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Abstract: Let Λ = (λn) be an increasing sequence of non-negative numbers tending to +∞, with λ0 = 0. We
denote by S(Λ, 0) a class of Dirichlet series F(s) = ∑∞

n=0 fn exp{sλn}, s = σ + it, which have an abscissa
of absolute convergence σa = 0. For σ < 0, we define MF(σ) = sup{|F(σ + it)| : t ∈ R}. The growth of
the function F ∈ S(Λ, 0) is analyzed in relation to the function G(s) = ∑∞

n=0 gn exp{sλn} ∈ S(Λ, 0), via the
growth of the function 1/|M−1

G (MF(σ))| as σ ↑ 0. We investigate the connection between this growth and the
behavior of the coefficients fn and gn in terms of generalized orders.
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1. Introduction

L et f and g be entire transcendental functions, and let M f (r) = max{| f (z)| : |z| = r}. To study the
relative growth of the functions f and g, Ch. Roy [1] introduced the order

ϱg[ f ] = lim
r→+∞

ln M−1
g (M f (r))

ln r

and the lower order

λg[ f ] = lim
r→+∞

ln M−1
g (M f (r))

ln r
,

which identify the growth of f relative to g with the growth of the function M−1
g (M f (r)) as r → +∞.

Research on the relative growth of entire functions has been extended by S.K. Datta, T. Biswas, and
other mathematicians (see, for example, [2–5]) using maximal terms, Nevanlinna’s characteristic function, and
k-logarithmic orders. In [6], the relative growth of entire functions of two complex variables is considered, and
in [7], the relative growth of entire Dirichlet series is studied in terms of R-orders.

Suppose that Λ = (λn) is an increasing sequence tending to +∞ of non-negative numbers, with λ0 = 0.
By S(Λ, A), we denote a class of Dirichlet series

F(s) =
∞

∑
n=1

fn exp{sλn}, s = σ + it, (1)

with the abscissa of absolute convergence σa = A ∈ (−∞,+∞]. For σ < A, we define

MF(σ) = sup{|F(σ + it)| : t ∈ R},

and note that the function MF(σ) is continuous and increases to +∞ on (−∞, A). Therefore, there exists a
function M−1

F (x) inverse to MF(σ), which increases to A on (|a0|,+∞).
We denote by L a class of continuous non-negative functions α on (−∞,+∞) such that α(x) = α(x0) ≥ 0

for x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞. We say that α ∈ L0 if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x)
as x → +∞. Finally, α ∈ Lsi if α ∈ L and α(cx) = (1 + o(1))α(x) as x → +∞ for each c ∈ (0,+∞), i.e., α is a
slowly increasing function. Clearly, Lsi ⊂ L0.
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If α ∈ L, β ∈ L, and F ∈ S(Λ,+∞), then the quantities

ϱα,β[F] := lim
σ→+∞

α(ln MF(σ))

β(σ)
, λα,β[F] := lim

σ→+∞

α(ln MF(σ))

β(σ)

are called the generalized (α, β)-order and the generalized lower (α, β)-order of F, respectively [8,9]. We say
that F has generalized regular (α, β)-growth if

0 < λα,β[F] = ϱα,β[F] < +∞.

If G ∈ S(Λ,+∞) and

G(s) =
∞

∑
n=1

gn exp{sλn}, (2)

then the growth of the function F with respect to the function G is identified with the growth of the function
M−1

G (MF(σ)) as σ → +∞. The generalized (α, β)-order ϱα,β[F]G and the generalized lower (α, β)-order
λα,β[F]G of the function F ∈ S(Λ,+∞) with respect to a function G ∈ S(Λ,+∞) are defined as follows:

ϱα,β[F]G := lim
σ→+∞

α(M−1
G (MF(σ)))

β(σ)
, λα,β[F]G := lim σ → +∞

α(M−1
G (MF(σ)))

β(σ)
.

In the articles [10] and [11], the relationship between ϱα,β[F]G, λα,β[F]G, and ϱα,β[F], λα,β[F], ϱα,β[G], and λα,β[G]

is studied, and formulas are found for calculating ϱα,β[F]G and λα,β[F]G in terms of the coefficients fn and gn.
In particular, the following theorem is proved in [10].

Theorem 1. Let α ∈ Lsi, β ∈ L0, and
dβ−1(cα(x))

d ln x
= O(1) as x → +∞. Suppose that α(λn+1) = (1 + o(1))α(λn)

and ln n = o(λnβ−1(cα(λn))) as n → ∞ for each c ∈ (0,+∞), and that ϱα,β[F] < +∞. If the function G has
generalized regular (α, β)-growth and

κn[G] :=
ln |gn| − ln |gn+1|

λn+1 − λn
↗ +∞ as n0 ≤ n → ∞,

then

ϱβ,β[F]G = lim
n→∞

β

(
1

λn
ln

1
|gn|

)
β

(
1

λn
ln

1
| fn|

)
except for cases when either ϱα,β[F] = ϱα,β[G] = 0 or ϱα,β[F] = ϱα,β[G] = +∞. If, moreover, κn[F] ↗ +∞ as
n0 ≤ n → ∞, then

λβ,β[F]G = lim
n→∞

β

(
1

λn
ln

1
|gn|

)
β

(
1

λn
ln

1
| fn|

)
except for cases when either λα,β[F] = λα,β[G] = 0 or λα,β[F] = λα,β[G] = +∞.

In the proposed article we will study the growth of the function F ∈ S(Λ, 0) with respect to the function
G ∈ S(Λ, 0).

2. Definitions and supporting results

For F ∈ S(Λ, 0), α ∈ L and β ∈ L the quantities

ϱ0
α,β[F] := lim

σ↑0

α(ln MF(σ))

β(1/|σ|) , λ0
α,β[F] := lim

σ↑0

α(ln MF(σ))

β(1/|σ|) (3)
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are called [12] the generalized (α, β)-order and the generalized lower (α, β)-order of F accordingly. If G ∈
S(Λ, 0) then the function MG(σ) can be bounded on (−∞, 0), but if lim

n→∞
|gn| = +∞ then MG(σ) is continuous

and increasing to +∞ on (−∞, 0) and, thus, there exists the function M−1
G (x) < 0 inverse to MG(σ), which

increase to 0 on (|g0|, +∞). In what follows we will assume that lim
n→∞

|gn| = lim
n→∞

| fn| = +∞.

Since M−1
G (x) ↑ 0 as |g0| ≤ x ↑ +∞, we have |M−1

G (x)| ↓ 0 as |g0| ≤ x ↑ +∞, |M−1
G (MF(σ))| ↓ 0 and,

thus, 1/|M−1
G (MF(σ))| ↑ +∞ as σ0 ≤ σ ↑ 0 for some σ0 < 0. Therefore, we can identify the growth of the

function F ∈ S(Λ, 0) in respect to the function G ∈ S(Λ, 0) with the growth of the function 1/|M−1
G (MF(σ))|

as σ0 ≤ σ ↑ 0, i. e., determine (α, β)-order and lower (α, β)-order as

ϱ00
α,β[F]G = lim

σ↑0

α(1/|M−1
G (MF(σ))|)

β(1/|σ|) , λ00
α,β[F]G = lim

σ↑0

α(1/|M−1
G (MF(σ))|)

β(1/|σ|) . (4)

Lemma 2. Let α ∈ L and β ∈ L. Except for cases, when either ϱ0
α,β[F] = ϱ0

α,β[G] = 0 or ϱ0
α,β[F] = ϱ0

α,β[G] = +∞, the
inequality ϱ00

β,β[F]G ≥ ϱ0
α,β[F]/ϱ0

α,β[G] is true, and under the condition of generalized regularity of (α, β)-growth of G,
this inequality turns into equality.

Except for cases, when either λ0
α,β[F] = λ0

α,β[G] = 0 or λ0
α,β[F] = λ0

α,β[G] = +∞, the inequality λ00
β,β[F]G ≤

λ0
α,β[F]/λ0

α,β[G] is true, and under the condition of generalized regularity of (α, β)-growth of G, this inequality
turns into equality.

Proof. Indeed,

ϱ00
β,β[F]G = lim

x→+∞

β(1/|M−1
G (x))|)

β(1/|M−1
F (x))|)

= lim
x→+∞

α(ln x)
β(1/|M−1

F (x))|)
β(1/|M−1

G (x))|)
α(ln x)

≥

≥ lim
x→+∞

α(ln x)
β(1/|M−1

F (x))|)
lim

x→+∞

β(1/|M−1
G (x))|)

α(ln x)
=

= lim
σ↑0

α(ln MF(σ))

β(1/|σ|) lim
σ↑0

β(1/|σ|)
α(ln MG(σ))

=
ϱ0

α,β[F]

ϱ0
α,β[G]

and, similarly,

ϱ00
β,β[F]G ≤ lim

σ↑0

α(ln MF(σ))

β(1/|σ|) lim
σ↑0

β(1/|σ|)
α(ln MG(σ))

=
ϱ0

α,β[F]

λ0
α,β[G]

.

This implies the first part of Lemma 1. The proof of the second part is similar. You just need to use the
inequalities lim a(x) lim b(x) ≤ lim a(x)b(x) ≤ lim a(x) lim b(x).

Remark 1. If the functions F and G have the generalized regular (α, β)-growth for some α ∈ L then λ00
β,β[F]G =

ϱ00
β,β[F]G. To obtain estimates λ00

α,β[F]G and ϱ00
α,β[F]G with α ̸= β, you need to use an additional function γ ∈ L

as in [11].

Lemma 3. If α ∈ L and β ∈ L, then for each function γ ∈ L, the following inequalities are true:

ϱ0
γ,β[F]

ϱ0
γ,α[G]

≤ ϱ00
α,β[F]G ≤

ϱ0
γ,β[F]

λ0
γ,α[G]

(5)

except for cases when ϱ0
γ,β[F] = ϱ0

γ,α[G] = 0, ϱ0
γ,β[F] = λ0

γ,α[G] = 0, ϱ0
γ,β[F] = ϱ0

γ,α[G] = +∞, or ϱ0
γ,β[F] =

λ0
γ,α[G] = +∞.

Additionally,
λ0

γ,β[F]

ϱ0
γ,α[G]

≤ λ00
α,β[F]G ≤

λ0
γ,β[F]

λ0
γ,α[G]

(6)



Open J. Math. Anal. 2024, 8(1), 80-89 83

except for cases when λ0
γ,β[F] = λ0

γ,α[G] = 0, λ0
γ,β[F] = ϱ0

γ,α[G] = 0, λ0
γ,β[F] = λ0

γ,α[G] = +∞, or λ0
γ,β[F] =

ϱ0
γ,α[G] = +∞.

Proof. As in the proof of Lemma 1, now we have

ϱ00
α,β[F]G = lim

x→+∞

α(1/|M−1
G (x))|)

β(1/|M−1
F (x))|)

= lim
x→+∞

γ(ln x)
β(1/|M−1

F (x))|)
α(1/|M−1

G (x))|)
γ(ln x)

≥

≥ lim
σ↑0

γ(ln MF(σ))

β(1/|σ|) lim
σ↑0

β(1/|σ|)
γ(ln MG(σ))

=
ϱ0

γ,β[F]

ϱ0
γ,α[G]

and, similarly,

ϱ00
α,β[F]G ≤ lim

σ↑0

γ(ln MF(σ))

β(1/|σ|) lim
σ↑0

β(1/|σ|)
γ(ln MG(σ))

=
ϱ0

γ,β[F]

λ0
γ,α[G]

,

i. e., (5) is proved. The proof of (6) is similar.

Remark 2. In the statements of Lemma 2 the conditions for the function γ hold if 0 < λ0
γ,α[G] ≤ ϱ0

γ,α[G] < +∞.
From Lemma 2 it follows that if G has the generalized regular (γ, α)-growth then ϱ00

α,β[F]G = ϱ0
γ,β[F]/ϱ0

γ,α[G]

and λ00
α,β[F]G = λ0

γ,β[F]/λ0
γ,α[G].

3. Main results

We need the following lemmas [12,13].

Lemma 4. Let F ∈ S(Λ, 0), α ∈ Lsi and β ∈ Lsi, x/β−1(cα(x)) ↑ +∞ and α(x/β−1(cα(x))) = (1 + o(1))α(x) as
x0 ≤ x → +∞ for each c ∈ (0,+∞). If α(λn) = o(β(λn/ ln n)) as n → +∞ then

ϱ0
α,β[F] = lim

n→∞

α(λn)

β(λn/ ln | fn|)
. (7)

If, moreover, α(λn+1) ∼ α(λn) and κn[F] ↗ 0 as n0 ≤ n → ∞ then

λ0
α,β[F] = lim

n→∞

α(λn)

β(λn/ ln | fn|)
.

Lemma 5. Let F ∈ S(Λ, 0), α ∈ Lsi and β ∈ Lsi, x/α−1(cβ(x)) ↑ +∞ and β(x/α−1(cβ(x))) = (1 + o(1))β(x) as
x0 ≤ x → +∞ for each c ∈ (0,+∞). If α(ln n) = o(β(λn)) as n → +∞ then

ϱ0
α,β[F] = lim

n→∞

α(ln | fn|)
β(λn)

. (8)

If, moreover, α(λn+1) ∼ α(λn) and κn[F] ↗ 0 as n0 ≤ n → ∞ then

λ0
α,β[F] = lim

n→∞

α(ln | fn|)
β(λn)

.

Using Lemmas 1 and 3 we prove at first the following analogue of Theorem A.

Theorem 6. Let the functions α ∈ Lsi, β ∈ Lsi and the sequence Λ satisfy the conditions of Lemma 3. If the function G
has generalized regular (α, β)-growth and κn[G] ↗ 0 as n0 ≤ n → ∞ then

ϱ00
β,β[F]G = lim

n→∞
β

(
λn

ln |gn|

)
/β

(
λn

ln | fn|

)
. (9)
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If, moreover, α(λn+1) = (1 + o(1))α(λn) and κn[F] ↗ 0 as n0 ≤ n → ∞ then

λ00
β,β[F]G = lim

n→∞
β

(
λn

ln |gn|

)
/β

(
λn

ln | fn|

)
. (10)

Proof. Since the function G has generalized regular (α, β)-growth, i. e. 0 < λ0
α,β[G] = ϱ0

α,β[G] < +∞, and
κn[G] ↗ 0 as n0 ≤ n → ∞ by Lemma 3 we get

λ0
α,β[G] = ϱ0

α,β[G] = lim
n→∞

α(λn)

β(λn/ ln |gn|)
,

and by Lemma 1 ϱ00
β,β[F]G = ϱ0

α,β[F]/ϱ0
α,β[G] and λ00

β,β[F]G = λ0
α,β[F]/λ0

α,β[G]. Therefore,

ϱ00
β,β[F]G = lim

n→∞

α(λn)

β (λn/ ln | fn|)
lim

n→∞

β(λn/ ln |gn|)
α(λn)

=

= lim
n→∞

α(λn)

β (λn/ ln | fn|)
lim

n→∞

β(λn/ ln |gn|)
α(λn)

= lim
n→∞

β(λn/ ln |gn|)
β (λn/ ln | fn|)

,

i. e. (9) is proved. The proof of (10) is similar.
Using Lemma 2 we arrive at the following statement.

Theorem 7. Let α ∈ Lsi, β ∈ Lsi, γ ∈ Lsi, x/α−1(cγ(x)) ↑ +∞, x/β−1(cγ(x)) ↑ +∞, γ(x/α−1(cγ(x))) =

(1 + o(1))γ(x) and γ(x/β−1(cγ(x))) = (1 + o(1))γ(x) as x → +∞ for each c ∈ (0,+∞). Suppose that γ(λn) =

o(α(λn/ ln n)) and γ(λn) = o(β(λn/ ln n)) as n → ∞. If 0 < λ0
γ,α[G] ≤ ϱ0

γ,α[G] < +∞, γ(λn+1) ∼ γ(λn) and
κn[G] ↗ 0 as n0 ≤ n → ∞ then

λ0
γ,α[G]

ϱ0
γ,α[G]

Pα,β ≤ ϱ00
α,β[F]G ≤

ϱ0
γ,α[G]

λ0
γ,α[G]

Pα,β, Pα,β := lim
n→∞

α(λn/ ln |gn|)
β(λn/ ln | fn|)

. (11)

If, moreover, κn[F] ↗ 0 as n0 ≤ n → ∞ then

λ0
γ,α[G]

ϱ0
γ,α[G]

pα,β ≤ λ00
α,β[F]G ≤

ϱ0
γ,α[G]

λ0
γ,α[G]

pα,β, pα,β := lim
n→∞

α(λn/ ln |gn|)
β(λn/ ln | fn|)

. (12)

Proof. Since 0 < λ0
γ,α[G] ≤ ϱ0

γ,α[G] < +∞, Lemma 2 implies

ϱ0
γ,β[F]

ϱ0
γ,α[G]

≤ ϱ00
α,β[F]G ≤

ϱ0
γ,β[F]

λ0
γ,α[G]

=
ϱ0

γ,β[F]

ϱ0
γ,α[G]

ϱ0
γ,α[G]

λ0
γ,α[G]

. (13)

We need to estimate the value ϱ0
γ,β[F]/ϱ0

γ,α[G]. On the one hand, by Lemma 3

ϱ0
γ,β[F]

ϱ0
γ,α[G]

= lim
n→∞

γ(λn)

β(λn/ ln | fn|)
lim

n→∞

α(λn/ ln |gn|)
γ(λn)

≤ lim
n→∞

α(λn/ ln |gn|)
β(λn/ ln | fn|)

= Pα,β. (14)

On the other hand, if Pα,β > 0 then for every ε ∈ (0, Pα,β) there exists an increasing to +∞ sequence (nk) such
that α(λnk / ln |gnk |) ≥ (Pα,β − ε)β(λnk / ln | fnk |), whence

γ(λnk )

β(λnk / ln | fnk |)
≥ (Pα,β − ε)

γ(λnk )

α(λnk / ln |gnk |)

and, thus,

ϱ0
γ,β[F] = lim

n→∞

γ(λn)

β(λn/ ln | fn|)
≥ (Pα,β − ε) lim

n→∞

γ(λn)

α(λn/ ln |gn|)
= (Pα,β − ε)λ0

γ,α[G].
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In view of the arbitrariness of ε we get

ϱ0
γ,β[F]

ϱ0
γ,α[G]

=
ϱ0

γ,β[F]

λ0
γ,α[G]

λ0
γ,α[G]

ϱ0
γ,β[F]

≥ Pα,β
λ0

γ,α[G]

ϱ0
γ,β[F]

. (15)

If Pα,β = 0 then this inequality is obvious. From (13), (14) and (15) we obtain (11).
For the proof of (12) we remark that now by Lemmas 2 and 3

λ00
α,β[F]G ≥

λ0
γ,β[F]

ϱ0
γ,α[G]

=
λ0

γ,β[F]

λ0
γ,α[G]

λ0
γ,α[G]

ϱ0
γ,α[G]

=

=
λ0

γ,α[G]

ϱ0
γ,α[G]

lim
n→∞

γ(λn)

β (λn/ ln | fn|)
lim

n→∞

α(λn/ ln |gn|)
γ(λn)

≥

≥
λ0

γ,α[G]

ϱ0
γ,α[G]

lim
n→∞

α(λn/ ln |gn|)
β (λn/ ln | fn|)

=
λ0

γ,α[G]

ϱ0
γ,α[G]

pα,β.

On the other hand, if pα,β < +∞ then for every ε > 0) there exists an increasing to +∞ sequence (nk)

such that α(λnk / ln |gnk |) ≤ (pα,β + ε)β(λnk / ln | fnk |), whence as above

lim
n→∞

γ(λn)

β (λn/ ln | fn|)
≤ (pα,β + ε) lim

n→∞

γ(λn)

α (λn/ ln |gn|)
,

i. e., in view of the arbitrariness of ε we get λ0
γ,β[F] ≤ pα,βϱ0

γ,α[G] and by Theorem 2

λ00
α,β[F]G ≤

λ0
γ,β[F]

λ0
γ,α[G]

=
λ0

γ,β[F]

ϱ0
γ,α[G]

ϱ0
γ,α[G]

λ0
γ,α[G]

≤
ϱ0

γ,α[G]

λ0
γ,α[G]

pα,β.

The last inequality holds if pα,β = +∞. Therefore, inequalities (12) and Theorem 2 are proved.

Remark 3. If the conditions of Theorem 2 completed and G has generalized regular (γ, α)-growth (i. e. 0 <

λ0
γ,α[G] = ϱ0

γ,α[G] < +∞) then ϱ00
α,β[F]G = Pα,β and λ00

α,β[F] = pα,β.

If we use Lemma 4 then we obtain the following two theorems.

Theorem 8. Let the functions α ∈ Lsi, β ∈ Lsi and the sequence Λ satisfy the conditions of Lemma 4. If the function G
has generalized regular (α, β)-growth and κn[G] ↗ 0 as n0 ≤ n → ∞ then

ϱ00
β,β[F]G = lim

n→∞

α(ln | fn|)
α(ln |gn|)

. (16)

If, moreover, α(λn+1) = (1 + o(1))α(λn) and κn[F] ↗ 0 as n0 ≤ n → ∞ then

λ00
β,β[F]G = lim

n→∞

α(ln | fn|)
α(ln |gn|)

. (17)

Proof. Since the function G has generalized regular (α, β)-growth and κn[G] ↗ 0 as n0 ≤ n → ∞ by Lemma 4

we get λ0
α,β[G] = ϱ0

α,β[G] = lim
n→∞

α(ln |gn|)
β(λn)

and, therefore, by Lemma 1

ϱ00
β,β[F]G =

ϱ0
α,β[F]

ϱ0
α,β[G]

= lim
n→∞

α(ln | fn|)
β(λn)

lim
n→∞

β(λn)

α(ln |gn|)
= lim

n→∞

α(ln | fn|)
α(ln |gn|)

.

i. e. (16) is proved. The proof of (17) is similar.
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Theorem 9. Let α ∈ Lsi, β ∈ Lsi, γ ∈ Lsi, x/γ−1(cα(x)) ↑ +∞, x/γ−1(cβ(x)) ↑ +∞, α(x/γ−1(cα(x))) =

(1 + o(1))α(x) and β(x/γ−1(cβ(x))) = (1 + o(1))β(x) as x → +∞ for each c ∈ (0,+∞). Suppose that γ(ln n) =
o(α(λn)) and γ(ln n) = o(β(λn)) as n → +∞. If 0 < λ0

γ,α[G] ≤ ϱ0
γ,α[G] < +∞, γ(λn+1) ∼ γ(λn) and κn[G] ↗ 0

as n0 ≤ n → ∞ then

λ0
γ,α[G]

ϱ0
γ,α[G]

Qγ,α,β ≤ ϱ00
α,β[F]G ≤

ϱ0
γ,α[G]

λ0
γ,α[G]

Qγ,α,β, Qγ,α,β := lim
n→∞

α(λn)γ(ln | fn|)
β(λn)γ(ln |gn|)

. (18)

If, moreover, κn[F] ↗ 0 as n0 ≤ n → ∞ then

λ0
γ,α[G]

ϱ0
γ,α[G]

qγ,α,β ≤ λ00
α,β[F]G ≤

ϱ0
γ,α[G]

λ0
γ,α[G]

qγ,α,β, qγ,α,β := lim
n→∞

α(λn)γ(ln | fn|)
β(λn)γ(ln |gn|)

. (19)

Proof. Using Lemmas 2 and 4 as in proof of Theorem 2 we obtain

ϱ00
α,β[F]G ≤

ϱ0
γ,β[F]

λ0
γ,α[G]

=
ϱ0

γ,β[F]

ϱ0
γ,α[G]

ϱ0
γ,α[G]

λ0
γ,α[G]

=
ϱ0

γ,α[G]

λ0
γ,α[G]

lim
n→∞

γ(ln | fn|)
β(λn)

lim
n→∞

α(λn)

γ(ln |gn|)
≤

≤
ϱ0

γ,α[G]

λ0
γ,α[G]

lim
n→∞

α(λn)γ(ln | fn|)
β(λn)γ(ln |gn|)

=
ϱ0

γ,α[G]

λ0
γ,α[G]

Qγ,α,β.

On the other hand, if Qγ,α,β > 0 then for every ε ∈ (0, Qγ,α,β) there exists an increasing to +∞ sequence
(nk) such that α(λnk )γ(ln | fnk |) ≥ (Qγ,α,β − ε)β(λnk )γ(ln |gnk |), i. e.

γ(ln | fnk |)
β(λnk )

≥ (Qγ,α,β − ε)
γ(ln |gnk |)

α(λnk )

and, thus,

ϱ0
γ,β[F] = lim

n→∞

γ(ln | fn|)
β(λn)

≥ (Qγ,α,β − ε) lim
n→∞

γ(ln |gn|)
α(λn)

= (Qγ,α,β − ε)λ0
γ,α[G].

Therefore, in view of the arbitrariness of ε we get by Lemma 2

ϱ00
α,β[F]G ≥

ϱ0
γ,β[F]

ϱ0
γ,α[G]

=
ϱ0

γ,β[F]

λ0
γ,α[G]

λ0
γ,α[G]

ϱ0
γ,α[G]

≥
λ0

γ,α[G]

ϱ0
γ,α[G]

Qγ,α,β.

If Qγ,α,β = 0 then this inequality is obvious. Inequalities (18) are proved.

Combining the proofs of the inequalities (12) and (18) we arrive at the validity of the inequalities (19). The
proof of Theorem 4 is complete.

Remark 4. If the conditions of Theorem 2 completed and G has generalized regular (γ, α)-growth then
ϱ00

α,β[F]G = Qγ,α,β and λ00
α,β[F] = qγ,α,β.

4. Dirichlet series of finite R-order

If we choose α(x) = ln x and β(x) = x for x ≥ 3 then from the definitions of ϱ0
α,β[F] and λ0

α,β[F] we obtain

the definitions of the R-order ϱ0
R[F] and the lower R-order λ0

R[F] of the function F ∈ S(Λ, 0), introduced by
A.M. Gaisin [14]. If we choose α(x) = β(x) = ln x for x ≥ 3 then we obtain the definitions of the logarithmic
order ϱ0

l [F] and the logarithmic lower order λ0
l [F] of F ∈ S(Λ, 0).

For the characteristic of the relative growth of the function F ∈ S(Λ, 0) with respect to a function G ∈
S(Λ, 0) in Gaisin’s scale we use ϱ00

R [F]G = ϱ00
β,β[F]G and λ00

R [F]G = λ00
β,β[F]G with β(x) = x. In the logarithmic

scale we use ϱ00
l [F]G = ϱ00

β,β[F]G and λ00
l [F]G = λ00

β,β[F]G with β(x) = ln x. Then Lemma 1 implies the following
statement.
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Corollary 10. If 0 < λ0
R[G] = ϱ0

R[G] < +∞ then ϱ00
R [F]G = ϱ0

R[F]/ϱ0
R[G] and λ00

R [F]G = λ0
R[F]/λ0

R[G]. If
0 < λ0

l [G] = ϱ0
l [G] < +∞ then ϱ00

l [F]G = ϱ0
l [F]/ϱ0

l [G] and λ00
l [F]G = λ0

l [F]/λ0
l [G].

If we choose γ(x) = ln x and α(x) = β(x) = x for x ≥ 3 then from Lemma 2 we obtain the following statement.

Corollary 11. If 0 < λ0
R[G] ≤ ϱ0

R[G] < +∞ then ϱ0
R[F]/ϱ0

R[G] ≤ ϱ00
R [F]G ≤ ϱ0

R[F]/λ0
R[G] and λ0

R[F]/ϱ0
R[G] ≤

λ00
R [F]G ≤ λ0

R[F]/λ0
R[G].

For γ(x) = α(x) = β(x) = ln x for x ≥ 3 Lemma 2 implies the following statement.

Corollary 12. If 0 < λ0
l [G] ≤ ϱ0

l [G] < +∞ then ϱ0
l [F]/ϱ0

l [G] ≤ ϱ00
l [F]G ≤ ϱ0

l [F]/λ0
l [G] and λ0

l [F]/ϱ0
l [G] ≤

λ00
l [F]G ≤ λ0

l [F]/λ0
l [G].

Lemma 2 makes it possible to study the relative growth of the function F ∈ S(Λ, 0) with respect to a
function G ∈ S(Λ, 0) in mixed scales. For this we use

ϱ00
R,l [F]G = lim

σ↑0
|σ| ln (1/|M−1

G (MF(σ))|), λ00
R,l [F]G = lim

σ↑0
|σ| ln (1/|M−1

G (MF(σ))|)

if α(x) = ln x, β(x) = x, and

ϱ00
l,R[F]G = lim

σ↑0

1
|M−1

G (MF(σ))| ln (1/|σ|)
, λ00

l,R[F]G = lim
σ↑0

1
|M−1

G (MF(σ))| ln (1/|σ|)

if α(x) = x, β(x) = ln x. We choose γ(x) = ln x for x ≥ 3. Then ϱ0
γ,β[F] = ϱ0

R[F], ϱ0
γ,α[G] = ϱ0

l [F], λ0
γ,β[F] =

λ0
R[F] and λ0

γ,α[G] = λ0
l [F] for α(x) = ln x and β(x) = x. If α(x) = x and β(x) = ln x then ϱ0

γ,β[F] = ϱ0
l [F],

ϱ0
γ,α[G] = ϱ0

R[F], λ0
γ,β[F] = λ0

l [F] and λ0
γ,α[G] = λ0

R[F]. Therefore, Lemma 2 implies the following corollary.

Corollary 13. If 0 < λ0
l [G] ≤ ϱ0

l [G] < +∞ then ϱ0
R[F]/ϱ0

l [G] ≤ ϱ00
R,l [F]G ≤ ϱ0

R[F]/λ0
l [G] and λ0

R[F]/ϱ0
l [G] ≤

λ00
R,l [F]G ≤ λ0

R[F]/λ0
l [G]. If 0 < λ0

R[G] ≤ ϱ0
R[G] < +∞ then ϱ0

l [F]/ϱ0
R[G] ≤ ϱ00

l,R[F]G ≤ ϱ0
l [F]/λ0

R[G] and
λ0

l [F]/ϱ0
R[G] ≤ λ00

l,R[F]G ≤ λ0
l [F]/λ0

R[G].

Since the function β(x) = x for x ≥ 3 does not belong to Lsi, Theorems 3 and 4 do not lead to the
corresponding result in Gaisin’s scale. However, in this case the following lemma is true [14].

Lemma 14. If G ∈ S(Λ, 0) and ln n = o(λn/ ln λn) as n → ∞ then ϱ0
R[F] = lim

n→∞

ln λn

λn
ln |gn|. If, moreover,

ln λn+1 = (1 + o(1)) ln λn and κn[G] ↗ 0 as n0 ≤ n → ∞ then λ0
R[F] = lim

n→∞

ln λn

λn
ln |gn|.

Using Corollary 1 and Lemma 5, the following statement is proved by the usual method.

Proposition 15. If 0 < λ0
R[G] = ϱ0

R[G] < +∞, ln n = o(λn/ ln λn) and κn[G] ↗ 0 as n0 ≤ n → ∞ then

ϱ00
R [F]G = lim

n→∞

ln | fn|
ln |gn|

. If, moreover, ln λn+1 = (1 + o(1)) ln λn and κn[F] ↗ 0 as n0 ≤ n → ∞ then λ00
R [F]G =

lim
n→∞

ln | fn|
ln |gn|

.

For logarithmic orders the following lemma is true [15].

Lemma 16. If G ∈ S(Λ, 0) and lim
n→∞

ln ln n
ln λn

= 0 then
ϱ0

l [G]

ϱl [G] + 1
= lim

n→∞

ln ln |gn|
ln λn

. If, moreover, ln λn+1 =

(1 + o(1)) ln λn and κn[G] ↗ 0 as n0 ≤ n → ∞ then
λ0

l [G]

λl [G] + 1
= lim

n→∞

ln ln |gn|
ln λn

.

Using this lemma and Corollary 1 it is easy to prove the following statement.
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Proposition 17. If 0 < λ0
l [G] = ϱ0

l [G] < +∞, ln ln n = o(ln λn) and κn[G] ↗ 0 as n0 ≤ n → ∞ then

ϱ00
l [F]G = lim

n→∞

(ln λn − ln ln |gn|) ln ln | fn|
(ln λn − ln ln | fn|) ln ln |gn|

.

If, moreover, ln λn+1 = (1 + o(1)) ln λn and κn[F] ↗ 0 as n0 ≤ n → ∞ then

λ00
l [F]G = lim

n→∞

(ln λn − ln ln |gn|) ln ln | fn|
(ln λn − ln ln | fn|) ln ln |gn|

.

In conclusion, consider the mixed scales. First of all, let us note the correctness of the following statement.

Proposition 18. For every functions F ∈ S(Λ, 0), G ∈ S(Λ, 0), α ∈ L and β ∈ L the general formula ϱ00
α,β[G]F =

1/λ00
β,α[F]G is correct.
Indeed,

ϱ00
α,β[G]F = lim

σ↑0

α(1/|M−1
F (MG(σ))|)

β(1/|σ|) = lim
x→+∞

α(1/|M−1
F (x)|

β(1/|M−1
G (x)|)

=

=
1

lim
x→+∞

β(1/|M−1
G (x)|)

α(1/|M−1
F (x)|

=
1

lim
σ↑0

β(1/|M−1
G (MF(σ))|)

α(1/|σ|

=
1

λ00
β,α[F]G

.

Using Lemmas 5, 6 and Corollary 4 we obtain the following proposition in mixed scales.

Proposition 19. Let F ∈ S(Λ, 0), G ∈ S(Λ, 0) and ln ln n = o(ln λn) as n → ∞. If 0 < λ0
l [G] = ϱ0

l [G] < +∞ and
κn[G] ↗ 0 as n0 ≤ n → ∞ then

ϱ00
R,l [F]G = lim

n→∞

ln λn(ln λn − ln ln |gn|) ln ln | fn|
λn ln ln |gn|

,

and if, moreover, ln λn+1 = (1 + o(1)) ln λn and κn[F] ↗ 0 as n0 ≤ n → ∞ then

λ0,0
R,l [F]G = lim

n→∞

ln λn(ln λn − ln ln |gn|) ln ln | fn|
λn ln ln |gn|

.

On the other hand, if 0 < λ0
R[F] = ϱ0

R[F] < +∞ and κn[F] ↗ 0 as n0 ≤ n → ∞ then

ϱ00
l,R[G]F = lim

n→∞

λn ln ln |gn|
ln λn(ln λn − ln ln |gn|) ln ln | fn|

,

and if, moreover, ln λn+1 = (1 + o(1)) ln λn and κn[G] ↗ 0 as n0 ≤ n → ∞ then

λ00
l,R[G]F = lim

n→∞

λn ln ln |gn|
ln λn(ln λn − ln ln |gn|) ln ln | fn|

.
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