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1. Introduction

T he Wigner transform has a long history, originating in 1932 with Eugene Wigner’s introduction of
a probability quasi-distribution that allows quantum mechanical expectation values to be expressed

similarly to classical statistical averages. It is also used in signal processing as a tool in time-frequency analysis;
for more details, see [1,2].

Significant attention has been devoted to various generalizations of the classical Fourier transform. This
paper focuses on the generalized Fourier transform on Chébli-Trimèche hypergroups of exponential growth.
More precisely, we consider the following second-order differential operator:

∆A =
∂2

∂x2 +
A′(x)
A(x)

∂

∂x
+ ρ2, ρ > 0, (1)

where A is a nonnegative function satisfying certain regularity conditions.
The operator (1) plays an important role in analysis. It generalizes several classical operators, such as

the Bessel operator [3], the Jacobi operator [4], and it corresponds to the radial part of the Laplace–Beltrami
operator in symmetric spaces (see [5] for more information).

The eigenfunctions of ∆A satisfy a product formula that enables the development of a harmonic analysis
on the Chébli-Trimèche hypergroups, denoted by (R+, ∗A). This hypergroup is commutative, with neutral
element 0 and the identity map as the involution. The Haar measure µA on (R+, ∗A) is given by

dµA(x) := A(x) dx. (2)

For more information on Chébli-Trimèche hypergroups, see [6,7].
One important application of the Fourier transform is in the theory of localization operators, also known

as Gabor multipliers, Toeplitz operators, or Anti-Wick operators. This theory was initiated by Daubechies in
[8], and further developed in detail by Wong in [9]. Wong was the first to define localization operators on the
Weyl–Heisenberg group [10], and later, Boggiatto and Wong extended these results to Lp(Rd) spaces in [11].
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The theory of localization operators associated with the Fourier–Wigner transform on hypergroups
has seen significant development, including in the spherical mean hypergroups [12], the Heckman–Opdam
hypergroups [13], and the Laguerre hypergroups [14]. In a previous work, we also extended this theory to
the Laguerre–Bessel hypergroups [15]. However, to the best of our knowledge, localization operators have not
yet been studied on the Chébli–Trimèche hypergroups, which generalize the Bessel–Kingman hypergroups [3]
and the Jacobi hypergroups [4].

The main purpose of this paper is twofold: First, we define the Fourier–Wigner transform on the
Chébli–Trimèche hypergroups and provide results related to this transform. Second, we introduce a class
of localization operators Lψ1,ψ2(σ) associated with this transform and establish criteria, in terms of the symbol
σ, for their boundedness and compactness. We also show that these operators belong to the Schatten–von
Neumann classes Sp for all p ∈ [1,+∞], and we derive a trace formula.

The remainder of this paper is organized as follows: In Section 2, we recall the main results concerning
harmonic analysis on Chébli–Trimèche hypergroups and Schatten–von Neumann classes. In Section 3, we
study the boundedness, compactness, and Schatten properties of localization operators associated with the
Wigner transform on Chébli–Trimèche hypergroups.

2. Harmonic Analysis on the Chébli–Trimèche Hypergroups

In this section, we introduce some notations and recall key results related to harmonic analysis on
Chébli–Trimèche hypergroups, as well as essential properties of the Schatten–von Neumann classes. For more
detailed discussions, we refer the reader to [6,7,9,16].

We denote:

• D∗(R) — the space of even, differentiable functions on R with compact support;
• Lp

A(R+) for p ≥ 1 — the space of measurable functions f on R+ such that

∥ f ∥p,A =


(∫

R+
| f (x)|p dµA(x)

)1/p
< +∞ if 1 ≤ p < +∞,

ess sup
x∈R+

| f (x)| < +∞ if p = +∞,

where µA is the measure defined in (2), and A is a nonnegative function on R+ called the
Chébli–Trimèche function, satisfying the following conditions [6]:

(i) There exists a positive, even, and infinitely differentiable function B on R with B(x) ≥ 1 for all x ∈ R+

such that
A(x) = x2α+1B(x), α > − 1

2 .

(ii) The function A is increasing on R+, and limx→∞ A(x) = ∞.
(iii) The function A′

A is decreasing on (0, ∞) and

lim
x→∞

A′(x)
A(x)

= 2ρ.

(iv) There exists a constant σ > 0 such that for all x ∈ [x0, ∞), with x0 > 0, we have

A′(x)
A(x)

=

{
2ρ + e−σxF(x), if ρ > 0,
2α+1

x + e−σxF(x), if ρ = 0,
(3)

where F is a C∞ function on (0, ∞) that is bounded along with all its derivatives.

For p = 2, the space L2
A(R+) becomes a Hilbert space with inner product defined, for f , g ∈ L2

A(R+), by

⟨ f , g⟩µA :=
∫
R+

f (x)g(x) dµA(x).
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Now consider the space Lp
σ(R+), p ≥ 1, consisting of measurable functions f on R+ such that

∥ f ∥p,σ =


(∫

R+
| f (λ)|p dσ(λ)

)1/p
< +∞ if 1 ≤ p < +∞,

ess sup
λ∈R+

| f (λ)| < +∞ if p = +∞,

where σ is a measure on R+ given by

dσ(λ) =
dλ

2π|C(λ)|2 ,

and C(λ) is the Harish–Chandra function, whose explicit form can be found in [5].

2.1. The Characters of the Chébli–Trimèche Hypergroups

For each λ ∈ C, consider the following Cauchy problem:{
∆Au(x) = −λ2u(x),

u(0) = 1, u′(0) = 0.

According to [4], this problem admits a unique solution denoted by φλ, called the **character** of the
Chébli–Trimèche hypergroup (R+, ∗A).

This function is infinitely differentiable on R, even, and satisfies the following important estimate:

∀λ ≥ 0, ∀x ∈ R, |φλ(x)| ≤ 1. (4)

2.2. The Generalized Fourier Transform on the Chébli–Trimèche Hypergroups

Definition 1 ([17]). The generalized Fourier transform FA is defined on L1
A(R+) by

FA( f )(λ) :=
∫
R+

φλ(x) f (x) dµA(x), λ ∈ R. (5)

Special Cases:

• If A(x) = x2α+1 with α ≥ − 1
2 and ρ = 0, then (R+, ∗A) is the Bessel–Kingman hypergroup, and FA

coincides with the Fourier–Bessel transform (see [3]).
• If A(x) = sinh2α+1(x) cosh2β+1(x) with α ≥ β ≥ − 1

2 and α ̸= − 1
2 , and ρ = α + β + 1, then we recover

the Jacobi operator

∆α,β(u) =
d2u
dx2 + [(2α + 1) coth x + (2β + 1) tanh x]

du
dx

+ ρ2u.

In this case, (R+, ∗A) is the Jacobi hypergroup and FA corresponds to the Jacobi transform (see [4]).

Some basic properties of the generalized Fourier transform (5) are as follows (for proofs, see [6,7,16]):

Proposition 1. 1. (Riemann–Lebesgue Lemma) For all f ∈ L1
A(R+), the function FA( f ) is continuous, and

∥FA( f )∥∞,σ ≤ ∥ f ∥1,A. (6)

2. (Inversion Formula) If f ∈ L1
A(R+) and FA( f ) ∈ L1

σ(R+), then

f (x) =
∫
R+

φλ(x)FA( f )(λ) dσ(λ), a.e. x ∈ R+. (7)

3. (Plancherel Theorem) The generalized Fourier transform extends uniquely to a unitary isomorphism from
L2

A(R+) onto L2
σ(R+), and for all f ∈ L2

A(R+), we have∫
R+

| f (x)|2 dµA(x) =
∫
R+

|FA( f )(λ)|2 dσ(λ). (8)
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2.3. Generalized Translation Operator on the Chébli–Trimèche Hypergroups

The character φλ is multiplicative on R+ in the sense of [7,16], meaning that

φλ(x)φλ(y) =
∫
R+

φλ(z)K(x, y, z)A(z) dz, (9)

where K(x, y, ·) is a measurable positive function given explicitly in [7].
The product formula (9) permits the definition of a **generalized translation operator**, a convolution

product, and hence the development of a harmonic analysis on the Chébli–Trimèche hypergroups.

Definition 2. Let x, y ∈ R+ and f be a measurable function on R+. The **translation operator** associated
with the Chébli–Trimèche hypergroup (R+, ∗A) is defined by

T x
A ( f )(y) :=

∫
R+

f (z)K(x, y, z)A(z) dz.

The following proposition summarizes key properties of the generalized translation operator. For details
and proofs, see [7,16].

Proposition 2. Let x, y, z ∈ R+ and f a measurable function on R+. Then:

1. Symmetry:
T x

A ( f )(y) = T y
A ( f )(x). (10)

2. Preservation of Integration: ∫
R+

T x
A ( f )(y) dµA(x) =

∫
R+

f (y) dµA(x). (11)

3. Norm Inequality: For f ∈ Lp
A(R+) with p ∈ [1, ∞], the function T x

A ( f ) also belongs to Lp
A(R+) and satisfies

∥T x
A ( f )∥p,A ≤ ∥ f ∥p,A. (12)

Using the generalized translation, we define the **generalized convolution product** of functions f , g ∈
Lp

A(R+) at x ∈ R+ as follows:

( f ∗A g)(x) :=
∫
R+

T x
A ( f )(y) g(y) dµA(y).

This convolution is **commutative**, **associative**, and satisfies the following key properties:

Proposition 3. 1. (Young’s Inequality) Let p, q, r ∈ [1, ∞] satisfy 1
p + 1

q = 1 + 1
r . For all f ∈ Lp

A(R+) and

g ∈ Lq
A(R+), the convolution f ∗A g belongs to Lr

A(R+) and

∥ f ∗A g∥r,A ≤ ∥ f ∥p,A∥g∥q,A. (13)

2. (Fourier Transform of the Convolution) For f , g ∈ L2
A(R+), the convolution f ∗A g belongs to L2

A(R+) if and
only if the product FA( f )FA(g) belongs to L2

σ(R), in which case:

FA( f ∗A g)(λ) = FA( f )(λ) ·FA(g)(λ), (14)

and ∫
R+

|( f ∗A g)(x)|2 dµA(x) =
∫
R+

|FA( f )(λ)|2 |FA(g)(λ)|2 dσ(λ). (15)

2.4. The Schatten–von Neumann Classes

In this subsection, we recall essential concepts regarding the Schatten–von Neumann classes of compact
operators on the Hilbert space L2

A(R+).
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Notation 1. • lp(N), 1 ≤ p ≤ ∞: the space of all infinite sequences of real or complex numbers u = (uj)j∈N
such that

∥u∥p :=


(

∑∞
j=1 |uj|p

) 1
p
< ∞, if 1 ≤ p < ∞,

supj∈N |uj| < ∞, if p = ∞.

• B(Lp
A(R+)): the space of bounded linear operators from Lp

A(R+) into itself.
• For p = 2, we define the space S∞ := B(L2

A(R+)), equipped with the operator norm

∥A∥S∞ := sup
v∈L2

A(R+)
∥v∥2,A=1

∥Av∥2,A. (16)

Definition 3.

1. The singular values (sn(A))n∈N of a compact operator A ∈ B(L2
A(R+)) are the eigenvalues of the positive

self-adjoint operator |A| :=
√

A∗A.
2. For 1 ≤ p < ∞, the Schatten class Sp consists of all compact operators A such that (sn(A)) ∈ lp(N). The

norm in Sp is given by

∥A∥Sp :=

(
∞

∑
n=1

sn(A)p

)1/p

.

Remark 1. The class S2 corresponds to the space of Hilbert–Schmidt operators, while S1 is the space of
trace-class operators.

Definition 4. The trace of an operator A ∈ S1 is defined as

tr(A) =
∞

∑
n=1

⟨Aϕn, ϕn⟩µA , (17)

where (ϕn)n∈N is any orthonormal basis of L2
A(R+).

Remark 2. If A is a positive operator, then
tr(A) = ∥A∥S1 . (18)

Moreover, a compact operator A on the Hilbert space L2
A(R+) is Hilbert–Schmidt if and only if A∗A ∈ S1. In

this case, we have

∥A∥2
HS := ∥A∥2

S2
= ∥A∗A∥S1 = tr(A∗A) =

∞

∑
n=1

∥Aϕn∥2
2,A, (19)

for any orthonormal basis (ϕn)n∈N of L2
A(R+).

For more information about the Schatten–von Neumann classes, we refer the reader to [9].

2.5. Generalized Wigner Transform on the Chébli–Trimèche Hypergroups

The main objective of this subsection is to define the generalized Fourier–Wigner transform on the
Chébli–Trimèche hypergroups, as introduced in [17], and to present some associated results.

Notation 2. We introduce the following notations:

• S∗(R2): the Schwartz space on R2, equipped with its usual topology.
• Lp

θA
(R2

+), for 1 ≤ p ≤ ∞: the space of measurable functions on R2
+ such that

∥ f ∥p,θA :=


(∫

R+

∫
R+

| f (x, λ)|p dθA(x, λ)
)1/p

, if 1 ≤ p < ∞,

ess sup(x,λ)∈R2
+
| f (x, λ)|, if p = ∞,
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where θA is the product measure on R2
+ defined by

dθA(x, λ) := dσ(λ)⊗ dµA(x).

Definition 5. The Fourier–Wigner transform associated with the operator ∆A is defined on D∗(R)×D∗(R) by

W( f , g)(x, λ) :=
∫
R+

f (y) T x
A (g)(y) φλ(y) dµA(y). (20)

Particular Case:

• If A(x) = x2α+1 with α ≥ − 1
2 and ρ = 0, then (R+, ∗A) is the Bessel–Kingman hypergroup, and W

coincides with the Bessel–Wigner transform (see [18]).

Remark 3. The transform W is a bilinear mapping from D∗(R)×D∗(R) into S(R2), and can be expressed in
the following equivalent forms:

W( f , g)(x, λ) = FA ( f · T x
A (g)) (λ), (21)

= (g ∗A f φλ) (x). (22)

We now state some fundamental results related to this transform.

Proposition 4 ([17]). Let f , g ∈ L2
A(R+), then W( f , g) is well-defined and belongs to both L2

θA
(R2

+) and L∞
θA
(R2

+).
Moreover, the following estimates hold:

∥W( f , g)∥2,θA ≤ ∥ f ∥2,A · ∥g∥2,A, (23)

∥W( f , g)∥∞,θA ≤ ∥ f ∥2,A · ∥g∥2,A. (24)

3. Localization Operators Associated with the Generalized Fourier–Wigner Transform

In this section, we introduce localization operators Lψ1,ψ2(σ) associated with the generalized
Fourier–Wigner transform, and provide sufficient conditions for their boundedness, compactness, and
Schatten class membership in terms of the symbol σ and the window functions ψ1 and ψ2.

Definition 6. Let ψ1 and ψ2 be measurable functions on R+, and let σ be a measurable function on R2
+. The

localization operator Lψ1,ψ2(σ) associated with the generalized Fourier–Wigner transform is defined by

Lψ1,ψ2(σ)( f )(y) :=
∫
R+

∫
R+

σ(x, λ)W( f , ψ1)(x, λ) φλ(y) T x
A (ψ2)(y) dθA(x, λ), (25)

where f ∈ Lp
A(R+) for some 1 ≤ p ≤ ∞.

Remark 4. Depending on the properties of the symbol σ and the required continuity of the operator, different
regularity and integrability assumptions may be imposed on ψ1 and ψ2. Under appropriate conditions,
Lψ1,ψ2(σ) defines a bounded operator on Lp

A(R+) for all 1 ≤ p ≤ ∞.

It is often more convenient to interpret the localization operator in a weak sense. That is, for all f ∈
Lp

A(R+) and g ∈ Lp′
A (R+) (where p′ is the Hölder conjugate of p), we have

〈
Lψ1,ψ2(σ)( f ), g

〉
µA

=
∫
R+

∫
R+

σ(x, λ)W( f , ψ1)(x, λ)W(g, ψ2)(x, λ) dθA(x, λ). (26)

We now state a result concerning the adjoint of the localization operator.

Proposition 5. Let 1 ≤ p ≤ ∞. Then the adjoint of the operator

Lψ1,ψ2(σ) : Lp
A(R+) → Lp

A(R+)



Open J. Math. Anal. 2025, 9(1), 141-153 147

is given by
Lψ1,ψ2(σ)

∗ = Lψ2,ψ1(σ) : Lp′
A (R+) → Lp′

A (R+),

where p′ is the Hölder conjugate of p.

Proof. Let f ∈ Lp
A(R+) and g ∈ Lp′

A (R+). From equation (26), we compute:

〈
Lψ1,ψ2(σ)( f ), g

〉
µA

=
∫
R+

∫
R+

σ(x, λ)W( f , ψ1)(x, λ)W(g, ψ2)(x, λ) dθA(x, λ)

=
∫
R+

∫
R+

σ(x, λ)W(g, ψ2)(x, λ)W( f , ψ1)(x, λ) dθA(x, λ)

=
〈
Lψ2,ψ1(σ)(g), f

〉
µA

=
〈

f , Lψ2,ψ1(σ)(g)
〉

µA
.

Hence, Lψ1,ψ2(σ)
∗ = Lψ2,ψ1(σ).

In what follows, we assume that ψ1, ψ2 ∈ L2
A(R+) satisfy ∥ψ1∥2,A = ∥ψ2∥2,A = 1. This normalization is

not essential and all results remain valid up to a constant depending on ∥ψ1∥2,A and ∥ψ2∥2,A.

3.1. Boundedness of Lψ1,ψ2(σ) in S∞

The main goal of this subsection is to prove that the localization operator

Lψ1,ψ2(σ) : L2
A(R+) −→ L2

A(R+)

is bounded for every symbol σ ∈ Lp
θA
(R2

+) with 1 ≤ p ≤ +∞. We first treat the cases σ ∈ L1
θA
(R2

+) and
σ ∈ L∞

θA
(R2

+) separately, and then generalize the result using interpolation theory.

Proposition 6. Let σ ∈ L1
θA
(R2

+). Then the localization operator Lψ1,ψ2(σ) belongs to the class S∞ and satisfies

∥Lψ1,ψ2(σ)∥S∞ ≤ ∥σ∥1,θA . (27)

Proof. Let f , g ∈ L2
A(R+). Using the weak formulation in (26), we obtain∣∣∣〈Lψ1,ψ2(σ)( f ), g

〉
µA

∣∣∣ ≤ ∥W( f , ψ1)∥∞,θA∥W(g, ψ2)∥∞,θA∥σ∥1,θA .

From inequality (24), we have

∥W( f , ψ1)∥∞,θA ≤ ∥ f ∥2,A, ∥W(g, ψ2)∥∞,θA ≤ ∥g∥2,A,

and hence, ∣∣∣〈Lψ1,ψ2(σ)( f ), g
〉

µA

∣∣∣ ≤ ∥ f ∥2,A∥g∥2,A∥σ∥1,θA .

By the operator norm characterization in (16), the desired estimate follows.

Proposition 7. Let σ ∈ L∞
θA
(R2

+). Then the localization operator Lψ1,ψ2(σ) belongs to S∞ and satisfies

∥Lψ1,ψ2(σ)∥S∞ ≤ ∥σ∥∞,θA . (28)

Proof. Let f , g ∈ L2
A(R+), and apply Hölder’s inequality to the weak formulation (26):∣∣∣〈Lψ1,ψ2(σ)( f ), g

〉
µA

∣∣∣ ≤ ∥σ∥∞,θA∥W( f , ψ1)∥2,θA∥W(g, ψ2)∥2,θA .

Using inequality (23), we get

∥W( f , ψ1)∥2,θA ≤ ∥ f ∥2,A, ∥W(g, ψ2)∥2,θA ≤ ∥g∥2,A,
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which implies ∣∣∣〈Lψ1,ψ2(σ)( f ), g
〉

µA

∣∣∣ ≤ ∥σ∥∞,θA∥ f ∥2,A∥g∥2,A.

Hence, the operator norm estimate follows.

We now generalize to all 1 ≤ p ≤ ∞.

Theorem 1. Let σ ∈ Lp
θA
(R2

+) for some 1 ≤ p ≤ ∞. Then there exists a unique bounded linear operator

Lψ1,ψ2(σ) : L2
A(R+) −→ L2

A(R+),

such that
∥Lψ1,ψ2(σ)∥S∞ ≤ ∥σ∥p,θA . (29)

Proof. Let σ ∈ Lp
θA
(R2

+) with 1 ≤ p ≤ ∞, and fix f ∈ L2
A(R+). Define the operator

T : L1
θA
(R2

+) ∩ L∞
θA
(R2

+) → L2
A(R+), T(σ) := Lψ1,ψ2(σ)( f ).

From Propositions (27) and (28), we have

∥T(σ)∥2,A ≤ ∥ f ∥2,A∥σ∥1,θA , (30)

∥T(σ)∥2,A ≤ ∥ f ∥2,A∥σ∥∞,θA . (31)

By the Riesz–Thorin interpolation theorem (see [9,19]), the operator T extends uniquely to a bounded linear
operator on Lp

θA
(R2

+) for all 1 ≤ p ≤ ∞, satisfying∥∥Lψ1,ψ2(σ)( f )
∥∥

2,A ≤ ∥ f ∥2,A∥σ∥p,θA . (32)

Since inequality (32) holds for all f ∈ L2
A(R+), we conclude the proof.

3.2. Lp
A-Boundedness of the Localization Operator Lψ1,ψ2(σ)

In this subsection, we use Schur’s test [20] to establish the boundedness of the localization operator

Lψ1,ψ2(σ) : Lp
A(R+) −→ Lp

A(R+)

for all 1 ≤ p ≤ +∞.

Theorem 2. Let σ ∈ L1
θA
(R2

+), and let ψ1, ψ2 ∈ L1
A(R+)∩ L∞

A (R+). Then the localization operator Lψ1,ψ2(σ) extends
to a unique bounded linear operator on Lp

A(R+) for all 1 ≤ p ≤ +∞. Moreover, we have the estimate:

∥Lψ1,ψ2(σ)∥B(Lp
A(R+)) ≤ max {∥ψ1∥∞,A∥ψ2∥1,A, ∥ψ1∥1,A∥ψ2∥∞,A} · ∥σ∥1,θA . (33)

Proof. Define the kernel function F : R+ ×R+ → C by

F(y, s) :=
∫
R+

∫
R+

σ(x, λ)φλ(y)T x
A (ψ2)(y)φλ(s)T x

A (ψ1)(s)dθA(x, λ).

Using Fubini’s theorem, we write the localization operator as an integral operator:

Lψ1,ψ2(σ)( f )(y) =
∫
R+

F(y, s) f (s)dµA(s).

We estimate the integral of |F(y, s)| with respect to y:∫
R+

|F(y, s)|dµA(y) ≤
∫
R+

∫
R+

|σ(x, λ)| · ∥ψ2∥∞,A · |φλ(s)T x
A (ψ1)(s)|dθA(x, λ) (34)
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≤ ∥ψ2∥∞,A

∫
R+

∫
R+

|σ(x, λ)| · |φλ(s)T x
A (ψ1)(s)|dθA(x, λ).

Then integrating in s, we obtain∫
R+

|F(y, s)|dµA(s) ≤ ∥ψ1∥∞,A∥ψ2∥1,A∥σ∥1,θA ,
∫
R+

|F(y, s)|dµA(y) ≤ ∥ψ1∥1,A∥ψ2∥∞,A∥σ∥1,θA . (35)

By applying Schur’s lemma (see [20]) to the integral operator with kernel F(y, s), the operator Lψ1,ψ2(σ)

extends to a bounded linear operator on Lp
A(R+) for all 1 ≤ p ≤ +∞, and satisfies the bound in (36).

3.3. Trace and Compactness of Localization Operators Lψ1,ψ2(σ)

The main purpose of this subsection is to prove that the localization operator

Lψ1,ψ2(σ) : L2
A(R+) −→ L2

A(R+)

belongs to the Schatten–von Neumann class Sp for all 1 ≤ p ≤ +∞. We begin with the case p = 2, i.e.,
Hilbert–Schmidt operators.

Theorem 3. Let σ ∈ L1
θA
(R2

+). Then the localization operator

Lψ1,ψ2(σ) : L2
A(R+) → L2

A(R+)

is a Hilbert–Schmidt operator and, in particular, compact. Moreover, its Hilbert–Schmidt norm satisfies

∥Lψ1,ψ2(σ)∥HS ≤ 1 + ∥σ∥2
1,θA

.

Proof. Let {ϕk}k∈N be an orthonormal basis of L2
A(R+). Using Fubini’s theorem and relations (21) and (26),

we compute

∥Lψ1,ψ2(σ)(ϕk)∥2
2,A =

∫
R2
+

σ(x, λ)FA (ϕk T x
A (ψ1)) (λ)FA

(
Lψ1,ψ2(σ)(ϕk) T x

A (ψ2)
)
(λ)dθA(x, λ).

By the identity,

FA
(
Lψ1,ψ2(σ)(ϕk) T x

A (ψ2)
)
(λ) =

〈
ϕk, Lψ2,ψ1(σ)

(
T x

A (ψ2)
)〉

µA
,

and by Parseval’s identity and Fubini’s theorem, we obtain:

∥Lψ1,ψ2(σ)∥2
HS =

∞

∑
k=1

∥Lψ1,ψ2(σ)(ϕk)∥2
2,A

≤ 1
2

∫
R2
+

|σ(x, λ)|
[
∑
k
|⟨φλT x

A (ψ1), ϕk⟩µA |
2 + |⟨Lψ2,ψ1(σ)(T x

A (ψ2)φλ), ϕk⟩µA |
2

]
dθA(x, λ).

Using Parseval’s identity and the boundedness result from (27), and assuming ∥ψ1∥2,A = ∥ψ2∥2,A = 1,
we get:

∥Lψ1,ψ2(σ)∥2
HS ≤ 1

2
∥σ∥1,θA(1 + ∥σ∥2

1,θA
) ≤

(
1 + ∥σ∥2

1,θA

)2
< ∞.

This proves the operator is Hilbert–Schmidt and therefore compact.

Next, we extend compactness to all σ ∈ Lp
θA
(R2

+) with 1 ≤ p < ∞.

Proposition 8. Let σ ∈ Lp
θA
(R2

+) with 1 ≤ p < ∞. Then the localization operator

Lψ1,ψ2(σ) : L2
A(R+) −→ L2

A(R+)
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is compact.

Proof. Let {σn}n∈N ⊂ L1
θA
(R2

+) ∩ L∞
θA
(R2

+) be a sequence such that σn → σ in Lp
θA
(R2

+) as n → ∞.
By Theorem 1, the localization operators satisfy

∥Lψ1,ψ2(σn)−Lψ1,ψ2(σ)∥S∞ ≤ ∥σn − σ∥p,θA → 0.

Moreover, each Lψ1,ψ2(σn) is Hilbert–Schmidt by Theorem 3, and thus compact. Since the limit of compact
operators in the norm topology is compact, it follows that Lψ1,ψ2(σ) is compact.

In the next result, we prove that the localization operator is compact on the weighted space L1
A(R+).

Theorem 4. Let σ ∈ L1
θA
(R2

+) and ψ1, ψ2 ∈ L1
A(R+) ∩ L∞

A (R+), then the localization operator

Lψ1,ψ2(σ) : L1
A(R+) −→ L1

A(R+)

is compact.

Proof. By Theorem 2, the operator Lψ1,ψ2(σ) is bounded on L1
A(R+). Let { fn} ⊂ L1

A(R+) be a sequence such
that fn ⇀ 0 weakly in L1

A(R+) as n → ∞. We aim to prove

lim
n→∞

∥Lψ1,ψ2(σ)( fn)∥1,A = 0.

From the integral representation of the localization operator (cf. equation (25)), we have

∥Lψ1,ψ2(σ)( fn)∥1,A ≤
∫
R+

[∫
R2
+

|σ(x, λ)| |W( fn, ψ1)(x, λ)| |T x
A (ψ2)(y)|dθA(x, λ)

]
dµA(y). (36)

Since fn ⇀ 0 weakly in L1
A(R+), it follows that

lim
n→∞

|W( fn, ψ1)(x, λ)| · |T x
A (ψ2)(y)| = 0 for all x, y, λ ∈ R+. (37)

Moreover, since { fn} is bounded in L1
A, there exists a constant C > 0 such that ∥ fn∥1,A ≤ C for all n.

Hence, using the boundedness of ψ1 and ψ2, we get

|W( fn, ψ1)(x, λ)| · |T x
A (ψ2)(y)| ≤ C∥ψ1∥∞,A∥ψ2∥∞,A|σ(x, λ)|. (38)

Applying Fubini’s theorem, we obtain

∫
R+

[∫
R2
+

|σ(x, λ)| · |W( fn, ψ1)(x, λ)| · |T x
A (ψ2)(y)|dθA(x, λ)

]
dµA(y) < ∞. (39)

From the pointwise convergence in (37), the uniform bound in (38), and the integrability condition in (39),
we may apply the Lebesgue Dominated Convergence Theorem to conclude:

lim
n→∞

∥Lψ1,ψ2(σ)( fn)∥1,A = 0,

which proves that the operator is compact.

In the following theorem, we prove that the localization operator belongs to the trace class S1.

Theorem 5. Let σ ∈ L1
θA
(R2

+). Then the localization operator

Lψ1,ψ2(σ) : L2
A(R+) −→ L2

A(R+)
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is a trace-class operator, i.e., Lψ1,ψ2(σ) ∈ S1, and satisfies

∥σ̃∥1,θA ≤ ∥Lψ1,ψ2(σ)∥S1 ≤ ∥σ∥1,θA , (40)

where σ̃ is defined by
σ̃(x, λ) =

〈
Lψ1,ψ2(σ) (φλT x

A (ψ1))
∣∣ φλT x

A (ψ2)
〉

µA
.

Proof. Since σ ∈ L1
θA
(R2

+), Theorem 4 implies that Lψ1,ψ2(σ) is compact. By standard results (see [9]), there
exist orthonormal sequences (ϕj) and (hj) in L2

A(R+), and singular values (sj) such that the operator has the
Schmidt decomposition

Lψ1,ψ2(σ)( f ) =
∞

∑
j=1

sj
〈

f , ϕj
〉

µA
hj. (41)

Thus, the trace norm is

∥Lψ1,ψ2(σ)∥S1 =
∞

∑
j=1

sj =
∞

∑
j=1

〈
Lψ1,ψ2(σ)(ϕj), hj

〉
µA

.

Using the integral representation of the operator (cf. (25), (26)) and Fubini’s theorem, we obtain:

∥Lψ1,ψ2(σ)∥S1 ≤ 1
2

∫
R2
+

|σ(x, λ)|
[

∞

∑
j=1

∣∣∣〈φλT x
A (ψ1), ϕj

〉
µA

∣∣∣2 + ∞

∑
j=1

∣∣∣〈φλT x
A (ψ2), hj

〉
µA

∣∣∣2]dθA(x, λ).

By Parseval’s identity and the fact that ∥ψ1∥2,A = ∥ψ2∥2,A = 1, we obtain

∥Lψ1,ψ2(σ)∥S1 ≤
∫
R2
+

|σ(x, λ)|dθA(x, λ) = ∥σ∥1,θA .

Now, to prove the lower bound in (40), note that

σ̃(x, λ) =
〈
Lψ1,ψ2(σ) (φλT x

A (ψ1)) , φλT x
A (ψ2)

〉
µA

.

By inserting the expansion (41) and using Fubini’s theorem:

∥σ̃∥1,θA =
∫
R2
+

|σ̃(x, λ)|dθA(x, λ)

≤ 1
2

∞

∑
j=1

sj

∫
R2
+

(∣∣∣〈φλT x
A (ψ1), ϕj

〉
µA

∣∣∣2 + ∣∣∣〈hj, φλT x
A (ψ2)

〉
µA

∣∣∣2)dθA(x, λ).

Applying the orthonormality and Parseval’s identity again, we get:

∥σ̃∥1,θA ≤ 1
2

∞

∑
j=1

sj

(
∥ψ1∥2

2,A + ∥ψ2∥2
2,A

)
=

∞

∑
j=1

sj = ∥Lψ1,ψ2(σ)∥S1 .

Hence,
∥σ̃∥1,θA ≤ ∥Lψ1,ψ2(σ)∥S1 ≤ ∥σ∥1,θA ,

and the proof is complete.

We conclude this section with the following trace formula for the localization operators.

Theorem 6. Let σ ∈ L1
θA
(R2

+). Then the localization operator

Lψ1,ψ2(σ) : L2
A(R+) −→ L2

A(R+)
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is trace-class, and its trace is given by

Tr
(
Lψ1,ψ2(σ)

)
=
∫
R2
+

σ(x, λ) ⟨φλT x
A (ψ1), φλT x

A (ψ2)⟩µA
dθA(x, λ). (42)

Proof. Let {ϕj}∞
j=1 be an orthonormal basis of L2

A(R+). Since Lψ1,ψ2(σ) ∈ S1 by Theorem 5, we can write its
trace as

Tr
(
Lψ1,ψ2(σ)

)
=

∞

∑
j=1

〈
Lψ1,ψ2(σ)(ϕj), ϕj

〉
µA

.

Using the integral representation from Theorem 1 (see relation (25)), Fubini’s theorem, and Parseval’s identity,
we obtain:

Tr
(
Lψ1,ψ2(σ)

)
=
∫
R2
+

σ(x, λ)
∞

∑
j=1

〈
ϕj, φλT x

A (ψ1)
〉

µA

〈
φλT x

A (ψ2), ϕj

〉
µA

dθA(x, λ)

=
∫
R2
+

σ(x, λ) ⟨φλT x
A (ψ1), φλT x

A (ψ2)⟩µA
dθA(x, λ),

which proves the result.

Corollary 1. If ψ1 = ψ2 = ψ, and σ is a real-valued, non-negative function in L1
θA
(R2

+), then the localization operator

Lψ(σ) := Lψ,ψ(σ) : L2
A(R+) −→ L2

A(R+)

is a positive trace-class operator, and its trace norm satisfies

∥∥Lψ(σ)
∥∥

S1
=
∫
R2
+

σ(x, λ) ∥φλT x
A (ψ)∥2

2,A dθA(x, λ).

Corollary 2 (Main Result). Let σ ∈ Lp
θA
(R2

+) for 1 ≤ p ≤ ∞. Then the localization operator

Lψ1,ψ2(σ) : L2
A(R+) −→ L2

A(R+)

belongs to the Schatten–von Neumann class Sp, and we have the estimate∥∥Lψ1,ψ2(σ)
∥∥

Sp
≤ ∥σ∥p,θA .

Proof. The result follows from the Hilbert–Schmidt case (p = 2) and the trace-class case (p = 1) established in
Theorems 3 and 5, respectively, combined with interpolation theory (see [19]).
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