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Abstract: Let A = (A,) be an increasing sequence of non-negative numbers tending to +oco, with Ag = 0. We
denote by S(A,0) a class of Dirichlet series F(s) = Y, fnexp{sAn}, s = o+ it, which have an abscissa
of absolute convergence 0, = 0. For ¢ < 0, we define Mp(c) = sup{|F(c +it)| : t € R}. The growth of
the function F € S(A,0) is analyzed in relation to the function G(s) = Y.;° o gnexp{sAn} € S(A,0), via the
growth of the function 1/|M L(ME(0))| as o 1 0. We investigate the connection between this growth and the
behavior of the coefficients f;; and g, in terms of generalized orders.
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1. Introduction

L et f and g be entire transcendental functions, and let M¢(r) = max{|f(z)| : |z| = r}. To study the
relative growth of the functions f and g, Ch. Roy [1] introduced the order

— InM;Y(Mf(r))

oslfl = rl1>r+noo Inr
and the lower order 1( )
In M, (M¢(r)
T g f
/\g [f] - 1’11)7:1-100 Inr ’

which identify the growth of f relative to ¢ with the growth of the function M, I(m £(r))asr — +oo.
Research on the relative growth of entire functions has been extended by S.K. Datta, T. Biswas, and
other mathematicians (see, for example, [2-5]) using maximal terms, Nevanlinna’s characteristic function, and
k-logarithmic orders. In [6], the relative growth of entire functions of two complex variables is considered, and
in [7], the relative growth of entire Dirichlet series is studied in terms of R-orders.
Suppose that A = (A,) is an increasing sequence tending to 400 of non-negative numbers, with Ay = 0.
By S(A, A), we denote a class of Dirichlet series

s) = i fonexp{sAn}, s=o+it, (1)
n=1

with the abscissa of absolute convergence 0; = A € (—o0, +00]. For ¢ < A, we define
Mg(o) = sup{|F(c +it)| : t € R},

and note that the function Mg (c) is continuous and increases to +oco on (—o0, A). Therefore, there exists a
function My (x) inverse to Mp(c), which increases to A on (|ag|, +00).

We denote by L a class of continuous non-negative functions & on (—co, +00) such that a(x) =
for x < xp and a(x) T +oo as xg < x — +co. We say thata € LY ifa € L and a((1+0(1))x) = (1
as x — +oo. Finally, & € Lg; ifa € L and a(cx) = (14 0(1))a(x) as x — +oo for each ¢ € (0, +c0
slowly increasing function. Clearly, Ly; C L°.

(IJA‘\/
SD\/O

a(xo)
+o(1))a
)ezx
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Ifa €L, BeL,and F € S(A,+0), then the quantities

. a(InMp(0))
— 2 A,glF] = Ilm ————%~
N G Ny )
are called the generalized («, f)-order and the generalized lower («, B)-order of F, respectively [8,9]. We say
that F has generalized regular («, )-growth if

0 < AgplF] = 0upl[F] < +oo.

If G € S(A, +o0) and
G(s) = Z gnexp{sin}, )
n=1

then the growth of the function F with respect to the function G is identified with the growth of the function
Mg Y(Mp(0)) as ¢ — +co. The generalized (a, B)-order 0u,6[Flc and the generalized lower (a,f8)-order
Awp[Flc of the function F € S(A, +o00) with respect to a function G € S(A, +c0) are defined as follows:

— a(Mg' (Mp(0)))

le,ﬂ [F}G = 01_1)11100 ﬁ(O')

o
, AgplFlg :=1limo — +oo

In the articles [10] and [11], the relationship between ¢, s[F]G, Aa,p[F]G, and 0us[F], Au,g[F], 0a,p[G], and Ay g[G]
is studied, and formulas are found for calculating 0, g[F|c and A, g[F]¢ in terms of the coefficients f, and gy.
In particular, the following theorem is proved in [10].

o 4B (ca(x))
Theorem 1. Leta € Ly, p € LY, and T O(1) as x — +oo. Suppose that a(A, 1) = (14 0(1))a(Ay)

and Inn = o(AyB~ (ca(Ay))) as n — oo for each ¢ € (0,+0c0), and that 0u,plF] < +oo. If the function G has
generalized reqular («, B)-growth and

Kn[G] — In |gn| _ln|gﬂ+1| S 4o as ng<n— oo,
An+1 - )\n
then ) .
(2 )
0pplFlo = Jim —73—
#(5 )
except for cases when either 0, 8[F] = 04,8[G] = 0 0r 0up[F] = 0ap[G] = +oo. If, moreover, x,[F] /* +co as

ng < n — oo, then

except for cases when either Ay g[F] = Ay g[G] = 0 0r Ay g[F| = Ay g[G] = +oo.

In the proposed article we will study the growth of the function F € S(A,0) with respect to the function
G € S(A,0).

2. Definitions and supporting results

For F € S(A,0), « € Land B € L the quantities

0n plF = HM, AY 5[F] := lim a(In Mg (o))

o B/lo]) B (1/]o]) )
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are called [12] the generalized (a, §)-order and the generalized lower («, §)-order of F accordingly. If G €
S(A,0) then the function Mg (c) can be bounded on (—oo,0), but if nh?r;o |gn| = +o0 then Mg (0) is continuous
and increasing to 400 on (—o0,0) and, thus, there exists the function M&l (x) < 0 inverse to Mg(c), which
increase to 0 on (|go|, +c0). In what follows we will assume that nh?rolo lgn| = nll?rolo | fu| = +oo.

Since Mal(x) 1 0as |go| < x T +oco, we have |M(_;1(x)| L 0as|go] < x 1 +oo, |M(_;1(M1:(U))| 1 0and,
thus, 1/|M:'(Mp(0))| T 40 as 0y < o 1 0 for some oy < 0. Therefore, we can identify the growth of the
function F € S(A,0) in respect to the function G € S(A,0) with the growth of the function 1/ |M6l (Mp(0))]
asop < 0 10,1 e, determine (a, B)-order and lower («, B)-order as

)

0 m = WM M) 0 a1/ MG (M ()
Gwplfle =lim =g 7oy~ MwlFle =Hm=——g070D

Lemma 2. Let « € Land B € L. Except for cases, when either Qgrﬁ [F] = leﬁ[G] =0or Qgrﬁ [F] = leﬁ[G] = +oo, the
inequality Q%?ﬁ [Flg > 92,/3 [F]/ leﬁ [G] is true, and under the condition of generalized regularity of («, B)-growth of G,
this inequality turns into equality.

Except for cases, when either )‘g,ﬁ [F] = Ag,ﬁ[G] =0or /\2/;3 [F] = /\2/ ﬁ[G] = o0, the inequality /\%%[P]G <
/\2’ 8 [F]/ Ag’ 8 [G] is true, and under the condition of generalized regularity of («, f)-growth of G, this inequality
turns into equality.

Proof. Indeed,

0 = w _ Im a(In x) B(1/IMg' (%))
Q/S,ﬁ[F]G = x1_>+oo ,8(1/|ME1(X))|) o x1—>+oo ﬁ(1/|MEl(x))|) a(In x) >
> T a(ln x) lim ,B(l/\Mél(x))D _
= o B/ IME (X)) soi 6(In 7)

_ i @0 Me()) . B(/e]) 09 41F]
ot B(1/|o]) w10 a(ln Mg(0)) Qg,ﬁ[G]

and, similarly,
—a(in Me(0) — B/lo]) _ eRglF]

00 3
9pplFle <l =gm 7oy i i Mo (@) A0 1G]

This implies the first part of Lemma 1. The proof of the second part is similar. You just need to use the
inequalities lim a(x) lim b(x) < lima(x)b(x) < lima(x)limb(x). O

Remark 1. If the functions F and G have the generalized regular («, §)-growth for some a € L then )\%Oﬁ [Flg =
Q%(,)/S [F]g. To obtain estimates /\2% [F]g and Qg% [F]g with a # B, you need to use an additional function v € L
asin [11].

Lemma 3. Ifa € Land B € L, then for each function v € L, the following inequalities are true:

0 0
Q. [F] < 0. [Fg Q%ﬁ[F] (5)
oalG] = T T AL(G]
except for cases when ¢, 5[F] = 0)4[G] = 0, @) 4[F] = A9,[G] = 0, ¢) 4[F] = ¢)4[G] = +oo, or & 4[F] =
A9 ([G] = +oo.
Additionally,
0 0
Awﬁ[F ) < A% [F] A%ﬂ[F] 6)
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except for cases when Ag,ﬁ[F] = A9,[G] =0, )\g,ﬁ[ﬂ = 0%,[G] =0, )\7’3[ ] = A9 ,4[G] = +oo, 0r AY

] =
%ﬁ[
pr,tx[c] = +oo.

Proof. As in the proof of Lemma 1, now we have

O = Tm CVIMG ) a(nx (/MG ()
# e B(1/|M:1(x)]) x>+ B(1/|Mz1(x))])  7(Inx)

> i YU Me(@)) o B(L/le]) 0) 5[]
a0 B(/lol) o0 v(In Mg(0)) — 9,[G]

and, similarly,
0 v(In Mp(0)) e B(1/J0])  _ ¢y plF]
plFle < T oy I i Mg (o))~ Maa]

i. e, (5) is proved. The proof of (6) is similar. [

Remark 2. In the statements of Lemma 2 the conditions for the function y hold if 0 < AO «|G] < 997 «|G] < o0
From Lemma 2 it follows that if G has the generalized regular (v, «)-growth then ¢ /3[ lc = Qg ﬁ[F] / QO [G]

and AJ%[Flg = A 4[F]/ A9 4 [G].

3. Main results

We need the following lemmas [12,13].

Lemmad. Let F € S(A,0), « € Lg;and B € Ly, x/B(ca(x)) 1 +o0 and a(x/B~(ca(x))) = (14 0(1))a(x) as
xg < x — 400 foreach ¢ € (0,+00). Ifa(Ay) = 0o(B(An/ In 1)) as n — oo then

a(Ay)
Qg,ﬁ[ ] = r}g{}om )

If, moreover, a(Ay41) ~ a(Ay) and «,[F] /0 as ng < n — oo then

— «(h)
AuplF] = ,}Eﬂom

Lemma 5. Let F € S(A,0), a € Ly and B € Ly, x/a~ 1 (cB(x)) T +ooand B(x/a"1(cB(x))) = (1+0(1))B(x) as
xg < x — oo foreach ¢ € (0,+00). Ifa(In n) = 0(B(Ay)) as n — oo then

— a(In |fn|)
Qg,ﬁ[ ]_ lim ,B(/\n) . (8)

n—oo

If, moreover, a(Ay41) ~ a(Ay) and «,[F] /0 as ng < n — oo then

_ i &0 [fal)
)\2,‘3[13]_’11;711;0 ,[3(/\;1) .

Using Lemmas 1 and 3 we prove at first the following analogue of Theorem A.

Theorem 6. Let the functions « € Lgj, B € Lg; and the sequence A satisfy the conditions of Lemma 3. If the function G
has generalized regular (a, B)-growth and x,[G] ,* 0as ng < n — co then

T /\n /\n
Q%(,)ﬁ[F]G = nlglc}oﬁ (lngn|> /B (1n|fn) : ©)



Open J. Math. Anal. 2024, 8(1), 80-89 84

If, moreover, a(Ay41) = (14 0(1))a(Ay) and k,[F] 7 0as ng < n — oo then

A A
APs[Flg = lim (”) (”) 10
ﬁ,‘B[ ]G 71%700'3 In |gn| /:B In |fn| (10)
Proof. Since the function G has generalized regular («, B)-growth, i. e. 0 < A? lGl = 92,,5[@] < +o0, and

®n|G] / 0asng < n — oo by Lemma 3 we get

i a)
Aa,ﬁ[G] — Qa,lB[G] - nhg)l;}o ‘3(/\,1/111 |gn|)/

and by Lemma 1 Q%% [Flg = Qg’ﬁ[F]/Qg [G] and )‘/3/3[ le g,ﬁ[P]/)‘g,ﬁ[G]‘ Therefore,

00 (An) . ,B(An/ln |gn|) _
@plFlo = Jim s aney Jim SRR -

a(An) . B(An/In |gn|) I o B(An/In |gn])
;}%ﬁ(/\n/lnmp}% ) s B (/T ()

i. e. (9) is proved. The proof of (10) is similar.
Using Lemma 2 we arrive at the following statement. [J

Theorem 7. Let & € Ly, B € Ly, v € Lgj, x/a"(cy(x)) T 400, x/B 7 (cy(x)) 1 +oo, y(x/a " (cy(x))) =
(14 0(1))y(x) and y(x/B(cy(x))) = (14 0(1))y(x) as x — +oo for each ¢ € (0, +oc0). Suppose that y(\,) =
o(a(A/In n)) and y(An) = o(B(An/In 1)) asn — co. If 0 < AY ,[G] < 0 ,4[G] < 400, Y(Ayy1) ~ 7(Ay) and
kn[G] 1 0asng < n — oo then

A9 [G] 09 «[G] — a(An/In |gn])

I < QW[Flg < TPy, Pupi= Tim oot 8 11

Q) e = Geplfle < 3o rarBus Pap = 0 B i ) a
If, moreover, x,[F] " 0as ng < n — oo then

A9 1G] 09 1G] a(Ay/In |gyl)

Tyl < AT < S, lim MAn/ 0 18nl) 12

(G P = Maplfle = 50 TErPep Pop = IS T Al 12

Proof. Since 0 < )\Qy,m [G] < Qg,,x[G] < 400, Lemma 2 implies

QO
< QM[Flg < - — Ly (13)

We need to estimate the value QE)Y, 8 [F]/¢ 4[G]. On the one hand, by Lemma 3

Qg'ﬁm_ 7(An) w(A/Infgn]) _ = a(An/In|gul)
BulCl AR D AR T a0 S AR B () 09

On the other hand, if P, g > 0 then for every e € (0, P, g) there exists an increasing to +oco sequence () such
that (Ay, /In |gn,|) > (Pop —€)B(An,/ In |fu,]), whence

7 (An)
ﬁ()\nk/ In |fﬂk|)

’Y(Ank)

> A DL S| T
el (Perﬁ S)l’((/\nk/ln |gnk|)
and, thus,

An An
Qoy,lB[ ]—,}g{}OWE(PM )Jﬂmz(&,ﬁ— )AQQ[G]
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In view of the arbitrariness of ¢ we get

o plFl _ ahplFl 29,06 ﬁ)\gﬂ 6] 5
(Gl AY4[G] QQ,,/;[H - Qg,ﬁ[F]

If P, g = 0 then this inequality is obvious. From (13), (14) and (15) we obtain (11).
For the proof of (12) we remark that now by Lemmas 2 and 3

0 0
o> 2l 22006
“, B Q% [G] /\g,a[G] Q%[G

_ 'y,zx[G] lim 'Y(An) im a()‘n/ln |gn|) >

0o [Gl imsm B (/T [ful) e (M) ©
o MGl a(An/In [gul) _ A4[C]

im ‘ B
2 R BRI fu]) ~ BalC) P

On the other hand, if p,s < +co then for every e > 0) there exists an increasing to +oco sequence (1)
such that a(Ay, / In |gn,|) < (Pap +€)B(Au,/ In |fn,|), Wwhence as above

() T )
PR B/ () = Per T G, I g

i. e., in view of the arbitrariness of ¢ we get /\g,ﬁ [F] < pa,p03,[G] and by Theorem 2

A0 L[F] AD L[F] o0
’ /\%a[G] Q’Y,zx[G] wa [G] A

4[]
Je"

JSo

So

The last inequality holds if p, g = +oo. Therefore, inequalities (12) and Theorem 2 are proved. [

Remark 3. If the conditions of Theorem 2 completed and G has generalized regular (7, a)-growth (i. e. 0 <
/'\g,a[G] = ng,uc[G] < +00) then Qg?ﬂ [Flg = Py p and )‘g,ﬁ [F] = Pap-

If we use Lemma 4 then we obtain the following two theorems.

Theorem 8. Let the functions & € Lgj, B € Lg; and the sequence A satisfy the conditions of Lemma 4. If the function G
has generalized reqular (x, B)-growth and x,[G] /* 0as ng < n — oo then

00 _ 7 a(n [fu])
Qg8 [Flc = nlglgo m- (16)

If, moreover, «(Ay41) = (14+0(1))a(Ay) and x,[F]  0as ng < n — oo then

00 _oa(n | ful)
AplFlo = lim et (17)

Proof. Since the function G has generalized regular («, )-growth and «,[G] ,* 0 as ny < n — oo by Lemma 4

we get A) 5[G] = 0) 4[G] = lim a(In |gn|)

and, therefore, by Lemma 1
oo B(Ay) y

— Iim a(ln |fu]) lim B(An) im a(ln |fu])

Q%O/S[F}G -0 = .
’ 0 plGl nme B(An) o a(n(gu])  nme a(ln fgal)

i. e. (16) is proved. The proof of (17) is similar. O
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Theorem 9. Let & € Ly, B € Ly, v € Ly, x/v Yca(x)) 1 +oo, x/y 7 (cB(x)) 1T +oo, a(x/7  (ca(x))) =
(1+0(1))a(x) and B(x/v " (cB(x))) = (1+0(1))B(x) as x — +oo for each ¢ € (0, +c0). Suppose that y(In n) =
[G] ~0

o(a(An)) and y(In n) = o(B(An)) as n — +o00. If0 < A9 ,[G] < 05 4[G] < +o0, Y(Ays1) ~ ¥(An) and Ky
asny < n — oo then
A6 09,4[G] a(An)y(In | fa])
Dol < oW R < S Q= Iim —”. 18
0] It = Capltlo = 30 15 Qus Qras = I B3 Ty ) o
If, moreover, x,[F] ,* 0as ng < n — oo then
A9 4lG] 09,4[G] a(An)y(In |fnl)
o op < A%[Flg < 222 , = lim L 19
Q’y,oc[G] o 1~ ﬁ = aﬁ[ ]G = )\0 [G} q’}’aﬁ q%a,ﬁ P ()\n)'y(ln |gn‘) ( )

Proof. Using Lemmas 2 and 4 as in proof of Theorem 2 we obtain

" @l @plf] 00[6) _ ehalC) g v(inful) o a(dn)
Qa,ﬁ[F]G < N = 0, ] [G] - /\QW[G] nlﬁoo B(Aw) e y(In [gn]) =

< DalS] o ey (n [ful) _ €7alC)
= A9a[G] o BA) (I Igal) ~ A9,4[G]

On the other hand, if Q, 4 > 0 then for every ¢ € (0, Q%“,}g) there exists an increasing to 4o sequence
() such that (A )7(In [f,]) > (Qyap — €)B(Am)7(In |gu, ), i e.

v(n | fu])
B(An)

Qy,rx,‘&

) 270n [,

= Qres =970

and, thus,

of slF] = Tim, (;I(l)\lf;l) > (Q%ﬁe)mw (Qyup — A4[G].

Therefore, in view of the arbitrariness of ¢ we get by Lemma 2

0 .IF 0LF1 A% [G]  A%,[G
QgO‘B[F]G > Q(')y,ﬁ[ } = Qg'ﬁ[ } (’))/,(X[ ] > g’a[ ]Q'y,tx,ﬁ'
’ Q'y,:x[G] /\'y,zx[G] (2 [G} wa[G]

If Q, 4, = 0 then this inequality is obvious. Inequalities (18) are proved. [

Combining the proofs of the inequalities (12) and (18) we arrive at the validity of the inequalities (19). The
proof of Theorem 4 is complete.

Remark 4. If the conditions of Theorem 2 completed and G has generalized regular (7,«)-growth then
Qg% [Flc = Qv,a,/% and )\OO [ = Gy,a,8:

4. Dirichlet series of finite R-order

If we choose #(x) = In x and B(x) = x for x > 3 then from the definitions of 92,/3 [F] and /\2, 8 [F] we obtain
the definitions of the R-order ¢%[F] and the lower R-order A%[F] of the function F € S(A,0), introduced by
A M. Gaisin [14]. If we choose a(x) = B(x) = In x for x > 3 then we obtain the definitions of the logarithmic
order ¢?[F] and the logarithmic lower order A?[F] of F € S(A,0).

For the characteristic of the relative growth of the function F € S(A,0) with respect to a function G €
S(A,0) in Gaisin’s scale we use ¢% [F]g = Q%Oﬁ[ ] and AQ[F]g = )t%% [F]g with B(x) = x. In the logarithmic
scale we use 0°[F]g = Q%(,)ﬂ [F]g and AY[F]¢ A%Oﬁ[ |c with B(x) = In x. Then Lemma 1 implies the following
statement.
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Corollary 10. If0 < AY[G] = o}[G] < +eo then F[Flc — o}[F]/0}[G] and AL[Flc — AY[FI/AYIC]. If
0 < AV[G] = V[G] < +oo then 0°[F|g = ¢?[F]/¢?[G] and AY°[F|g = AY[F]/A?[G].
If we choose «y(x) = In x and a(x) = (x) = x for x > 3 then from Lemma 2 we obtain the following statement.

Corollary 11. If 0 < A%[G] < 0%[G] < +oo then ¢%[F]/0%[G] < 0% [Flc < 0%[F]/A%[G] and A%[F]/0%[G] <
AR [Fl < AR[FI/AR[G].
For y(x) = a(x) = B(x) = In x for x > 3 Lemma 2 implies the following statement.

Corollary 12. If 0 < AV[G] < ¢?[G] < +oo then ¢V[F]/0V[G] < ¢™[Flg < @?[F]/A%G] and A%[F]/%[G] <
AP[Flg < AVF]/AV[G].

Lemma 2 makes it possible to study the relative growth of the function F € S(A,0) with respect to a
function G € S(A,0) in mixed scales. For this we use

orylFlc = %IUI In (1/|Mg (Mp(@))]),  AR)[Flc = 1i%ll(fl In (1/|Mg" (M ())])

ifa(x) =In x, B(x) = x, and

_ 1 1
i A0 [Flg = lim
LRUIG T 0 (M (Mg (0))|In (1/ o))

00
0/ r[F]c = lim —— ,
T a0 MG (Me()) [In (1/|e])
if a(x) = x, B(x) = In x. We choose y(x) = In x for x > 3. Then Qg,ﬁ[F] = 0%[F], 9 4[G] = &J[F], Aglﬁ[F} =
A%[F] and A9 ,[G] = AD[F] for a(x) = In x and B(x) = x. If a(x) = x and B(x) = In x then Q(,)Mg[l:] = o"[F],
09 4[G] = % [F], Ag,ﬁ [F] = AD[F] and A ,[G] = A}[F]. Therefore, Lemma 2 implies the following corollary.

Corollary 13. If 0 < A%[G] < of[G] < +oo then o}[F)/@)[G] < o%[Flc < o%[FI/AY[G] and AY[F]/ oG] <
MO [Fle < AYFI/AYGL 10 < AY[G] < oG] < oo then o)[F]/0%[G] < of%[Flc < o¥[F]/A[C] and

A F)/ R[] < AR [Flc < AD[FI/AR[G].

Since the function B(x) = x for x > 3 does not belong to Ly, Theorems 3 and 4 do not lead to the
corresponding result in Gaisin’s scale. However, in this case the following lemma is true [14].

Lemma 14. If G € S(A,0) and Inn = o(A,/In Ay) as n — oo then ¢%[F] = lim In

lim “In |gn|. If, moreover,

In Ayi1 = (140(1))In Ay and x,[G] 7 0as ng < n — oo then A% [F] = 1

lim
n—o00

|gnl-
Using Corollary 1 and Lemma 5, the following statement is proved by the usual method.

Proposition 15. If 0 < A%[G] = 0%[G] < +oo, Inn = 0(Ay/In Ay) and x,[G] / 0as ng < n — oo then

In |fy|
00 _
o [Fle = nlgr(}o In |gn|

lim In |fn‘

n—oo IN ||

If, moreover, In Ay = (14 0(1))In A, and k,[F) 7 0as ng < n — oo then AR [Flg =

For logarithmic orders the following lemma is true [15].

Inlnn Gl — Inln [gy B
Lemma 16. If G € S(A,0) and nh_m mA, 0 then MEESE nh_r;r.}o “a, If, moreover, In A, =
NG
(14+0(1))In Ay and x,[G] " 0as ng < n — oo then ﬁ = lim M

MIGI+1 i Ss In Ay,

Using this lemma and Corollary 1 it is easy to prove the following statement.
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Proposition 17. If0 < A?[G] = ¢?[G] < 400, In In n = o(In Ay,) and x,[G] /0 as ng < n — oo then

QOO[H B (In Ay —Inln [gn]) In In |f]
! n—eo (In Ay —InIn | f|) In In [g,|”

If, moreover, In A, 11 = (1+0(1))In Ay and «,[F] / 0as ng < n — oo then

lim (In Ay —Inln [gn]) In In |f,]
noeo (IN Ay —Inln |f,]) InIn |g,|

AP[Flg =

In conclusion, consider the mixed scales. First of all, let us note the correctness of the following statement.

Proposition 18. For every functions F € S(A,0), G € S(A,0), « € Land B € L the general formula ngﬁ[G] F=
1/ /\%0“ [F]g is correct.

Indeed,
0 (G)r = i {/ M (Molo)) _ e &0/1M )
QplClr = I8 =57 To) T BT/ MG (x)])
_ 1 B 1 1
RU/MG ) PO/IMG (Mr@)) | ARl
xteo a(1/| Mgt (x)] o0 a(1/]o]

Using Lemmas 5, 6 and Corollary 4 we obtain the following proposition in mixed scales.

Proposition 19. Let F € S(A,0), G € S(A,0) andInIn n = o(In A,) asn — o0. If 0 < A?[G] = ¢V[G] < 400 and
kn|G] " 0as ng < n — oo then

In Ap(In Ay —InIn |gy|) In In | £, |
00 n n
orilF ]G_nlglc}o AnInIn |gy|

7

and if, moreover, In A1 = (1+0(1))In Ay and x,[F] /0 as ny < n — oo then

. InAy(In Ay —Inln |gy]) In In |fn|
A [Flg =1 e
rilFle ey AnlnIn |gy|

On the other hand, if 0 < A% [F] = ¢%[F] < +oo and x,[F] /' 0as ng < n — oo then

AplnIn |G|
00 n n
oR(G ]F_nlgro}oln)\ (In Ay —In'ln |gu|) InIn |f,]”

and if, moreover, In A1 = (1 +0(1))In Ay and x,[G] / 0as ng < n — oo then

AnInin |g,|
00 n
ARlGlr = i e —TnIn g In I [fy]’
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