\lim}{x \to +\infty} \frac{\beta(1/|M_G^{-1}(x)|)}{\alpha(\ln x)} = \n= \overline{\lim}_{\sigma \uparrow 0} \frac{\alpha(\ln M_F(\sigma))}{\beta(1/|\sigma|)} \frac{\lim}{\sigma \uparrow 0} \frac{\beta(1/|\sigma|)}{\alpha(\ln M_G(\sigma))} = \frac{\varrho_{\alpha,\beta}^0[F]}{\varrho_{\alpha,\beta}^0[G]}
$$

and, similarly,

$$
\varrho_{\beta,\beta}^{00}[F]_G \leq \overline{\lim_{\sigma \uparrow 0}} \frac{\alpha(\ln M_F(\sigma))}{\beta(1/|\sigma|)} \overline{\lim_{\sigma \uparrow 0}} \frac{\beta(1/|\sigma|)}{\alpha(\ln M_G(\sigma))} = \frac{\varrho_{\alpha,\beta}^0[F]}{\lambda_{\alpha,\beta}^0[G]}.
$$

This implies the first part of Lemma 1. The proof of the second part is similar. You just need to use the inequalities $\lim a(x) \lim b(x) < \lim a(x)b(x) < \lim a(x) \overline{\lim b(x)}$.

Remark 1. If the functions F and G have the generalized regular (α, β) -growth for some $\alpha \in L$ then $\lambda^{00}_{\beta,\beta}[F]_G =$ $\varrho^{00}_{\beta,\beta}[F]_G$. To obtain estimates $\lambda^{00}_{\alpha,\beta}[F]_G$ and $\varrho^{00}_{\alpha,\beta}[F]_G$ with $\alpha\neq\beta$, you need to use an additional function $\gamma\in L$ as in [\[11\]](#page-9-6).

Lemma 3. *If* $\alpha \in L$ and $\beta \in L$, then for each function $\gamma \in L$, the following inequalities are true:

$$
\frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} \leq \varrho_{\alpha,\beta}^{00}[F]_G \leq \frac{\varrho_{\gamma,\beta}^{0}[F]}{\lambda_{\gamma,\alpha}^{0}[G]} \tag{5}
$$

except for cases when $\varrho^0_{\gamma,\beta}[F] = \varrho^0_{\gamma,\alpha}[G] = 0$, $\varrho^0_{\gamma,\beta}[F] = \lambda^0_{\gamma,\alpha}[G] = 0$, $\varrho^0_{\gamma,\beta}[F] = \varrho^0_{\gamma,\alpha}[G] = +\infty$, or $\varrho^0_{\gamma,\beta}[F] =$ $\lambda^0_{\gamma,\alpha}[G] = +\infty$.

Additionally,

$$
\frac{\lambda_{\gamma,\beta}^0[F]}{\varrho_{\gamma,\alpha}^0[G]} \le \lambda_{\alpha,\beta}^{00}[F]_G \le \frac{\lambda_{\gamma,\beta}^0[F]}{\lambda_{\gamma,\alpha}^0[G]} \tag{6}
$$

≥

except for cases when $\lambda^0_{\gamma,\beta}[F]=\lambda^0_{\gamma,\alpha}[G]=0$, $\lambda^0_{\gamma,\beta}[F]=\varrho^0_{\gamma,\alpha}[G]=0$, $\lambda^0_{\gamma,\beta}[F]=\lambda^0_{\gamma,\alpha}[G]=+\infty$, or $\lambda^0_{\gamma,\beta}[F]=0$ $\varrho^0_{\gamma,\alpha}[G]=+\infty.$

Proof. As in the proof of Lemma 1, now we have

$$
\varrho_{\alpha,\beta}^{00}[F]_G = \overline{\lim}_{x \to +\infty} \frac{\alpha(1/|M_G^{-1}(x))|)}{\beta(1/|M_F^{-1}(x))|} = \overline{\lim}_{x \to +\infty} \frac{\gamma(\ln x)}{\beta(1/|M_F^{-1}(x)|)} \frac{\alpha(1/|M_G^{-1}(x)|)}{\gamma(\ln x)} \ge
$$

$$
\ge \overline{\lim}_{\sigma \uparrow 0} \frac{\gamma(\ln M_F(\sigma))}{\beta(1/|\sigma|)} \frac{\lim}{\sigma \uparrow 0} \frac{\beta(1/|\sigma|)}{\gamma(\ln M_G(\sigma))} = \frac{\varrho_{\gamma,\beta}^0[F]}{\varrho_{\gamma,\alpha}^0[G]}
$$

and, similarly,

$$
\varrho_{\alpha,\beta}^{00}[F]_G \leq \overline{\lim_{\sigma \uparrow 0}} \frac{\gamma(\ln M_F(\sigma))}{\beta(1/|\sigma|)} \overline{\lim_{\sigma \uparrow 0}} \frac{\beta(1/|\sigma|)}{\gamma(\ln M_G(\sigma))} = \frac{\varrho_{\gamma,\beta}^0[F]}{\lambda_{\gamma,\alpha}^0[G]}.
$$

i. e., [\(5\)](#page-2-0) is proved. The proof of [\(6\)](#page-2-1) is similar. \Box

Remark 2. In the statements of Lemma 2 the conditions for the function γ hold if $0<\lambda^0_{\gamma,\alpha}[G]\leq\varrho^0_{\gamma,\alpha}[G]<+\infty.$ From Lemma 2 it follows that if G has the generalized regular (γ,α) -growth then $\varrho^{00}_{\alpha,\beta}[F]_G=\varrho^0_{\gamma,\beta}[F]/\varrho^0_{\gamma,\alpha}[G]$ $\text{and } \lambda^{00}_{\alpha,\beta}[F]_G = \lambda^0_{\gamma,\beta}[F]/\lambda^0_{\gamma,\alpha}[G].$

3. Main results

We need the following lemmas [\[12](#page-9-7)[,13\]](#page-9-8).

Lemma 4. Let $F \in S(\Lambda,0)$, $\alpha \in L_{si}$ and $\beta \in L_{si}$, $x/\beta^{-1}(c\alpha(x))$ $\uparrow +\infty$ and $\alpha(x/\beta^{-1}(c\alpha(x))) = (1 + o(1))\alpha(x)$ as $x_0 \leq x \to +\infty$ *for each c* $\in (0, +\infty)$ *. If* $\alpha(\lambda_n) = o(\beta(\lambda_n/\ln n))$ *as* $n \to +\infty$ *then*

$$
\varrho_{\alpha,\beta}^0[F] = \overline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta(\lambda_n/\ln|f_n|)}.
$$
\n(7)

.

If, moreover, $\alpha(\lambda_{n+1}) \sim \alpha(\lambda_n)$ *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \leq n \to \infty$ *then*

$$
\lambda_{\alpha,\beta}^0[F] = \lim_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta(\lambda_n/\ln|f_n|)}
$$

Lemma 5. Let $F \in S(\Lambda,0)$, $\alpha \in L_{si}$ and $\beta \in L_{si}$, $x/\alpha^{-1}(c\beta(x))$ $\uparrow +\infty$ and $\beta(x/\alpha^{-1}(c\beta(x))) = (1+o(1))\beta(x)$ as $x_0 \leq x \to +\infty$ *for each c* ∈ (0, + ∞). If $\alpha(\ln n) = o(\beta(\lambda_n))$ as $n \to +\infty$ then

$$
\varrho_{\alpha,\beta}^0[F] = \overline{\lim}_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\beta(\lambda_n)}.
$$
\n(8)

If, moreover, $\alpha(\lambda_{n+1}) \sim \alpha(\lambda_n)$ *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \leq n \to \infty$ *then*

$$
\lambda_{\alpha,\beta}^0[F] = \lim_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\beta(\lambda_n)}.
$$

Using Lemmas 1 and 3 we prove at first the following analogue of Theorem A.

Theorem 6. Let the functions $\alpha \in L_{si}$, $\beta \in L_{si}$ and the sequence Λ satisfy the conditions of Lemma 3. If the function G *has generalized regular* (α, β) *-growth and* $\kappa_n[G] \nearrow 0$ *as* $n_0 \leq n \rightarrow \infty$ *then*

$$
\varrho_{\beta,\beta}^{00}[F]_G = \overline{\lim}_{n \to \infty} \beta\left(\frac{\lambda_n}{\ln |g_n|}\right) / \beta\left(\frac{\lambda_n}{\ln |f_n|}\right). \tag{9}
$$

If, moreover, $\alpha(\lambda_{n+1}) = (1 + o(1))\alpha(\lambda_n)$ *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \leq n \to \infty$ *then*

$$
\lambda_{\beta,\beta}^{00}[F]_G = \lim_{n \to \infty} \beta\left(\frac{\lambda_n}{\ln|g_n|}\right) / \beta\left(\frac{\lambda_n}{\ln|f_n|}\right). \tag{10}
$$

,

Proof. Since the function *G* has generalized regular (*α*, *β*)-growth, i. e. $0 < \lambda_{\alpha,\beta}^0[G] = \varrho_{\alpha,\beta}^0[G] < +\infty$, and $\kappa_n[G] \nearrow 0$ as $n_0 \leq n \rightarrow \infty$ by Lemma 3 we get

$$
\lambda_{\alpha,\beta}^0[G] = \varrho_{\alpha,\beta}^0[G] = \lim_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta(\lambda_n/\ln|g_n|)}
$$

and by Lemma 1 $\varrho^{00}_{\beta,\beta}[F]_G=\varrho^0_{\alpha,\beta}[F]/\varrho^0_{\alpha,\beta}[G]$ and $\lambda^{00}_{\beta,\beta}[F]_G=\lambda^0_{\alpha,\beta}[F]/\lambda^0_{\alpha,\beta}[G].$ Therefore,

$$
\varrho_{\beta,\beta}^{00}[F]_G = \overline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta(\lambda_n/\ln |f_n|)} \underline{\lim}_{n \to \infty} \frac{\beta(\lambda_n/\ln |g_n|)}{\alpha(\lambda_n)} =
$$

$$
= \overline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta(\lambda_n/\ln |f_n|)} \underline{\lim}_{n \to \infty} \frac{\beta(\lambda_n/\ln |g_n|)}{\alpha(\lambda_n)} = \overline{\lim}_{n \to \infty} \frac{\beta(\lambda_n/\ln |g_n|)}{\beta(\lambda_n/\ln |f_n|)},
$$

i. e. (9) is proved. The proof of (10) is similar.

Using Lemma 2 we arrive at the following statement. \Box

Theorem 7. Let $\alpha \in L_{si}$, $\beta \in L_{si}$, $\gamma \in L_{si}$, $x/\alpha^{-1}(c\gamma(x))$ $\uparrow +\infty$, $x/\beta^{-1}(c\gamma(x))$ $\uparrow +\infty$, $\gamma(x/\alpha^{-1}(c\gamma(x)))$ = $(1+o(1))\gamma(x)$ and $\gamma(x/\beta^{-1}(c\gamma(x))) = (1+o(1))\gamma(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. Suppose that $\gamma(\lambda_n) =$ $o(\alpha(\lambda_n/\ln n))$ and $\gamma(\lambda_n)=o(\beta(\lambda_n/\ln n))$ as $n\to\infty$. If $0<\lambda_{\gamma,\alpha}^0[G]\leq\varrho_{\gamma,\alpha}^0[G]<+\infty$, $\gamma(\lambda_{n+1})\sim\gamma(\lambda_n)$ and $\kappa_n[G] \nearrow 0$ *as* $n_0 \leq n \rightarrow \infty$ *then*

$$
\frac{\lambda_{\gamma,\alpha}^0[G]}{\varrho_{\gamma,\alpha}^0[G]} P_{\alpha,\beta} \le \varrho_{\alpha,\beta}^{00}[F]_G \le \frac{\varrho_{\gamma,\alpha}^0[G]}{\lambda_{\gamma,\alpha}^0[G]} P_{\alpha,\beta}, \quad P_{\alpha,\beta} := \overline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n/\ln |g_n|)}{\beta(\lambda_n/\ln |f_n|)}.
$$
\n(11)

If, moreover, $\kappa_n[F] \nearrow 0$ *as* $n_0 \leq n \to \infty$ *then*

$$
\frac{\lambda_{\gamma,\alpha}^0[G]}{\varrho_{\gamma,\alpha}^0[G]} p_{\alpha,\beta} \le \lambda_{\alpha,\beta}^{00}[F]_G \le \frac{\varrho_{\gamma,\alpha}^0[G]}{\lambda_{\gamma,\alpha}^0[G]} p_{\alpha,\beta}, \quad p_{\alpha,\beta} := \lim_{n \to \infty} \frac{\alpha(\lambda_n/\ln |g_n|)}{\beta(\lambda_n/\ln |f_n|)}.
$$
\n(12)

Proof. Since $0<\lambda^0_{\gamma,\alpha}[G]\leq\varrho^0_{\gamma,\alpha}[G]<+\infty$, Lemma 2 implies

$$
\frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} \leq \varrho_{\alpha,\beta}^{00}[F]_G \leq \frac{\varrho_{\gamma,\beta}^{0}[F]}{\lambda_{\gamma,\alpha}^{0}[G]} = \frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]}.
$$
\n(13)

We need to estimate the value $\varrho^0_{\gamma,\beta}[F]/\varrho^0_{\gamma,\alpha}[G].$ On the one hand, by Lemma 3

$$
\frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} = \overline{\lim}_{n \to \infty} \frac{\gamma(\lambda_n)}{\beta(\lambda_n/\ln|f_n|)} \underline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n/\ln|g_n|)}{\gamma(\lambda_n)} \le \overline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n/\ln|g_n|)}{\beta(\lambda_n/\ln|f_n|)} = P_{\alpha,\beta}.
$$
 (14)

On the other hand, if $P_{\alpha,\beta}>0$ then for every $\varepsilon\in(0,P_{\alpha,\beta})$ there exists an increasing to $+\infty$ sequence (n_k) such that $\alpha(\lambda_{n_k}/\ln |g_{n_k}|) \ge (P_{\alpha,\beta} - \varepsilon)\beta(\lambda_{n_k}/\ln |f_{n_k}|)$, whence

$$
\frac{\gamma(\lambda_{n_k})}{\beta(\lambda_{n_k}/\ln|f_{n_k}|)} \ge (P_{\alpha,\beta} - \varepsilon) \frac{\gamma(\lambda_{n_k})}{\alpha(\lambda_{n_k}/\ln|g_{n_k}|)}
$$

and, thus,

$$
\varrho_{\gamma,\beta}^0[F] = \overline{\lim}_{n \to \infty} \frac{\gamma(\lambda_n)}{\beta(\lambda_n/\ln |f_n|)} \geq (P_{\alpha,\beta} - \varepsilon) \underline{\lim}_{n \to \infty} \frac{\gamma(\lambda_n)}{\alpha(\lambda_n/\ln |g_n|)} = (P_{\alpha,\beta} - \varepsilon) \lambda_{\gamma,\alpha}^0[G].
$$

In view of the arbitrariness of *ε* we get

$$
\frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} = \frac{\varrho_{\gamma,\beta}^{0}[F]}{\lambda_{\gamma,\alpha}^{0}[G]} \frac{\lambda_{\gamma,\alpha}^{0}[G]}{\varrho_{\gamma,\beta}^{0}[F]} \ge P_{\alpha,\beta} \frac{\lambda_{\gamma,\alpha}^{0}[G]}{\varrho_{\gamma,\beta}^{0}[F]}.
$$
\n(15)

If $P_{\alpha,\beta} = 0$ then this inequality is obvious. From [\(13\)](#page-4-1), [\(14\)](#page-4-2) and [\(15\)](#page-5-0) we obtain [\(11\)](#page-4-3).

For the proof of [\(12\)](#page-4-4) we remark that now by Lemmas 2 and 3

$$
\lambda_{\alpha,\beta}^{00}[F]_G \geq \frac{\lambda_{\gamma,\beta}^0[F]}{\varrho_{\gamma,\alpha}^0[G]} = \frac{\lambda_{\gamma,\beta}^0[F]}{\lambda_{\gamma,\alpha}^0[G]} \frac{\lambda_{\gamma,\alpha}^0[G]}{\varrho_{\gamma,\alpha}^0[G]} =
$$

$$
= \frac{\lambda_{\gamma,\alpha}^0[G]}{\varrho_{\gamma,\alpha}^0[G]} \lim_{n \to \infty} \frac{\gamma(\lambda_n)}{\beta(\lambda_n/\ln |f_n|)} \lim_{n \to \infty} \frac{\alpha(\lambda_n/\ln |g_n|)}{\gamma(\lambda_n)} \geq
$$

$$
\geq \frac{\lambda_{\gamma,\alpha}^0[G]}{\varrho_{\gamma,\alpha}^0[G]} \lim_{n \to \infty} \frac{\alpha(\lambda_n/\ln |g_n|)}{\beta(\lambda_n/\ln |f_n|)} = \frac{\lambda_{\gamma,\alpha}^0[G]}{\varrho_{\gamma,\alpha}^0[G]} p_{\alpha,\beta}.
$$

On the other hand, if $p_{\alpha,\beta} < +\infty$ then for every $\varepsilon > 0$) there exists an increasing to $+\infty$ sequence (n_k) \sup such that $\alpha(\lambda_{n_k}/\ln |g_{n_k}|) \leq (p_{\alpha,\beta} + \varepsilon)\beta(\lambda_{n_k}/\ln |f_{n_k}|)$, whence as above

$$
\underline{\lim}_{n\to\infty}\frac{\gamma(\lambda_n)}{\beta(\lambda_n/\ln|f_n|)}\leq (p_{\alpha,\beta}+\varepsilon)\overline{\lim}_{n\to\infty}\frac{\gamma(\lambda_n)}{\alpha(\lambda_n/\ln|g_n|)}
$$

i. e., in view of the arbitrariness of *ε* we get $\lambda^0_{\gamma,\beta}[F]\leq p_{\alpha,\beta}\varrho^0_{\gamma,\alpha}[G]$ and by Theorem 2

$$
\lambda_{\alpha,\beta}^{00}[F]_G \leq \frac{\lambda_{\gamma,\beta}^0[F]}{\lambda_{\gamma,\alpha}^0[G]} = \frac{\lambda_{\gamma,\beta}^0[F]}{\varrho_{\gamma,\alpha}^0[G]} \frac{\varrho_{\gamma,\alpha}^0[G]}{\lambda_{\gamma,\alpha}^0[G]} \leq \frac{\varrho_{\gamma,\alpha}^0[G]}{\lambda_{\gamma,\alpha}^0[G]} p_{\alpha,\beta}.
$$

The last inequality holds if $p_{\alpha,\beta} = +\infty$. Therefore, inequalities [\(12\)](#page-4-4) and Theorem 2 are proved. \Box

Remark 3. If the conditions of Theorem 2 completed and *G* has generalized regular (*γ*, *α*)-growth (i. e. 0 < $\lambda^0_{\gamma,\alpha}[G]=\varrho^0_{\gamma,\alpha}[G]<+\infty$) then $\varrho^{00}_{\alpha,\beta}[F]_G=P_{\alpha,\beta}$ and $\lambda^{00}_{\alpha,\beta}[F]=p_{\alpha,\beta}.$

If we use Lemma 4 then we obtain the following two theorems.

Theorem 8. Let the functions $\alpha \in L_{si}$, $\beta \in L_{si}$ and the sequence Λ satisfy the conditions of Lemma 4. If the function G *has generalized regular* (α, β) -growth and $\kappa_n[G] \nearrow 0$ as $n_0 \leq n \to \infty$ then

$$
\varrho_{\beta,\beta}^{00}[F]_G = \overline{\lim}_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\alpha(\ln |g_n|)}.
$$
\n(16)

,

If, moreover, $\alpha(\lambda_{n+1}) = (1 + o(1))\alpha(\lambda_n)$ *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \leq n \to \infty$ *then*

$$
\lambda_{\beta,\beta}^{00}[F]_G = \lim_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\alpha(\ln |g_n|)}.
$$
\n(17)

Proof. Since the function *G* has generalized regular (α, β) -growth and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ by Lemma 4 α (*a*, β [*G*] = $\varrho_{\alpha,\beta}^{0}[G] = \lim_{n\to\infty}\frac{\alpha(\ln|g_n|)}{\beta(\lambda_n)}$ $\frac{f^{(1)}(X_n)}{\beta(\lambda_n)}$ and, therefore, by Lemma 1

$$
\varrho_{\beta,\beta}^{00}[F]_G = \frac{\varrho_{\alpha,\beta}^0[F]}{\varrho_{\alpha,\beta}^0[G]} = \overline{\lim}_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\beta(\lambda_n)} \lim_{n \to \infty} \frac{\beta(\lambda_n)}{\alpha(\ln |g_n|)} = \overline{\lim}_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\alpha(\ln |g_n|)}.
$$

i. e. [\(16\)](#page-5-1) is proved. The proof of [\(17\)](#page-5-2) is similar. \Box

Theorem 9. Let $\alpha \in L_{si}$, $\beta \in L_{si}$, $\gamma \in L_{si}$, $x/\gamma^{-1}(c\alpha(x))$ $\uparrow +\infty$, $x/\gamma^{-1}(c\beta(x))$ $\uparrow +\infty$, $\alpha(x/\gamma^{-1}(c\alpha(x)))$ = $(1+o(1))\alpha(x)$ and $\beta(x/\gamma^{-1}(c\beta(x))) = (1+o(1))\beta(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. Suppose that $\gamma(\ln n) =$ $o(\alpha(\lambda_n))$ and $\gamma(\ln n) = o(\beta(\lambda_n))$ as $n \to +\infty$. If $0 < \lambda_{\gamma,\alpha}^0[G] \leq \varrho_{\gamma,\alpha}^0[G] < +\infty$, $\gamma(\lambda_{n+1}) \sim \gamma(\lambda_n)$ and $\kappa_n[G] \nearrow 0$ *as* $n_0 \leq n \to \infty$ *then*

$$
\frac{\lambda_{\gamma,\alpha}^0[G]}{\varrho_{\gamma,\alpha}^0[G]}Q_{\gamma,\alpha,\beta} \le \varrho_{\alpha,\beta}^{00}[F]_G \le \frac{\varrho_{\gamma,\alpha}^0[G]}{\lambda_{\gamma,\alpha}^0[G]}Q_{\gamma,\alpha,\beta}, \quad Q_{\gamma,\alpha,\beta} := \overline{\lim_{n \to \infty}} \frac{\alpha(\lambda_n)\gamma(\ln|f_n|)}{\beta(\lambda_n)\gamma(\ln|g_n|)}.
$$
\n(18)

If, moreover, $\kappa_n[F] \nearrow 0$ *as* $n_0 \leq n \rightarrow \infty$ *then*

$$
\frac{\lambda_{\gamma,\alpha}^0[G]}{\varrho_{\gamma,\alpha}^0[G]} q_{\gamma,\alpha,\beta} \le \lambda_{\alpha,\beta}^{00}[F]_G \le \frac{\varrho_{\gamma,\alpha}^0[G]}{\lambda_{\gamma,\alpha}^0[G]} q_{\gamma,\alpha,\beta}, \quad q_{\gamma,\alpha,\beta} := \lim_{n \to \infty} \frac{\alpha(\lambda_n)\gamma(\ln|f_n|)}{\beta(\lambda_n)\gamma(\ln|g_n|)}.
$$
\n(19)

Proof. Using Lemmas 2 and 4 as in proof of Theorem 2 we obtain

$$
\varrho_{\alpha,\beta}^{00}[F]_G \leq \frac{\varrho_{\gamma,\beta}^{0}[F]}{\lambda_{\gamma,\alpha}^{0}[G]} = \frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]} = \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]} \overline{\lim_{n \to \infty}} \frac{\gamma(\ln |f_n|)}{\beta(\lambda_n)} \overline{\lim_{n \to \infty}} \frac{\alpha(\lambda_n)}{\gamma(\ln |g_n|)} \leq \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]} \overline{\lim_{n \to \infty}} \frac{\alpha(\lambda_n)\gamma(\ln |f_n|)}{\beta(\lambda_n)\gamma(\ln |g_n|)} = \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]} Q_{\gamma,\alpha,\beta}.
$$

On the other hand, if $Q_{\gamma,\alpha,\beta} > 0$ then for every $\varepsilon \in (0, Q_{\gamma,\alpha,\beta})$ there exists an increasing to $+\infty$ sequence (n_k) such that $\alpha(\lambda_{n_k})\gamma(\ln|f_{n_k}|) \geq (Q_{\gamma,\alpha,\beta}-\varepsilon)\beta(\lambda_{n_k})\gamma(\ln|g_{n_k}|)$, i. e.

$$
\frac{\gamma(\ln |f_{n_k}|)}{\beta(\lambda_{n_k})} \geq (Q_{\gamma,\alpha,\beta} - \varepsilon) \frac{\gamma(\ln |g_{n_k}|)}{\alpha(\lambda_{n_k})}
$$

and, thus,

$$
\varrho_{\gamma,\beta}^0[F] = \overline{\lim}_{n \to \infty} \frac{\gamma(\ln |f_n|)}{\beta(\lambda_n)} \geq (Q_{\gamma,\alpha,\beta} - \varepsilon) \underline{\lim}_{n \to \infty} \frac{\gamma(\ln |g_n|)}{\alpha(\lambda_n)} = (Q_{\gamma,\alpha,\beta} - \varepsilon) \lambda_{\gamma,\alpha}^0[G].
$$

Therefore, in view of the arbitrariness of *ε* we get by Lemma 2

$$
\varrho_{\alpha,\beta}^{00}[F]_G\geq \frac{\varrho^0_{\gamma,\beta}[F]}{\varrho^0_{\gamma,\alpha}[G]}=\frac{\varrho^0_{\gamma,\beta}[F]}{\lambda^0_{\gamma,\alpha}[G]}\frac{\lambda^0_{\gamma,\alpha}[G]}{\varrho^0_{\gamma,\alpha}[G]}\geq \frac{\lambda^0_{\gamma,\alpha}[G]}{\varrho^0_{\gamma,\alpha}[G]}\mathcal{Q}_{\gamma,\alpha,\beta}.
$$

If $Q_{\gamma,\alpha,\beta} = 0$ then this inequality is obvious. Inequalities [\(18\)](#page-6-0) are proved. \square

Combining the proofs of the inequalities [\(12\)](#page-4-4) and [\(18\)](#page-6-0) we arrive at the validity of the inequalities [\(19\)](#page-6-1). The proof of Theorem 4 is complete.

Remark 4. If the conditions of Theorem 2 completed and *G* has generalized regular (*γ*, *α*)-growth then $\varrho^{00}_{\alpha,\beta}[F]_G = Q_{\gamma,\alpha,\beta}$ and $\lambda^{00}_{\alpha,\beta}[F] = q_{\gamma,\alpha,\beta}.$

4. Dirichlet series of finite *R***-order**

If we choose $\alpha(x) = \ln x$ and $\beta(x) = x$ for $x \ge 3$ then from the definitions of $\varrho^0_{\alpha,\beta}[F]$ and $\lambda^0_{\alpha,\beta}[F]$ we obtain the definitions of the *R*-order $\varrho_R^0[F]$ and the lower *R*-order $\lambda_R^0[F]$ of the function $F \in S(\Lambda, 0)$, introduced by A.M. Gaisin [\[14\]](#page-9-9). If we choose $\alpha(x) = \beta(x) = \ln x$ for $x \ge 3$ then we obtain the definitions of the logarithmic order $\varrho_l^0[F]$ and the logarithmic lower order $\lambda_l^0[F]$ of $F \in S(\Lambda, 0)$.

For the characteristic of the relative growth of the function $F \in S(\Lambda, 0)$ with respect to a function $G \in$ $S(\Lambda,0)$ in Gaisin's scale we use $\varrho_R^{00}[F]_G = \varrho_{\beta,\beta}^{00}[F]_G$ and $\lambda_R^{00}[F]_G = \lambda_{\beta,\beta}^{00}[F]_G$ with $\beta(x) = x$. In the logarithmic scale we use $\varrho_l^{00}[F]_G=\varrho^{00}_{\beta,\beta}[F]_G$ and $\lambda_l^{00}[F]_G=\lambda_{\beta,\beta}^{00}[F]_G$ with $\beta(x)=\ln\,x.$ Then Lemma 1 implies the following statement.

Corollary 10. If $0 < \lambda_R^0[G] = \varrho_R^0[G] < +\infty$ then $\varrho_R^{00}[F]_G = \varrho_R^0[F]/\varrho_R^0[G]$ and $\lambda_R^{00}[F]_G = \lambda_R^0[F]/\lambda_R^0[G]$. If $0<\lambda_l^0[G]=\varrho_l^0[G]<+\infty$ then $\varrho_l^{00}[F]_G=\varrho_l^0[F]/\varrho_l^0[G]$ and $\lambda_l^{00}[F]_G=\lambda_l^0[F]/\lambda_l^0[G].$

If we choose $\gamma(x) = \ln x$ *and* $\alpha(x) = \beta(x) = x$ *for* $x \ge 3$ *then from Lemma 2 we obtain the following statement.*

Corollary 11. If $0 < \lambda_R^0[G] \le \varrho_R^0[G] < +\infty$ then $\varrho_R^0[F]/\varrho_R^0[G] \le \varrho_R^{00}[F]_G \le \varrho_R^0[F]/\lambda_R^0[G]$ and $\lambda_R^0[F]/\varrho_R^0[G] \le \varrho_R^0[F]$ $\lambda_R^{00}[F]_G \leq \lambda_R^{0}[F]/\lambda_R^{0}[G].$ *For* $\gamma(x) = \alpha(x) = \beta(x) = \ln x$ *for* $x \ge 3$ *Lemma 2 implies the following statement.*

Corollary 12. If $0 < \lambda_l^0[G] \leq \varrho_l^0[G] < +\infty$ then $\varrho_l^0[F]/\varrho_l^0[G] \leq \varrho_l^{00}[F]_G \leq \varrho_l^0[F]/\lambda_l^0[G]$ and $\lambda_l^0[F]/\varrho_l^0[G] \leq$ $\lambda_l^{00}[F]_G \leq \lambda_l^{0}[F]/\lambda_l^{0}[G].$

Lemma 2 makes it possible to study the relative growth of the function $F \in S(\Lambda, 0)$ with respect to a function $G \in S(\Lambda, 0)$ in mixed scales. For this we use

$$
P_{R,l}^{00}[F]_G = \overline{\lim_{\sigma \uparrow 0}} |\sigma| \ln (1/|M_G^{-1}(M_F(\sigma))|), \quad \lambda_{R,l}^{00}[F]_G = \underline{\lim_{\sigma \uparrow 0}} |\sigma| \ln (1/|M_G^{-1}(M_F(\sigma))|)
$$

if $\alpha(x) = \ln x$, $\beta(x) = x$, and

ϱ

$$
\varrho_{l,R}^{00}[F]_G = \overline{\lim_{\sigma \uparrow 0}} \, \frac{1}{|M_G^{-1}(M_F(\sigma))| \ln \left(1/|\sigma|\right)}, \quad \lambda_{l,R}^{00}[F]_G = \underline{\lim_{\sigma \uparrow 0}} \, \frac{1}{|M_G^{-1}(M_F(\sigma))| \ln \left(1/|\sigma|\right)}
$$

if $\alpha(x) = x$, $\beta(x) = \ln x$. We choose $\gamma(x) = \ln x$ for $x \ge 3$. Then $\varrho_{\gamma,\beta}^0[F] = \varrho_R^0[F]$, $\varrho_{\gamma,\alpha}^0[G] = \varrho_I^0[F]$, $\lambda_{\gamma,\beta}^0[F] = \varrho_{\gamma,\beta}^0[F]$ $\lambda_R^0[F]$ and $\lambda_{\gamma,\alpha}^0[G] = \lambda_l^0[F]$ for $\alpha(x) = \ln x$ and $\beta(x) = x$. If $\alpha(x) = x$ and $\beta(x) = \ln x$ then $\varrho_{\gamma,\beta}^0[F] = \varrho_l^0[F]$, $\varrho^0_{\gamma,\alpha}[G]=\varrho^0_R[F]$, $\lambda^0_{\gamma,\beta}[F]=\lambda^0_l[F]$ and $\lambda^0_{\gamma,\alpha}[G]=\lambda^0_R[F]$. Therefore, Lemma 2 implies the following corollary.

Corollary 13. If $0 < \lambda_l^0[G] \leq \varrho_l^0[G] < +\infty$ then $\varrho_R^0[F]/\varrho_l^0[G] \leq \varrho_{R,l}^0[F]_G \leq \varrho_R^0[F]/\lambda_l^0[G]$ and $\lambda_R^0[F]/\varrho_l^0[G] \leq$ $\lambda_{R,l}^{00}[F]_G\,\leq\,\lambda_{R}^{0}[F]/\lambda_{l}^{0}[G].$ If $0\,<\,\lambda_{R}^{0}[G]\,\leq\, \varrho_{R}^{0}[G]\,<\,+\infty$ then $\varrho_{l}^{0}[F]/\varrho_{R}^{0}[G]\,\leq\,\varrho_{l,R}^{00}[F]_G\,\leq\,\varrho_{l}^{0}[F]/\lambda_{R}^{0}[G]$ and $\lambda_l^0[F]/\varrho_R^0[G] \leq \lambda_{l,R}^{00}[F]_G \leq \lambda_l^0[F]/\lambda_R^0[G]$.

Since the function $\beta(x) = x$ for $x \ge 3$ does not belong to L_{si} , Theorems 3 and 4 do not lead to the corresponding result in Gaisin's scale. However, in this case the following lemma is true [14].

Lemma 14. *If* $G \in S(\Lambda, 0)$ *and* $\ln n = o(\lambda_n / \ln \lambda_n)$ *as* $n \to \infty$ *then* $\varrho_R^0[F] = \overline{\lim_{n \to \infty}} \frac{\ln \lambda_n}{\lambda_n}$ $\frac{\partial}{\partial n} \ln |g_n|$ *. If, moreover,* ln $\lambda_{n+1} = (1 + o(1))$ ln λ_n and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then $\lambda_R^0[F] = \lim_{n \to \infty}$ ln *λn* $\frac{\partial}{\partial n}$ ln |*g*^{*n*}|*.*

Using Corollary 1 and Lemma 5, the following statement is proved by the usual method.

Proposition 15. If $0 < \lambda_R^0[G] = \varrho_R^0[G] < +\infty$, $\ln n = o(\lambda_n / \ln \lambda_n)$ and $\kappa_n[G] \nearrow 0$ as $n_0 \leq n \to \infty$ then $\varrho_R^{00}[F]_G = \overline{\lim}_{n \to \infty} \frac{\ln |f_n|}{\ln |g_n|}$ $\frac{\ln |\ln |n|}{\ln |g_n|}$. If, moreover, $\ln \lambda_{n+1} = (1+o(1)) \ln \lambda_n$ and $\kappa_n[F] \nearrow 0$ as $n_0 \le n \to \infty$ then $\lambda_R^{00}[F]_G =$ lim *n*→∞ $\ln |f_n|$ $\frac{\ln |y_n|}{\ln |g_n|}$.

For logarithmic orders the following lemma is true [\[15\]](#page-9-10).

Lemma 16. *If* $G \in S(\Lambda, 0)$ *and* $\overline{\lim_{n \to \infty}} \frac{\ln \ln n}{\ln \lambda_n}$ $\frac{\ln \ln n}{\ln \lambda_n}$ = 0 then $\frac{\varrho_l^0[G]}{\varrho_l[G]+}$ $\frac{\varrho_l^0[G]}{\varrho_l[G]+1} = \overline{\lim_{n\to\infty}} \frac{\ln \ln |\overline{g}_n|}{\ln \lambda_n}$ $\frac{\ln \frac{n}{|\mathcal{S}^n|}}{\ln \lambda_n}$. If, moreover, $\ln \lambda_{n+1}$ = $(1 + o(1))$ ln λ_n and $\kappa_n[G] \nearrow 0$ as $n_0 \leq n \to \infty$ then $\frac{\lambda_1^0[G]}{\lambda_n[G] - 1}$ $\frac{n_1 \cdot n_2}{\lambda_1[G]+1} = \lim_{n \to \infty}$ ln ln |*gn*| $\frac{\ln \frac{|\mathcal{S}^n|}{|\mathcal{S}^n|}}{\ln \lambda_n}$.

Using this lemma and Corollary 1 it is easy to prove the following statement.

Proposition 17. If $0 < \lambda_1^0[G] = \varrho_1^0[G] < +\infty$, $\ln \ln n = o(\ln \lambda_n)$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$
\varrho_l^{00}[F]_G = \overline{\lim}_{n \to \infty} \frac{(\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}{(\ln \lambda_n - \ln \ln |f_n|) \ln \ln |g_n|}
$$

.

If, moreover, ln $\lambda_{n+1} = (1 + o(1)) \ln \lambda_n$ *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \leq n \rightarrow \infty$ *then*

$$
\lambda_l^{00}[F]_G = \lim_{n \to \infty} \frac{(\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}{(\ln \lambda_n - \ln \ln |f_n|) \ln \ln |g_n|}.
$$

In conclusion, consider the mixed scales. First of all, let us note the correctness of the following statement.

Proposition 18. For every functions $F \in S(\Lambda, 0)$, $G \in S(\Lambda, 0)$, $\alpha \in L$ and $\beta \in L$ the general formula $\varrho^{00}_{\alpha,\beta}[G]_F =$ $1/\lambda_{\beta,\alpha}^{00}[F]_G$ *is correct.*

Indeed,

$$
\varrho_{\alpha,\beta}^{00}[G]_F = \overline{\lim}_{\sigma \uparrow 0} \frac{\alpha(1/|M_F^{-1}(M_G(\sigma))|)}{\beta(1/|\sigma|)} = \overline{\lim}_{x \to +\infty} \frac{\alpha(1/|M_F^{-1}(x)|}{\beta(1/|M_G^{-1}(x)|)} = \frac{1}{\frac{\lim}{\alpha \to +\infty} \frac{\beta(1/|M_G^{-1}(x)|)}{\beta(1/|M_G^{-1}(M_F(\sigma))|)}} = \frac{1}{\frac{\lim}{\alpha \to +\infty} \frac{\beta(1/|M_G^{-1}(x)|)}{\alpha(1/|\sigma|)}} = \frac{1}{\lambda_{\beta,\alpha}^{00}[F]_G}.
$$

Using Lemmas 5, 6 and Corollary 4 we obtain the following proposition in mixed scales.

Proposition 19. Let $F \in S(\Lambda,0)$, $G \in S(\Lambda,0)$ and $\ln \ln n = o(\ln \lambda_n)$ as $n \to \infty$. If $0 < \lambda_l^0[G] = \varrho_l^0[G] < +\infty$ and $\kappa_n[G] \nearrow 0$ *as* $n_0 \leq n \rightarrow \infty$ *then*

$$
\varrho_{R,l}^{00}[F]_G = \overline{\lim_{n \to \infty}} \frac{\ln \lambda_n (\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}{\lambda_n \ln \ln |g_n|},
$$

and if, moreover, ln $\lambda_{n+1} = (1 + o(1))$ ln λ_n *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \leq n \to \infty$ *then*

$$
\lambda_{R,l}^{0,0}[F]_G = \lim_{n \to \infty} \frac{\ln \lambda_n (\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}{\lambda_n \ln \ln |g_n|}.
$$

On the other hand, if $0 < \lambda_R^0[F] = \varrho_R^0[F] < +\infty$ and $\kappa_n[F]\nearrow 0$ as $n_0 \leq n \to \infty$ then

$$
\varrho_{l,R}^{00}[G]_F = \overline{\lim}_{n \to \infty} \frac{\lambda_n \ln \ln |g_n|}{\ln \lambda_n (\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|'}
$$

and if, moreover, ln $\lambda_{n+1} = (1 + o(1)) \ln \lambda_n$ *and* $\kappa_n[G] \nearrow 0$ *as* $n_0 \leq n \to \infty$ *then*

$$
\lambda_{l,R}^{00}[G]_F = \lim_{n \to \infty} \frac{\lambda_n \ln \ln |g_n|}{\ln \lambda_n (\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}.
$$

Acknowledgments: The author appreciate the continuous support of University of Hafr Al Batin.

Conflicts of Interest: "The author declares no conflict of interest."

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The author declares no conflict of interest."

References

- [1] Roy, C. (2010). On the relative order and lower order of an entire function. *Bull. Soc. Cal. Math. Soc., 102*(1), 17-26.
- [2] Data, S. K., & Maji, A. R. (2011). Relative order of entire functions in terms of their maximum terms. *Int. Journal of Math. Analysis, 5*(43), 2119-2126.
- [3] Data, S. K., Biswas, T., & Ghosh, C. (2015). Growth analysis of entire functions concerning generalized relative type and generalized relative weak type. *Facta Univ. (NIS), Ser. Math. Inform., 30*(3), 295-324.
- [4] Data, S. K., Biswas, T., & Hoque, A. (2016). Some results on the growth analysis of entire function using their maximum terms and relative L^{*}-order. *Journ. Math. Extension,* 10(2), 59-73.
- [5] Data, S. K., Biswas, T., & Das, P. (2016). Some results on generalized relative order of meromorphic functions. *Ufa Math. Jour., 8*(2), 92-103.
- [6] Data, S. K., & Biswas, T. (2016). Growth analysis of entire functions of two complex variables. *Sahad Communications in Math. Analysis, 3*(2), 13-22.
- [7] Data, S. K., & Biswas, T. (2017). Some growth analysis of entire functions in the form of vector-valued Dirichlet series on the basis of their relative Ritt *L*^{*}-order and relative Ritt *L*^{*}-lower order. *New Trends in Math. Sci., 5*(2), 97-103.
- [8] Pyanylo, Ja. D., & Sheremeta, M. M. (1975). On the growth of entire functions given by Dirichlet series. *Izv. Vuzov, Matematika, 10*, 91-93. (in Russian)
- [9] Sheremeta, M. M. (1993). Entire Dirichlet series. Kyiv: ISDO. (in Ukrainian)
- [10] Mulyava, O. M., & Sheremeta, M. M. (2018). Relative growth of Dirichlet series. *Mat. Stud., 49*(2), 158-164.
- [11] Mulyava, O. M., & Sheremeta, M. M. (2021). Relative growth of entire Dirichlet series with different generalized orders. *Bukovinian Math. Journal, 9*(2), 22-34.
- [12] Gal', Yu. M., & Sheremeta, M. M. (1978). On the growth of analytic functions in half-plane given by Dirichlet series. *Doklady AN USSR, Ser. A, 12*, 1065-1067. (in Russian)
- [13] Gal', Yu. M. (1980). On the growth of analytic functions given by Dirichlet series that are absolutely convergent in a half-plane. Drogobych. The manuscript was deposited in VINITI, 4080-80Dep. (in Russian)
- [14] Gaisin, A. M. (1982). Estimates for the growth of functions represented by Dirichlet series in the half-plane. *Math. Sbornik, 117*(3), 412-424. (in Russian)
- [15] Bojchuk, V. S. (1976). On the growth of Dirichlet series absolutely convergent in a half-plane. *Math. Sbornik, Naukova dumka, Kiev.*, 238-240. (in Russian)

© 2024 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/).