

Article On the relative growth of Dirichlet series absolutely

Myroslav M. Sheremeta^{1,*}

- ¹ Ivan Franko National University of Lviv, Lviv, Ukraine
- * Correspondence: m.m.sheremeta@gmail.com

Received: 06 June 2024; Accepted: 28 June 2024; Published: 30 June 2024.

Abstract: Let $\Lambda = (\lambda_n)$ be an increasing sequence of non-negative numbers tending to $+\infty$, with $\lambda_0 = 0$. We denote by $S(\Lambda, 0)$ a class of Dirichlet series $F(s) = \sum_{n=0}^{\infty} f_n \exp\{s\lambda_n\}$, $s = \sigma + it$, which have an abscissa of absolute convergence $\sigma_a = 0$. For $\sigma < 0$, we define $M_F(\sigma) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\}$. The growth of the function $F \in S(\Lambda, 0)$ is analyzed in relation to the function $G(s) = \sum_{n=0}^{\infty} g_n \exp\{s\lambda_n\} \in S(\Lambda, 0)$, via the growth of the function $1/|M_G^{-1}(M_F(\sigma))|$ as $\sigma \uparrow 0$. We investigate the connection between this growth and the behavior of the coefficients f_n and g_n in terms of generalized orders.

Keywords: Dirichlet series, relative growth, generalized order.

MSC: 30B50

1. Introduction

et *f* and *g* be entire transcendental functions, and let $M_f(r) = \max\{|f(z)| : |z| = r\}$. To study the relative growth of the functions *f* and *g*, Ch. Roy [1] introduced the order

$$\varrho_g[f] = \lim_{r \to +\infty} \frac{\ln M_g^{-1}(M_f(r))}{\ln r}$$

and the lower order

$$\lambda_g[f] = \lim_{r \to +\infty} \frac{\ln M_g^{-1}(M_f(r))}{\ln r},$$

which identify the growth of *f* relative to *g* with the growth of the function $M_g^{-1}(M_f(r))$ as $r \to +\infty$.

Research on the relative growth of entire functions has been extended by S.K. Datta, T. Biswas, and other mathematicians (see, for example, [2-5]) using maximal terms, Nevanlinna's characteristic function, and k-logarithmic orders. In [6], the relative growth of entire functions of two complex variables is considered, and in [7], the relative growth of entire Dirichlet series is studied in terms of *R*-orders.

Suppose that $\Lambda = (\lambda_n)$ is an increasing sequence tending to $+\infty$ of non-negative numbers, with $\lambda_0 = 0$. By $S(\Lambda, A)$, we denote a class of Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} f_n \exp\{s\lambda_n\}, \quad s = \sigma + it,$$
(1)

with the abscissa of absolute convergence $\sigma_a = A \in (-\infty, +\infty]$. For $\sigma < A$, we define

$$M_F(\sigma) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\},\$$

and note that the function $M_F(\sigma)$ is continuous and increases to $+\infty$ on $(-\infty, A)$. Therefore, there exists a function $M_F^{-1}(x)$ inverse to $M_F(\sigma)$, which increases to A on $(|a_0|, +\infty)$.

We denote by *L* a class of continuous non-negative functions α on $(-\infty, +\infty)$ such that $\alpha(x) = \alpha(x_0) \ge 0$ for $x \le x_0$ and $\alpha(x) \uparrow +\infty$ as $x_0 \le x \to +\infty$. We say that $\alpha \in L^0$ if $\alpha \in L$ and $\alpha((1 + o(1))x) = (1 + o(1))\alpha(x)$ as $x \to +\infty$. Finally, $\alpha \in L_{si}$ if $\alpha \in L$ and $\alpha(cx) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$, i.e., α is a slowly increasing function. Clearly, $L_{si} \subset L^0$. If $\alpha \in L$, $\beta \in L$, and $F \in S(\Lambda, +\infty)$, then the quantities

$$\varrho_{\alpha,\beta}[F] := \lim_{\sigma \to +\infty} \frac{\alpha(\ln M_F(\sigma))}{\beta(\sigma)}, \quad \lambda_{\alpha,\beta}[F] := \lim_{\sigma \to +\infty} \frac{\alpha(\ln M_F(\sigma))}{\beta(\sigma)}$$

are called the generalized (α, β) -order and the generalized lower (α, β) -order of *F*, respectively [8,9]. We say that *F* has generalized regular (α, β) -growth if

$$0 < \lambda_{lpha,eta}[F] = \varrho_{lpha,eta}[F] < +\infty.$$

If $G \in S(\Lambda, +\infty)$ and

$$G(s) = \sum_{n=1}^{\infty} g_n \exp\{s\lambda_n\},$$
(2)

then the growth of the function *F* with respect to the function *G* is identified with the growth of the function $M_G^{-1}(M_F(\sigma))$ as $\sigma \to +\infty$. The generalized (α, β) -order $\varrho_{\alpha,\beta}[F]_G$ and the generalized lower (α, β) -order $\lambda_{\alpha,\beta}[F]_G$ of the function $F \in S(\Lambda, +\infty)$ with respect to a function $G \in S(\Lambda, +\infty)$ are defined as follows:

$$\varrho_{\alpha,\beta}[F]_G := \lim_{\sigma \to +\infty} \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)}, \quad \lambda_{\alpha,\beta}[F]_G := \underline{\lim} \, \sigma \to +\infty \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)}$$

In the articles [10] and [11], the relationship between $\varrho_{\alpha,\beta}[F]_G$, $\lambda_{\alpha,\beta}[F]_G$, and $\varrho_{\alpha,\beta}[F]$, $\lambda_{\alpha,\beta}[F]$, $\varrho_{\alpha,\beta}[G]$, and $\lambda_{\alpha,\beta}[G]$ is studied, and formulas are found for calculating $\varrho_{\alpha,\beta}[F]_G$ and $\lambda_{\alpha,\beta}[F]_G$ in terms of the coefficients f_n and g_n . In particular, the following theorem is proved in [10].

Theorem 1. Let $\alpha \in L_{si}$, $\beta \in L^0$, and $\frac{d\beta^{-1}(c\alpha(x))}{d \ln x} = O(1)$ as $x \to +\infty$. Suppose that $\alpha(\lambda_{n+1}) = (1 + o(1))\alpha(\lambda_n)$ and $\ln n = o(\lambda_n \beta^{-1}(c\alpha(\lambda_n)))$ as $n \to \infty$ for each $c \in (0, +\infty)$, and that $\varrho_{\alpha,\beta}[F] < +\infty$. If the function G has generalized regular (α, β) -growth and

$$\kappa_n[G] := \frac{\ln |g_n| - \ln |g_{n+1}|}{\lambda_{n+1} - \lambda_n} \nearrow + \infty \quad as \quad n_0 \le n \to \infty,$$

then

$$\varrho_{\beta,\beta}[F]_G = \lim_{n \to \infty} \frac{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)}$$

except for cases when either $\varrho_{\alpha,\beta}[F] = \varrho_{\alpha,\beta}[G] = 0$ or $\varrho_{\alpha,\beta}[F] = \varrho_{\alpha,\beta}[G] = +\infty$. If, moreover, $\kappa_n[F] \nearrow +\infty$ as $n_0 \le n \to \infty$, then

$$\lambda_{\beta,\beta}[F]_G = \lim_{n \to \infty} \frac{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)}$$

except for cases when either $\lambda_{\alpha,\beta}[F] = \lambda_{\alpha,\beta}[G] = 0$ *or* $\lambda_{\alpha,\beta}[F] = \lambda_{\alpha,\beta}[G] = +\infty$.

In the proposed article we will study the growth of the function $F \in S(\Lambda, 0)$ with respect to the function $G \in S(\Lambda, 0)$.

2. Definitions and supporting results

For $F \in S(\Lambda, 0)$, $\alpha \in L$ and $\beta \in L$ the quantities

$$\varrho^{0}_{\alpha,\beta}[F] := \overline{\lim_{\sigma \uparrow 0}} \, \frac{\alpha(\ln M_{F}(\sigma))}{\beta(1/|\sigma|)}, \quad \lambda^{0}_{\alpha,\beta}[F] := \underline{\lim_{\sigma \uparrow 0}} \, \frac{\alpha(\ln M_{F}(\sigma))}{\beta(1/|\sigma|)} \tag{3}$$

are called [12] the generalized (α, β) -order and the generalized lower (α, β) -order of F accordingly. If $G \in S(\Lambda, 0)$ then the function $M_G(\sigma)$ can be bounded on $(-\infty, 0)$, but if $\overline{\lim_{n\to\infty}} |g_n| = +\infty$ then $M_G(\sigma)$ is continuous and increasing to $+\infty$ on $(-\infty, 0)$ and, thus, there exists the function $M_G^{-1}(x) < 0$ inverse to $M_G(\sigma)$, which increase to 0 on $(|g_0|, +\infty)$. In what follows we will assume that $\overline{\lim_{n\to\infty}} |g_n| = \overline{\lim_{n\to\infty}} |f_n| = +\infty$.

Since $M_G^{-1}(x) \uparrow 0$ as $|g_0| \leq x \uparrow +\infty$, we have $|M_G^{-1}(x)| \downarrow 0$ as $|g_0| \leq x \uparrow +\infty$, $|M_G^{-1}(M_F(\sigma))| \downarrow 0$ and, thus, $1/|M_G^{-1}(M_F(\sigma))| \uparrow +\infty$ as $\sigma_0 \leq \sigma \uparrow 0$ for some $\sigma_0 < 0$. Therefore, we can identify the growth of the function $F \in S(\Lambda, 0)$ in respect to the function $G \in S(\Lambda, 0)$ with the growth of the function $1/|M_G^{-1}(M_F(\sigma))|$ as $\sigma_0 \leq \sigma \uparrow 0$, i. e., determine (α, β) -order and lower (α, β) -order as

$$\varrho_{\alpha,\beta}^{00}[F]_G = \overline{\lim_{\sigma\uparrow 0}} \frac{\alpha(1/|M_G^{-1}(M_F(\sigma))|)}{\beta(1/|\sigma|)}, \quad \lambda_{\alpha,\beta}^{00}[F]_G = \underline{\lim_{\sigma\uparrow 0}} \frac{\alpha(1/|M_G^{-1}(M_F(\sigma))|)}{\beta(1/|\sigma|)}.$$
(4)

Lemma 2. Let $\alpha \in L$ and $\beta \in L$. Except for cases, when either $\varrho_{\alpha,\beta}^0[F] = \varrho_{\alpha,\beta}^0[G] = 0$ or $\varrho_{\alpha,\beta}^0[F] = \varrho_{\alpha,\beta}^0[G] = +\infty$, the inequality $\varrho_{\beta,\beta}^{00}[F]_G \ge \varrho_{\alpha,\beta}^0[F]/\varrho_{\alpha,\beta}^0[G]$ is true, and under the condition of generalized regularity of (α, β) -growth of G, this inequality turns into equality.

Except for cases, when either $\lambda_{\alpha,\beta}^0[F] = \lambda_{\alpha,\beta}^0[G] = 0$ or $\lambda_{\alpha,\beta}^0[F] = \lambda_{\alpha,\beta}^0[G] = +\infty$, the inequality $\lambda_{\beta,\beta}^{00}[F]_G \le \lambda_{\alpha,\beta}^0[F]/\lambda_{\alpha,\beta}^0[G]$ is true, and under the condition of generalized regularity of (α,β) -growth of G, this inequality turns into equality.

Proof. Indeed,

$$\begin{split} \varrho_{\beta,\beta}^{00}[F]_{G} &= \lim_{x \to +\infty} \frac{\beta(1/|M_{G}^{-1}(x))|)}{\beta(1/|M_{F}^{-1}(x))|)} = \lim_{x \to +\infty} \frac{\alpha(\ln x)}{\beta(1/|M_{F}^{-1}(x))|)} \frac{\beta(1/|M_{G}^{-1}(x))|)}{\alpha(\ln x)} \\ &\geq \lim_{x \to +\infty} \frac{\alpha(\ln x)}{\beta(1/|M_{F}^{-1}(x))|)} \lim_{x \to +\infty} \frac{\beta(1/|M_{G}^{-1}(x))|)}{\alpha(\ln x)} = \\ &= \lim_{\sigma \uparrow 0} \frac{\alpha(\ln M_{F}(\sigma))}{\beta(1/|\sigma|)} \lim_{\sigma \uparrow 0} \frac{\beta(1/|\sigma|)}{\alpha(\ln M_{G}(\sigma))} = \frac{\varrho_{\alpha,\beta}^{0}[F]}{\varrho_{\alpha,\beta}^{0}[G]} \end{split}$$

and, similarly,

$$\varrho_{\beta,\beta}^{00}[F]_G \leq \overline{\lim_{\sigma \uparrow 0}} \frac{\alpha(\ln M_F(\sigma))}{\beta(1/|\sigma|)} \frac{\overline{\lim_{\sigma \uparrow 0}}}{\alpha(\ln M_G(\sigma))} = \frac{\varrho_{\alpha,\beta}^0[F]}{\lambda_{\alpha,\beta}^0[G]}.$$

This implies the first part of Lemma 1. The proof of the second part is similar. You just need to use the inequalities $\underline{\lim} a(x) \underline{\lim} b(x) \le \underline{\lim} a(x) b(x) \le \underline{\lim} a(x) \overline{\lim} b(x)$. \Box

Remark 1. If the functions *F* and *G* have the generalized regular (α, β) -growth for some $\alpha \in L$ then $\lambda_{\beta,\beta}^{00}[F]_G = \varrho_{\beta,\beta}^{00}[F]_G$. To obtain estimates $\lambda_{\alpha,\beta}^{00}[F]_G$ and $\varrho_{\alpha,\beta}^{00}[F]_G$ with $\alpha \neq \beta$, you need to use an additional function $\gamma \in L$ as in [11].

Lemma 3. If $\alpha \in L$ and $\beta \in L$, then for each function $\gamma \in L$, the following inequalities are true:

$$\frac{\varrho^{0}_{\gamma,\beta}[F]}{\varrho^{0}_{\gamma,\alpha}[G]} \le \varrho^{00}_{\alpha,\beta}[F]_{G} \le \frac{\varrho^{0}_{\gamma,\beta}[F]}{\lambda^{0}_{\gamma,\alpha}[G]}$$
(5)

except for cases when $\varrho_{\gamma,\beta}^0[F] = \varrho_{\gamma,\alpha}^0[G] = 0$, $\varrho_{\gamma,\beta}^0[F] = \lambda_{\gamma,\alpha}^0[G] = 0$, $\varrho_{\gamma,\beta}^0[F] = \varrho_{\gamma,\alpha}^0[G] = +\infty$, or $\varrho_{\gamma,\beta}^0[F] = \lambda_{\gamma,\alpha}^0[G] = +\infty$.

Additionally,

$$\frac{\lambda^{0}_{\gamma,\beta}[F]}{\varrho^{0}_{\gamma,\alpha}[G]} \leq \lambda^{00}_{\alpha,\beta}[F]_{G} \leq \frac{\lambda^{0}_{\gamma,\beta}[F]}{\lambda^{0}_{\gamma,\alpha}[G]}$$
(6)

 \geq

except for cases when $\lambda^0_{\gamma,\beta}[F] = \lambda^0_{\gamma,\alpha}[G] = 0$, $\lambda^0_{\gamma,\beta}[F] = \varrho^0_{\gamma,\alpha}[G] = 0$, $\lambda^0_{\gamma,\beta}[F] = \lambda^0_{\gamma,\alpha}[G] = +\infty$, or $\lambda^0_{\gamma,\beta}[F] = \varrho^0_{\gamma,\alpha}[G] = +\infty$.

Proof. As in the proof of Lemma 1, now we have

$$\begin{split} \varrho_{\alpha,\beta}^{00}[F]_{G} &= \lim_{x \to +\infty} \frac{\alpha(1/|M_{G}^{-1}(x))|)}{\beta(1/|M_{F}^{-1}(x))|)} = \lim_{x \to +\infty} \frac{\gamma(\ln x)}{\beta(1/|M_{F}^{-1}(x))|)} \frac{\alpha(1/|M_{G}^{-1}(x))|)}{\gamma(\ln x)} \geq \\ &\geq \lim_{\sigma \uparrow 0} \frac{\gamma(\ln M_{F}(\sigma))}{\beta(1/|\sigma|)} \lim_{\sigma \uparrow 0} \frac{\beta(1/|\sigma|)}{\gamma(\ln M_{G}(\sigma))} = \frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} \end{split}$$

and, similarly,

$$\varrho^{00}_{\alpha,\beta}[F]_{G} \leq \overline{\lim_{\sigma \uparrow 0}} \, \frac{\gamma(\ln M_{F}(\sigma))}{\beta(1/|\sigma|)} \, \overline{\lim_{\sigma \uparrow 0}} \, \frac{\beta(1/|\sigma|)}{\gamma(\ln M_{G}(\sigma))} = \frac{\varrho^{0}_{\gamma,\beta}[F]}{\lambda^{0}_{\gamma,\alpha}[G]},$$

i. e., (5) is proved. The proof of (6) is similar. \Box

Remark 2. In the statements of Lemma 2 the conditions for the function γ hold if $0 < \lambda_{\gamma,\alpha}^0[G] \le \varrho_{\gamma,\alpha}^0[G] < +\infty$. From Lemma 2 it follows that if *G* has the generalized regular (γ, α) -growth then $\varrho_{\alpha,\beta}^{00}[F]_G = \varrho_{\gamma,\beta}^0[F]/\varrho_{\gamma,\alpha}^0[G]$ and $\lambda_{\alpha,\beta}^{00}[F]_G = \lambda_{\gamma,\beta}^0[F]/\lambda_{\gamma,\alpha}^0[G]$.

3. Main results

We need the following lemmas [12,13].

Lemma 4. Let $F \in S(\Lambda, 0)$, $\alpha \in L_{si}$ and $\beta \in L_{si}$, $x/\beta^{-1}(c\alpha(x)) \uparrow +\infty$ and $\alpha(x/\beta^{-1}(c\alpha(x))) = (1+o(1))\alpha(x)$ as $x_0 \leq x \to +\infty$ for each $c \in (0, +\infty)$. If $\alpha(\lambda_n) = o(\beta(\lambda_n / \ln n))$ as $n \to +\infty$ then

$$\varrho^{0}_{\alpha,\beta}[F] = \lim_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta(\lambda_n / \ln |f_n|)}.$$
(7)

If, moreover, $\alpha(\lambda_{n+1}) \sim \alpha(\lambda_n)$ *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \le n \to \infty$ *then*

$$\lambda^{0}_{\alpha,\beta}[F] = \lim_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta(\lambda_n / \ln |f_n|)}$$

Lemma 5. Let $F \in S(\Lambda, 0)$, $\alpha \in L_{si}$ and $\beta \in L_{si}$, $x/\alpha^{-1}(c\beta(x)) \uparrow +\infty$ and $\beta(x/\alpha^{-1}(c\beta(x))) = (1+o(1))\beta(x)$ as $x_0 \leq x \to +\infty$ for each $c \in (0, +\infty)$. If $\alpha(\ln n) = o(\beta(\lambda_n))$ as $n \to +\infty$ then

$$\varrho^{0}_{\alpha,\beta}[F] = \lim_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\beta(\lambda_n)}.$$
(8)

If, moreover, $\alpha(\lambda_{n+1}) \sim \alpha(\lambda_n)$ *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \le n \to \infty$ *then*

$$\lambda^0_{lpha,eta}[F] = \lim_{n o \infty} rac{lpha(\ln |f_n|)}{eta(\lambda_n)}.$$

Using Lemmas 1 and 3 we prove at first the following analogue of Theorem A.

Theorem 6. Let the functions $\alpha \in L_{si}$, $\beta \in L_{si}$ and the sequence Λ satisfy the conditions of Lemma 3. If the function G has generalized regular (α, β) -growth and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\varrho_{\beta,\beta}^{00}[F]_G = \lim_{n \to \infty} \beta\left(\frac{\lambda_n}{\ln|g_n|}\right) / \beta\left(\frac{\lambda_n}{\ln|f_n|}\right).$$
⁽⁹⁾

If, moreover, $\alpha(\lambda_{n+1}) = (1 + o(1))\alpha(\lambda_n)$ and $\kappa_n[F] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\lambda_{\beta,\beta}^{00}[F]_G = \lim_{n \to \infty} \beta\left(\frac{\lambda_n}{\ln|g_n|}\right) / \beta\left(\frac{\lambda_n}{\ln|f_n|}\right).$$
(10)

Proof. Since the function *G* has generalized regular (α, β) -growth, i. e. $0 < \lambda^0_{\alpha,\beta}[G] = \varrho^0_{\alpha,\beta}[G] < +\infty$, and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ by Lemma 3 we get

$$\lambda^{0}_{\alpha,\beta}[G] = \varrho^{0}_{\alpha,\beta}[G] = \lim_{n \to \infty} \frac{\alpha(\lambda_{n})}{\beta(\lambda_{n} / \ln |g_{n}|)}$$

and by Lemma 1 $\varrho_{\beta,\beta}^{00}[F]_G = \varrho_{\alpha,\beta}^0[F]/\varrho_{\alpha,\beta}^0[G]$ and $\lambda_{\beta,\beta}^{00}[F]_G = \lambda_{\alpha,\beta}^0[F]/\lambda_{\alpha,\beta}^0[G]$. Therefore,

$$\varrho_{\beta,\beta}^{00}[F]_{G} = \overline{\lim_{n \to \infty}} \frac{\alpha(\lambda_{n})}{\beta(\lambda_{n}/\ln|f_{n}|)} \lim_{n \to \infty} \frac{\beta(\lambda_{n}/\ln|g_{n}|)}{\alpha(\lambda_{n})} =$$

$$= \overline{\lim_{n \to \infty}} \frac{\alpha(\lambda_{n})}{\beta(\lambda_{n}/\ln|f_{n}|)} \lim_{n \to \infty} \frac{\beta(\lambda_{n}/\ln|g_{n}|)}{\alpha(\lambda_{n})} = \overline{\lim_{n \to \infty}} \frac{\beta(\lambda_{n}/\ln|g_{n}|)}{\beta(\lambda_{n}/\ln|f_{n}|)}$$

i. e. (9) is proved. The proof of (10) is similar.

_

Using Lemma 2 we arrive at the following statement. \Box

Theorem 7. Let $\alpha \in L_{si}$, $\beta \in L_{si}$, $\gamma \in L_{si}$, $x/\alpha^{-1}(c\gamma(x)) \uparrow +\infty$, $x/\beta^{-1}(c\gamma(x)) \uparrow +\infty$, $\gamma(x/\alpha^{-1}(c\gamma(x))) = (1+o(1))\gamma(x)$ and $\gamma(x/\beta^{-1}(c\gamma(x))) = (1+o(1))\gamma(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. Suppose that $\gamma(\lambda_n) = o(\alpha(\lambda_n/\ln n))$ and $\gamma(\lambda_n) = o(\beta(\lambda_n/\ln n))$ as $n \to \infty$. If $0 < \lambda_{\gamma,\alpha}^0[G] \le \varrho_{\gamma,\alpha}^0[G] < +\infty$, $\gamma(\lambda_{n+1}) \sim \gamma(\lambda_n)$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\frac{\lambda_{\gamma,\alpha}^{0}[G]}{\varrho_{\gamma,\alpha}^{0}[G]}P_{\alpha,\beta} \leq \varrho_{\alpha,\beta}^{00}[F]_{G} \leq \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]}P_{\alpha,\beta}, \quad P_{\alpha,\beta} := \overline{\lim_{n \to \infty} \frac{\alpha(\lambda_{n} / \ln |g_{n}|)}{\beta(\lambda_{n} / \ln |f_{n}|)}}.$$
(11)

If, moreover, $\kappa_n[F] \nearrow 0$ *as* $n_0 \le n \to \infty$ *then*

$$\frac{\lambda_{\gamma,\alpha}^{0}[G]}{\varrho_{\gamma,\alpha}^{0}[G]}p_{\alpha,\beta} \leq \lambda_{\alpha,\beta}^{00}[F]_{G} \leq \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]}p_{\alpha,\beta}, \quad p_{\alpha,\beta} := \lim_{n \to \infty} \frac{\alpha(\lambda_{n} / \ln |g_{n}|)}{\beta(\lambda_{n} / \ln |f_{n}|)}.$$
(12)

Proof. Since $0 < \lambda^0_{\gamma,\alpha}[G] \le \varrho^0_{\gamma,\alpha}[G] < +\infty$, Lemma 2 implies

$$\frac{\varrho^{0}_{\gamma,\beta}[F]}{\varrho^{0}_{\gamma,\alpha}[G]} \leq \varrho^{00}_{\alpha,\beta}[F]_{G} \leq \frac{\varrho^{0}_{\gamma,\beta}[F]}{\lambda^{0}_{\gamma,\alpha}[G]} = \frac{\varrho^{0}_{\gamma,\beta}[F]}{\varrho^{0}_{\gamma,\alpha}[G]} \frac{\varrho^{0}_{\gamma,\alpha}[G]}{\lambda^{0}_{\gamma,\alpha}[G]}.$$
(13)

We need to estimate the value $\varrho^0_{\gamma,\beta}[F]/\varrho^0_{\gamma,\alpha}[G]$. On the one hand, by Lemma 3

$$\frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} = \lim_{n \to \infty} \frac{\gamma(\lambda_{n})}{\beta(\lambda_{n}/\ln|f_{n}|)} \lim_{n \to \infty} \frac{\alpha(\lambda_{n}/\ln|g_{n}|)}{\gamma(\lambda_{n})} \le \lim_{n \to \infty} \frac{\alpha(\lambda_{n}/\ln|g_{n}|)}{\beta(\lambda_{n}/\ln|f_{n}|)} = P_{\alpha,\beta}.$$
(14)

On the other hand, if $P_{\alpha,\beta} > 0$ then for every $\varepsilon \in (0, P_{\alpha,\beta})$ there exists an increasing to $+\infty$ sequence (n_k) such that $\alpha(\lambda_{n_k}/\ln |g_{n_k}|) \ge (P_{\alpha,\beta} - \varepsilon)\beta(\lambda_{n_k}/\ln |f_{n_k}|)$, whence

$$\frac{\gamma(\lambda_{n_k})}{\beta(\lambda_{n_k}/\ln|f_{n_k}|)} \ge (P_{\alpha,\beta} - \varepsilon)\frac{\gamma(\lambda_{n_k})}{\alpha(\lambda_{n_k}/\ln|g_{n_k}|)}$$

and, thus,

$$\varrho^{0}_{\gamma,\beta}[F] = \lim_{n \to \infty} \frac{\gamma(\lambda_{n})}{\beta(\lambda_{n} / \ln |f_{n}|)} \ge (P_{\alpha,\beta} - \varepsilon) \lim_{n \to \infty} \frac{\gamma(\lambda_{n})}{\alpha(\lambda_{n} / \ln |g_{n}|)} = (P_{\alpha,\beta} - \varepsilon)\lambda^{0}_{\gamma,\alpha}[G].$$

In view of the arbitrariness of ε we get

$$\frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} = \frac{\varrho_{\gamma,\beta}^{0}[F]}{\lambda_{\gamma,\alpha}^{0}[G]} \frac{\lambda_{\gamma,\alpha}^{0}[G]}{\varrho_{\gamma,\beta}^{0}[F]} \ge P_{\alpha,\beta} \frac{\lambda_{\gamma,\alpha}^{0}[G]}{\varrho_{\gamma,\beta}^{0}[F]}.$$
(15)

If $P_{\alpha,\beta} = 0$ then this inequality is obvious. From (13), (14) and (15) we obtain (11).

For the proof of (12) we remark that now by Lemmas 2 and 3

$$\begin{split} \lambda^{00}_{\alpha,\beta}[F]_{G} &\geq \frac{\lambda^{0}_{\gamma,\beta}[F]}{\varrho^{0}_{\gamma,\alpha}[G]} = \frac{\lambda^{0}_{\gamma,\beta}[F]}{\lambda^{0}_{\gamma,\alpha}[G]} \frac{\lambda^{0}_{\gamma,\alpha}[G]}{\varrho^{0}_{\gamma,\alpha}[G]} = \\ &= \frac{\lambda^{0}_{\gamma,\alpha}[G]}{\varrho^{0}_{\gamma,\alpha}[G]} \frac{\lim_{n \to \infty} \frac{\gamma(\lambda_{n})}{\beta(\lambda_{n}/\ln|f_{n}|)} \lim_{n \to \infty} \frac{\alpha(\lambda_{n}/\ln|g_{n}|)}{\gamma(\lambda_{n})} \geq \\ &\geq \frac{\lambda^{0}_{\gamma,\alpha}[G]}{\varrho^{0}_{\gamma,\alpha}[G]} \lim_{n \to \infty} \frac{\alpha(\lambda_{n}/\ln|g_{n}|)}{\beta(\lambda_{n}/\ln|f_{n}|)} = \frac{\lambda^{0}_{\gamma,\alpha}[G]}{\varrho^{0}_{\gamma,\alpha}[G]} p_{\alpha,\beta}. \end{split}$$

On the other hand, if $p_{\alpha,\beta} < +\infty$ then for every $\varepsilon > 0$) there exists an increasing to $+\infty$ sequence (n_k) such that $\alpha(\lambda_{n_k} / \ln |g_{n_k}|) \le (p_{\alpha,\beta} + \varepsilon)\beta(\lambda_{n_k} / \ln |f_{n_k}|)$, whence as above

$$\lim_{n \to \infty} \frac{\gamma(\lambda_n)}{\beta \left(\lambda_n / \ln |f_n|\right)} \le \left(p_{\alpha,\beta} + \varepsilon\right) \overline{\lim_{n \to \infty}} \frac{\gamma(\lambda_n)}{\alpha \left(\lambda_n / \ln |g_n|\right)}$$

i. e., in view of the arbitrariness of ε we get $\lambda_{\gamma,\beta}^0[F] \leq p_{\alpha,\beta} \varrho_{\gamma,\alpha}^0[G]$ and by Theorem 2

$$\lambda^{00}_{\alpha,\beta}[F]_{G} \leq \frac{\lambda^{0}_{\gamma,\beta}[F]}{\lambda^{0}_{\gamma,\alpha}[G]} = \frac{\lambda^{0}_{\gamma,\beta}[F]}{\varrho^{0}_{\gamma,\alpha}[G]} \frac{\varrho^{0}_{\gamma,\alpha}[G]}{\lambda^{0}_{\gamma,\alpha}[G]} \leq \frac{\varrho^{0}_{\gamma,\alpha}[G]}{\lambda^{0}_{\gamma,\alpha}[G]} p_{\alpha,\beta}$$

The last inequality holds if $p_{\alpha,\beta} = +\infty$. Therefore, inequalities (12) and Theorem 2 are proved. \Box

Remark 3. If the conditions of Theorem 2 completed and *G* has generalized regular (γ, α) -growth (i. e. $0 < \lambda^0_{\gamma,\alpha}[G] = \varrho^0_{\gamma,\alpha}[G] < +\infty$) then $\varrho^{00}_{\alpha,\beta}[F]_G = P_{\alpha,\beta}$ and $\lambda^{00}_{\alpha,\beta}[F] = p_{\alpha,\beta}$.

If we use Lemma 4 then we obtain the following two theorems.

Theorem 8. Let the functions $\alpha \in L_{si}$, $\beta \in L_{si}$ and the sequence Λ satisfy the conditions of Lemma 4. If the function G has generalized regular (α, β) -growth and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\varrho^{00}_{\beta,\beta}[F]_G = \lim_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\alpha(\ln |g_n|)}.$$
(16)

If, moreover, $\alpha(\lambda_{n+1}) = (1 + o(1))\alpha(\lambda_n)$ and $\kappa_n[F] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\lambda_{\beta,\beta}^{00}[F]_G = \lim_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\alpha(\ln |g_n|)}.$$
(17)

Proof. Since the function *G* has generalized regular (α, β) -growth and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ by Lemma 4 we get $\lambda^0_{\alpha,\beta}[G] = \varrho^0_{\alpha,\beta}[G] = \lim_{n \to \infty} \frac{\alpha(\ln |g_n|)}{\beta(\lambda_n)}$ and, therefore, by Lemma 1

$$\varrho^{00}_{\beta,\beta}[F]_G = \frac{\varrho^0_{\alpha,\beta}[F]}{\varrho^0_{\alpha,\beta}[G]} = \lim_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\beta(\lambda_n)} \lim_{n \to \infty} \frac{\beta(\lambda_n)}{\alpha(\ln |g_n|)} = \lim_{n \to \infty} \frac{\alpha(\ln |f_n|)}{\alpha(\ln |g_n|)}.$$

i. e. (16) is proved. The proof of (17) is similar. \Box

Theorem 9. Let $\alpha \in L_{si}$, $\beta \in L_{si}$, $\gamma \in L_{si}$, $x/\gamma^{-1}(c\alpha(x)) \uparrow +\infty$, $x/\gamma^{-1}(c\beta(x)) \uparrow +\infty$, $\alpha(x/\gamma^{-1}(c\alpha(x))) = (1+o(1))\alpha(x)$ and $\beta(x/\gamma^{-1}(c\beta(x))) = (1+o(1))\beta(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. Suppose that $\gamma(\ln n) = o(\alpha(\lambda_n))$ and $\gamma(\ln n) = o(\beta(\lambda_n))$ as $n \to +\infty$. If $0 < \lambda_{\gamma,\alpha}^0[G] \le \varrho_{\gamma,\alpha}^0[G] < +\infty$, $\gamma(\lambda_{n+1}) \sim \gamma(\lambda_n)$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\frac{\lambda_{\gamma,\alpha}^{0}[G]}{\varrho_{\gamma,\alpha}^{0}[G]}Q_{\gamma,\alpha,\beta} \leq \varrho_{\alpha,\beta}^{00}[F]_{G} \leq \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]}Q_{\gamma,\alpha,\beta}, \quad Q_{\gamma,\alpha,\beta} := \lim_{n \to \infty} \frac{\alpha(\lambda_{n})\gamma(\ln|f_{n}|)}{\beta(\lambda_{n})\gamma(\ln|g_{n}|)}.$$
(18)

If, moreover, $\kappa_n[F] \nearrow 0$ *as* $n_0 \le n \to \infty$ *then*

$$\frac{\lambda_{\gamma,\alpha}^{0}[G]}{\varrho_{\gamma,\alpha}^{0}[G]}q_{\gamma,\alpha,\beta} \leq \lambda_{\alpha,\beta}^{00}[F]_{G} \leq \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]}q_{\gamma,\alpha,\beta}, \quad q_{\gamma,\alpha,\beta} := \lim_{n \to \infty} \frac{\alpha(\lambda_{n})\gamma(\ln|f_{n}|)}{\beta(\lambda_{n})\gamma(\ln|g_{n}|)}.$$
(19)

Proof. Using Lemmas 2 and 4 as in proof of Theorem 2 we obtain

$$\begin{split} \varrho_{\alpha,\beta}^{00}[F]_{G} &\leq \frac{\varrho_{\gamma,\beta}^{0}[F]}{\lambda_{\gamma,\alpha}^{0}[G]} = \frac{\varrho_{\gamma,\beta}^{0}[F]}{\varrho_{\gamma,\alpha}^{0}[G]} \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]} = \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]} \frac{\lim_{n \to \infty} \frac{\gamma(\ln|f_{n}|)}{\beta(\lambda_{n})} \lim_{n \to \infty} \frac{\alpha(\lambda_{n})}{\gamma(\ln|g_{n}|)} \leq \\ &\leq \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]} \frac{\lim_{n \to \infty} \frac{\alpha(\lambda_{n})\gamma(\ln|f_{n}|)}{\beta(\lambda_{n})\gamma(\ln|g_{n}|)} = \frac{\varrho_{\gamma,\alpha}^{0}[G]}{\lambda_{\gamma,\alpha}^{0}[G]} \mathcal{Q}_{\gamma,\alpha,\beta}. \end{split}$$

On the other hand, if $Q_{\gamma,\alpha,\beta} > 0$ then for every $\varepsilon \in (0, Q_{\gamma,\alpha,\beta})$ there exists an increasing to $+\infty$ sequence (n_k) such that $\alpha(\lambda_{n_k})\gamma(\ln |f_{n_k}|) \ge (Q_{\gamma,\alpha,\beta} - \varepsilon)\beta(\lambda_{n_k})\gamma(\ln |g_{n_k}|)$, i. e.

$$\frac{\gamma(\ln |f_{n_k}|)}{\beta(\lambda_{n_k})} \ge (Q_{\gamma,\alpha,\beta} - \varepsilon) \frac{\gamma(\ln |g_{n_k}|)}{\alpha(\lambda_{n_k})}$$

and, thus,

$$\varrho_{\gamma,\beta}^{0}[F] = \lim_{n \to \infty} \frac{\gamma(\ln |f_n|)}{\beta(\lambda_n)} \ge (Q_{\gamma,\alpha,\beta} - \varepsilon) \lim_{n \to \infty} \frac{\gamma(\ln |g_n|)}{\alpha(\lambda_n)} = (Q_{\gamma,\alpha,\beta} - \varepsilon)\lambda_{\gamma,\alpha}^{0}[G].$$

Therefore, in view of the arbitrariness of ε we get by Lemma 2

$$\varrho^{00}_{\alpha,\beta}[F]_G \geq \frac{\varrho^0_{\gamma,\beta}[F]}{\varrho^0_{\gamma,\alpha}[G]} = \frac{\varrho^0_{\gamma,\beta}[F]}{\lambda^0_{\gamma,\alpha}[G]} \frac{\lambda^0_{\gamma,\alpha}[G]}{\varrho^0_{\gamma,\alpha}[G]} \geq \frac{\lambda^0_{\gamma,\alpha}[G]}{\varrho^0_{\gamma,\alpha}[G]} Q_{\gamma,\alpha,\beta}.$$

If $Q_{\gamma,\alpha,\beta} = 0$ then this inequality is obvious. Inequalities (18) are proved. \Box

Combining the proofs of the inequalities (12) and (18) we arrive at the validity of the inequalities (19). The proof of Theorem 4 is complete.

Remark 4. If the conditions of Theorem 2 completed and *G* has generalized regular (γ, α) -growth then $\varrho^{00}_{\alpha,\beta}[F]_G = Q_{\gamma,\alpha,\beta}$ and $\lambda^{00}_{\alpha,\beta}[F] = q_{\gamma,\alpha,\beta}$.

4. Dirichlet series of finite *R*-order

If we choose $\alpha(x) = \ln x$ and $\beta(x) = x$ for $x \ge 3$ then from the definitions of $\varrho^0_{\alpha,\beta}[F]$ and $\lambda^0_{\alpha,\beta}[F]$ we obtain the definitions of the *R*-order $\varrho^0_R[F]$ and the lower *R*-order $\lambda^0_R[F]$ of the function $F \in S(\Lambda, 0)$, introduced by A.M. Gaisin [14]. If we choose $\alpha(x) = \beta(x) = \ln x$ for $x \ge 3$ then we obtain the definitions of the logarithmic order $\varrho^0_I[F]$ and the logarithmic lower order $\lambda^0_I[F]$ of $F \in S(\Lambda, 0)$.

For the characteristic of the relative growth of the function $F \in S(\Lambda, 0)$ with respect to a function $G \in S(\Lambda, 0)$ in Gaisin's scale we use $\varrho_R^{00}[F]_G = \varrho_{\beta,\beta}^{00}[F]_G$ and $\lambda_R^{00}[F]_G = \lambda_{\beta,\beta}^{00}[F]_G$ with $\beta(x) = x$. In the logarithmic scale we use $\varrho_l^{00}[F]_G = \varrho_{\beta,\beta}^{00}[F]_G$ and $\lambda_l^{00}[F]_G = \lambda_{\beta,\beta}^{00}[F]_G$ with $\beta(x) = \ln x$. Then Lemma 1 implies the following statement.

Corollary 10. If $0 < \lambda_R^0[G] = \varrho_R^0[G] < +\infty$ then $\varrho_R^{00}[F]_G = \varrho_R^0[F]/\varrho_R^0[G]$ and $\lambda_R^{00}[F]_G = \lambda_R^0[F]/\lambda_R^0[G]$. If $0 < \lambda_l^0[G] = \varrho_l^0[G] < +\infty$ then $\varrho_l^{00}[F]_G = \varrho_l^0[F]/\varrho_l^0[G]$ and $\lambda_l^{00}[F]_G = \lambda_l^0[F]/\lambda_l^0[G]$.

If we choose $\gamma(x) = \ln x$ and $\alpha(x) = \beta(x) = x$ for $x \ge 3$ then from Lemma 2 we obtain the following statement.

Corollary 11. If $0 < \lambda_R^0[G] \le \varrho_R^0[G] < +\infty$ then $\varrho_R^0[F]/\varrho_R^0[G] \le \varrho_R^{00}[F]_G \le \varrho_R^0[F]/\lambda_R^0[G]$ and $\lambda_R^0[F]/\varrho_R^0[G] \le \lambda_R^{00}[F]_G \le \lambda_R^0[F]/\lambda_R^0[G]$. For $\gamma(x) = \alpha(x) = \beta(x) = \ln x$ for $x \ge 3$ Lemma 2 implies the following statement.

Corollary 12. If $0 < \lambda_l^0[G] \le \varrho_l^0[G] < +\infty$ then $\varrho_l^0[F]/\varrho_l^0[G] \le \varrho_l^{00}[F]_G \le \varrho_l^0[F]/\lambda_l^0[G]$ and $\lambda_l^0[F]/\varrho_l^0[G] \le \lambda_l^{00}[F]_G \le \lambda_l^0[F]/\lambda_l^0[G]$.

Lemma 2 makes it possible to study the relative growth of the function $F \in S(\Lambda, 0)$ with respect to a function $G \in S(\Lambda, 0)$ in mixed scales. For this we use

$$p_{R,l}^{00}[F]_G = \overline{\lim_{\sigma \uparrow 0}} |\sigma| \ln(1/|M_G^{-1}(M_F(\sigma))|), \quad \lambda_{R,l}^{00}[F]_G = \underline{\lim_{\sigma \uparrow 0}} |\sigma| \ln(1/|M_G^{-1}(M_F(\sigma))|)$$

if $\alpha(x) = \ln x$, $\beta(x) = x$, and

(

$$\varrho_{l,R}^{00}[F]_{G} = \overline{\lim_{\sigma \uparrow 0}} \frac{1}{|M_{G}^{-1}(M_{F}(\sigma))| \ln(1/|\sigma|)}, \quad \lambda_{l,R}^{00}[F]_{G} = \underline{\lim_{\sigma \uparrow 0}} \frac{1}{|M_{G}^{-1}(M_{F}(\sigma))| \ln(1/|\sigma|)}$$

if $\alpha(x) = x$, $\beta(x) = \ln x$. We choose $\gamma(x) = \ln x$ for $x \ge 3$. Then $\varrho_{\gamma,\beta}^0[F] = \varrho_R^0[F]$, $\varrho_{\gamma,\alpha}^0[G] = \varrho_l^0[F]$, $\lambda_{\gamma,\beta}^0[F] = \lambda_R^0[F]$ and $\lambda_{\gamma,\alpha}^0[G] = \lambda_l^0[F]$ for $\alpha(x) = \ln x$ and $\beta(x) = x$. If $\alpha(x) = x$ and $\beta(x) = \ln x$ then $\varrho_{\gamma,\beta}^0[F] = \varrho_l^0[F]$, $\varrho_{\gamma,\alpha}^0[G] = \varrho_R^0[F]$, $\lambda_{\gamma,\beta}^0[F] = \lambda_l^0[F]$ and $\lambda_{\gamma,\alpha}^0[G] = \lambda_R^0[F]$. Therefore, Lemma 2 implies the following corollary.

Corollary 13. If $0 < \lambda_l^0[G] \le \varrho_l^0[G] < +\infty$ then $\varrho_R^0[F]/\varrho_l^0[G] \le \varrho_{R,l}^{00}[F]_G \le \varrho_R^0[F]/\lambda_l^0[G]$ and $\lambda_R^0[F]/\varrho_l^0[G] \le \lambda_{R,l}^{00}[F]_G \le \lambda_R^0[F]/\lambda_l^0[G]$. If $0 < \lambda_R^0[G] \le \varrho_R^0[G] < +\infty$ then $\varrho_l^0[F]/\varrho_R^0[G] \le \varrho_{L,R}^{00}[F]_G \le \varrho_l^0[F]/\lambda_R^0[G]$ and $\lambda_l^0[F]/\varrho_R^0[G] \le \lambda_{L,R}^{00}[F]_G \le \lambda_l^0[F]/\lambda_R^0[G]$.

Since the function $\beta(x) = x$ for $x \ge 3$ does not belong to L_{si} , Theorems 3 and 4 do not lead to the corresponding result in Gaisin's scale. However, in this case the following lemma is true [14].

Lemma 14. If $G \in S(\Lambda, 0)$ and $\ln n = o(\lambda_n / \ln \lambda_n)$ as $n \to \infty$ then $\varrho_R^0[F] = \lim_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n} \ln |g_n|$. If, moreover, $\ln \lambda_{n+1} = (1 + o(1)) \ln \lambda_n$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then $\lambda_R^0[F] = \lim_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n} \ln |g_n|$.

Using Corollary 1 and Lemma 5, the following statement is proved by the usual method.

Proposition 15. If $0 < \lambda_R^0[G] = \varrho_R^0[G] < +\infty$, $\ln n = o(\lambda_n / \ln \lambda_n)$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then $\varrho_R^{00}[F]_G = \lim_{n \to \infty} \frac{\ln |f_n|}{\ln |g_n|}$. If, moreover, $\ln \lambda_{n+1} = (1 + o(1)) \ln \lambda_n$ and $\kappa_n[F] \nearrow 0$ as $n_0 \le n \to \infty$ then $\lambda_R^{00}[F]_G = \lim_{n \to \infty} \frac{\ln |f_n|}{\ln |g_n|}$.

For logarithmic orders the following lemma is true [15].

Lemma 16. If
$$G \in S(\Lambda, 0)$$
 and $\overline{\lim_{n \to \infty}} \frac{\ln \ln n}{\ln \lambda_n} = 0$ then $\frac{\varrho_l^0[G]}{\varrho_l[G] + 1} = \overline{\lim_{n \to \infty}} \frac{\ln \ln |g_n|}{\ln \lambda_n}$. If, moreover, $\ln \lambda_{n+1} = (1 + o(1)) \ln \lambda_n$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then $\frac{\lambda_l^0[G]}{\lambda_l[G] + 1} = \underline{\lim_{n \to \infty}} \frac{\ln \ln |g_n|}{\ln \lambda_n}$.

Using this lemma and Corollary 1 it is easy to prove the following statement.

Proposition 17. If $0 < \lambda_1^0[G] = \varrho_1^0[G] < +\infty$, $\ln \ln n = o(\ln \lambda_n)$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\varrho_l^{00}[F]_G = \lim_{n \to \infty} \frac{(\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}{(\ln \lambda_n - \ln \ln |f_n|) \ln \ln |g_n|}$$

If, moreover, $\ln \lambda_{n+1} = (1 + o(1)) \ln \lambda_n$ and $\kappa_n[F] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\lambda_l^{00}[F]_G = \lim_{n \to \infty} \frac{(\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}{(\ln \lambda_n - \ln \ln |f_n|) \ln \ln |g_n|}.$$

In conclusion, consider the mixed scales. First of all, let us note the correctness of the following statement.

Proposition 18. For every functions $F \in S(\Lambda, 0)$, $G \in S(\Lambda, 0)$, $\alpha \in L$ and $\beta \in L$ the general formula $\varrho^{00}_{\alpha,\beta}[G]_F = 1/\lambda^{00}_{\beta,\alpha}[F]_G$ is correct.

Indeed,

$$\begin{split} \varrho_{\alpha,\beta}^{00}[G]_F &= \overline{\lim_{\sigma \uparrow 0}} \, \frac{\alpha(1/|M_F^{-1}(M_G(\sigma))|)}{\beta(1/|\sigma|)} = \lim_{x \to +\infty} \frac{\alpha(1/|M_F^{-1}(x)|)}{\beta(1/|M_G^{-1}(x)|)} = \\ &= \frac{1}{\frac{1}{\lim_{x \to +\infty}} \frac{\beta(1/|M_G^{-1}(x)|)}{\alpha(1/|M_F^{-1}(x)|)}} = \frac{1}{\frac{1}{\lim_{\sigma \uparrow 0}} \frac{\beta(1/|M_G^{-1}(M_F(\sigma))|)}{\alpha(1/|\sigma|)}} = \frac{1}{\lambda_{\beta,\alpha}^{00}[F]_G}. \end{split}$$

Using Lemmas 5, 6 and Corollary 4 we obtain the following proposition in mixed scales.

Proposition 19. Let $F \in S(\Lambda, 0)$, $G \in S(\Lambda, 0)$ and $\ln \ln n = o(\ln \lambda_n)$ as $n \to \infty$. If $0 < \lambda_l^0[G] = \varrho_l^0[G] < +\infty$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\varrho_{R,l}^{00}[F]_G = \lim_{n \to \infty} \frac{\ln \lambda_n (\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}{\lambda_n \ln \ln |g_n|}$$

and if, moreover, $\ln \lambda_{n+1} = (1 + o(1)) \ln \lambda_n$ and $\kappa_n[F] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\lambda_{R,l}^{0,0}[F]_G = \lim_{n \to \infty} \frac{\ln \lambda_n (\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}{\lambda_n \ln \ln |g_n|}$$

On the other hand, if $0 < \lambda_R^0[F] = \varrho_R^0[F] < +\infty$ *and* $\kappa_n[F] \nearrow 0$ *as* $n_0 \le n \to \infty$ *then*

$$\varrho_{l,R}^{00}[G]_F = \overline{\lim_{n \to \infty}} \frac{\lambda_n \ln \ln |g_n|}{\ln \lambda_n (\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}$$

and if, moreover, $\ln \lambda_{n+1} = (1 + o(1)) \ln \lambda_n$ and $\kappa_n[G] \nearrow 0$ as $n_0 \le n \to \infty$ then

$$\lambda_{l,R}^{00}[G]_F = \lim_{n \to \infty} \frac{\lambda_n \ln \ln |g_n|}{\ln \lambda_n (\ln \lambda_n - \ln \ln |g_n|) \ln \ln |f_n|}.$$

Acknowledgments: The author appreciate the continuous support of University of Hafr Al Batin.

Conflicts of Interest: "The author declares no conflict of interest."

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The author declares no conflict of interest."

References

- [1] Roy, C. (2010). On the relative order and lower order of an entire function. Bull. Soc. Cal. Math. Soc., 102(1), 17-26.
- [2] Data, S. K., & Maji, A. R. (2011). Relative order of entire functions in terms of their maximum terms. Int. Journal of Math. Analysis, 5(43), 2119-2126.

- [3] Data, S. K., Biswas, T., & Ghosh, C. (2015). Growth analysis of entire functions concerning generalized relative type and generalized relative weak type. *Facta Univ. (NIS), Ser. Math. Inform.*, 30(3), 295-324.
- [4] Data, S. K., Biswas, T., & Hoque, A. (2016). Some results on the growth analysis of entire function using their maximum terms and relative L*-order. Journ. Math. Extension, 10(2), 59-73.
- [5] Data, S. K., Biswas, T., & Das, P. (2016). Some results on generalized relative order of meromorphic functions. Ufa Math. Jour., 8(2), 92-103.
- [6] Data, S. K., & Biswas, T. (2016). Growth analysis of entire functions of two complex variables. *Sahad Communications in Math. Analysis*, *3*(2), 13-22.
- [7] Data, S. K., & Biswas, T. (2017). Some growth analysis of entire functions in the form of vector-valued Dirichlet series on the basis of their relative Ritt *L**-order and relative Ritt *L**-lower order. *New Trends in Math. Sci.*, *5*(2), 97-103.
- [8] Pyanylo, Ja. D., & Sheremeta, M. M. (1975). On the growth of entire functions given by Dirichlet series. *Izv. Vuzov*, *Matematika*, 10, 91-93. (in Russian)
- [9] Sheremeta, M. M. (1993). Entire Dirichlet series. Kyiv: ISDO. (in Ukrainian)
- [10] Mulyava, O. M., & Sheremeta, M. M. (2018). Relative growth of Dirichlet series. Mat. Stud., 49(2), 158-164.
- [11] Mulyava, O. M., & Sheremeta, M. M. (2021). Relative growth of entire Dirichlet series with different generalized orders. *Bukovinian Math. Journal*, 9(2), 22-34.
- [12] Gal', Yu. M., & Sheremeta, M. M. (1978). On the growth of analytic functions in half-plane given by Dirichlet series. Doklady AN USSR, Ser. A, 12, 1065-1067. (in Russian)
- [13] Gal', Yu. M. (1980). On the growth of analytic functions given by Dirichlet series that are absolutely convergent in a half-plane. Drogobych. The manuscript was deposited in VINITI, 4080-80Dep. (in Russian)
- [14] Gaisin, A. M. (1982). Estimates for the growth of functions represented by Dirichlet series in the half-plane. *Math. Sbornik*, 117(3), 412-424. (in Russian)
- [15] Bojchuk, V. S. (1976). On the growth of Dirichlet series absolutely convergent in a half-plane. *Math. Sbornik, Naukova dumka, Kiev.*, 238-240. (in Russian)

© 2024 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).