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1. Introduction

T he Fourier transform stands out as a significant discovery in mathematical sciences, that plays a crucial
role in modern scientific and technological advancements. In signal processing, extensive research has

utilized the Fourier transform to analyze stationary signals or processes with statistically invariant properties
over time. Although, Fourier transforms have many successful applications that fascinated the mathematical,
physical and engineering communities over decades, they still have numerous shortcomings.

One of the significant disadvantages of the Fourier transforms is that they do not give any information
about the occurrence of the frequency component at a particular time. They only enable us to analyse the
signals either in time domain or frequency domain, but not simultaneously in both domains [1,2].

A suitable redress of these limitations was given by Gabor [3] in the form of windowed Fourier transform
using a Gaussian distribution function as a window function in order to construct efficient time-frequency
localized expansions of finite energy signals f ∈ L2(R) as

Vg( f )(ξ, b) :=
∫
R

f (x)g(x − b)e−iξxdx, ξ, b ∈ R.

The spectral contents of non-transient signals in localized neighbourhoods of time can be analyzed. This
astonishing feature of the Gabor transform provides the local characteristics of the Fourier transform with a
time resolution equal to the size of the window. The Gabor transform, also known as the short-time Fourier
transform (STFT), marked a breakthrough in time-frequency analysis. This method involves decomposing
non-transient signals using time and frequency-shifted basis functions, termed Gabor window functions.
The STFT, with its clear resemblance to the classical Fourier transform, has gained considerable attention
in the past few decades. Soon after its inception in quantum mechanics, the Gabor transform profound
influenced diverse branches of science and engineering including harmonic analysis, signal and image
processing, pseudo-differential operators, sampling theory, wave propagation, quantum optics, geophysics,
astrophysics, medicine [3–5], and others. Besides its applications, the theoretical skeleton of Gabor transform
has likewise been extensively studied and investigated in other groups including the locally compact Abelian
and non-Abelian groups [6–8], hypergroups [9], Gelfand pairs [10] and so on. For more about Gabor transforms
and their applications, we allude to [11–14].

As the harmonic analysis associated with Weinstein operator has known remarkable development, it is
natural that there is an equivalent of the Gabor transform in the Weinstein harmonic analysis setting [15]. This
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article aims to develop two applications of the Weinstein-Gabor transform (WGT) as an inversion formula and
a Calderón’s reproducing formula by means of the theory of Weinstein transform. Precisely, let α > −1/2 and
K := Rd−1 ×R+. We denote by Lp(K, να), p ∈ [1, ∞], the space of measurable functions f on K, such that

∥ f ∥Lp(K,να) :=
[∫

K
| f (x)|pdνα(x)

]1/p
< ∞, p ∈ [1, ∞),

∥ f ∥L∞(K,να) := ess sup
x∈K

| f (x)| < ∞,

where

dνα(x) := dνα(x′, xd) =
x2α+1

d

π(d−1)/22α+(d−1)/2Γ(α + 1)
dx′dxd,

and dx′ = dx1dx2 . . . dxd−1.
For f ∈ L1(K, να), the Weinstein transform FW (see [16,17]) of f is defined by

FW( f )(ξ) :=
∫
K

f (x)Ψα
ξ (x)dνα(x), ξ = (ξ ′, ξd) ∈ K,

where Ψα
ξ (x) is the Weinstein kernel given by

Ψα
ξ (x) = e−i⟨x′ ,ξ ′⟩ jα(xdξd), x = (x′, xd) ∈ K.

Here jα is the spherical Bessel function, whose definition will be recalled from [18] in §2 below. This
transform extends uniquely to an isometric isomorphism on L2(K, να), that is ∥ f ∥L2(K,να)

= ∥FW( f )∥L2(K,να)
.

And its inverse is denoted by F−1
W .

For f , g ∈ L2(K, να). The Weinstein convolution product (see [17]) of f and g is defined by

f ∗ g(y) :=
∫
K

f (x)τyg(−x′, xd)dνα(x), y ∈ K,

where τy, y ∈ K are the Weinstein translation operators (see [19]) defined in Section 2 below.
Let g ∈ L2(K, να). The Weinstein-Gabor transform Sg is the mapping defined for f ∈ L2(K, να) by

Sg( f )(x, y) := f ∗ gy(x), x, y ∈ K,

where gy is the modulation of g by y defined by

gy := F−1
W

(√
τy|FW(g)|2

)
.

The Weinstein-Gabor transform Sg is studied in [15]; and in this work we will establish the following
inversion formula.

Theorem 1 (Inversion formula). Let g ∈ L2(K, να) be a non-zero function. For all f ∈ L1 ∩ L2(K, να) such that
FW( f ) ∈ L1(K, να), we have

f (z) =
1

∥g∥2
L2(K,να)

∫
K

Sg( f )(., y) ∗ gy(z)dνα(y), z ∈ K.

Let g ∈ L2(K, να) be a non-zero function, such that FW(g) ∈ L∞(K, να). For f ∈ L2(K, να), we define the
reconstruction function f∆ associated with Sg, by

f∆(z) :=
1

∥g∥2
L2(K,να)

∫
∆

Sg( f )(., y) ∗ gy(z)dνα(y), z ∈ K,
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where ∆ is the pavement of K defined by ∆ := ∏d
j=1[aj, bj], with

−∞ < aj < bj < ∞, j = 1, . . . , d − 1, 0 < ad < bd < ∞.

We prove the following Calderón’s reproducing formula.

Theorem 2 (Calderón’s reproducing formula). Let g ∈ L2(K, να) be a non-zero function, such that FW(g) ∈
L∞(K, να). Then, for f ∈ L2(K, να), the function f∆ belongs to L2(K, να) and satisfies

lim
∆→K

∥ f∆ − f ∥L2(K,να)
= 0.

The paper is organized as follows. In §2, we recall some results about the harmonic analysis associated
to Weinstein operator on K (Weinstein transform FW , Weinstein translation operators τy, y ∈ K, Weinstein
convolution product ∗,. . . ). In §3 we recall some results about the Weinstein-Gabor transform Sg, and
we establish an inversion formula. Finally, in §4, we prove Calderón’s reproducing formula for the
Weinstein-Gabor transform Sg.

2. The Weinstein-harmonic analysis

In this section we recall some basic results related the Weinstein harmonic analysis [17,19–22]. We consider
the Weinstein operator ∆W (also called Laplace-Bessel operator), defined on Rd−1 ×R∗

+ by

∆W :=
d

∑
i=1

∂2

∂x2
i
+

2α + 1
xd

∂

∂xd
= ∆d−1 + Bα, d ≥ 2, α > −1/2,

where ∆d−1 is the Laplacian operator in Rd−1 and Bα is the Bessel operator with respect to the variable xd
defined on R∗

+ by

Bα :=
∂2

∂x2
d
+

2α + 1
xd

∂

∂xd
.

The Weinstein operator has several applications in pure and applied mathematics especially in fluid
mechanics [23,24].

For all ξ ∈ K, the system (see [21])

Bαu(x) = −ξ2
du(x),

∂2u
∂x2

j
(x) = −ξ2

j u(x), j = 1, . . . , d − 1,

u(0) = 1,
∂u
∂xd

(0) = 0,
∂u
∂xj

(0) = −iξ j, j = 1, . . . , d − 1,

admits a unique solution Ψα
ξ (x), given by

Ψα
ξ (x) = e−i⟨x′ ,ξ ′⟩ jα(xdξd), x ∈ K,

where jα is the spherical Bessel function [18] given by

jα(x) := Γ(α + 1)
∞

∑
n=0

(−1)n

n!Γ(n + α + 1)

( x
2

)2n
.

For all x, ξ ∈ K, the Weinstein kernel Ψα
ξ (x) satisfies

|Ψα
ξ (x)| ≤ 1.
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The Weinstein kernel Ψα
ξ (x) gives rise to an integral transform, which is called Weinstein transform on

Rd
+, where many basic properties had been established [17,19,20]. The Weinstein transform (or Laplace-Bessel

transform) FW is defined for f ∈ L1(K, να) by

FW( f )(ξ) :=
∫
K

f (x)Ψα
ξ (x)dνα(x), ξ ∈ K.

Moreover if f ∈ L1(K, να), then

∥FW( f )∥L∞(K,να) ≤ ∥ f ∥L1(K,να)
.

Theorem 3 (See [17]). (i) (Plancherel formula). The Weinstein transform FW extends uniquely to an isometric
isomorphism on L2(K, να), that is,

∥FW( f )∥L2(K,να)
= ∥ f ∥L2(K,να)

, f ∈ L2(K, να).

(ii) (Inversion formula). If f and FW( f ) are both in L1(K, να), the inverse Weinstein transform is defined by

f (x) =
∫
K

FW( f )(ξ)Ψα
−ξ(x)dνα(ξ), a.e x ∈ K.

The Weinstein kernel Ψα
ξ (x) satisfies also the following product formula.

Theorem 4 (See [18]). For ξ ∈ K and x, y ∈ K, the product Ψα
ξ (x)Ψα

ξ (y) admits the following integral representation

Ψα
ξ (x)Ψα

ξ (y) =
∫ ∞

0
Ψα

ξ (x′ + y′, ρ)qα(xd, yd, ρ)ρ2α+1dρ,

where

qα(xd, yd, ρ) = aα

[
(xd + yd)

2 − ρ2]α− 1
2
[
ρ2 − (xd − yd)

2]α− 1
2

(xdydρ)2α
1A,

where aα = Γ(α+1)√
π22α−1Γ(α+ 1

2 )
and 1A is the characteristic function of the interval

A = (|xd − yd|, xd + yd).

We denote by C(K), the space of continuous functions f on K. For f ∈ C(K), the linear operator

τy f (x) :=
∫ ∞

0
f (x′ + y′, ρ)qα(xd, yd, ρ)ρ2α+1dρ, x, y ∈ K,

will be called the Weinstein translation operator (see [19]).
As a first remark, we note that∫

K
τy f (x)dνα(x) =

∫
K

f (x)dνα(x), f ∈ L1(K, να), (1)

and
∥τy f ∥L1(K,να)

≤ ∥ f ∥L1(K,να)
, f ∈ L1(K, να).

Let f , g ∈ L1(K, να). The Weinstein convolution product (see [17]) of f and g is defined by

f ∗ g(y) :=
∫
K

f (x)τyg(−x′, xd)dνα(x), y ∈ K.

The Weinstein translation operator is connected with the Weinstein transform FW via the following formula.
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Theorem 5 (See [17], page 6). For f ∈ L2(K, να) and y ∈ K, we have

FW(τy f )(ξ) = Ψα
ξ (−y)FW( f )(ξ), ξ ∈ K.

Remark 1. From Theorem 3 (i) and Theorem 5 we have

∥τy f ∥L2(K,να)
≤ ∥ f ∥L2(K,να)

, y ∈ K, f ∈ L2(K, να). (2)

Theorem 6 (See [21,22]). (i) For f ∈ L1(K, να) and g ∈ L2(K, να), the function f ∗ g belongs to L2(K, να), and

FW( f ∗ g)(ξ) = FW( f )(ξ)FW(g)(ξ), ξ ∈ K.

(ii) Let f , g ∈ L2(K, να). Then

f ∗ g(x) = F−1
W (FW( f )FW(g))(x), x ∈ K.

(iii) Let f , g ∈ L2(K, να). Then f ∗ g belongs to L2(K, να) if and only if FW( f )FW(g) belongs to L2(K, να), and

FW( f ∗ g) = FW( f )FW(g), in the L2(K, να)− case.

(iv) Let f , g ∈ L2(K, να). Then∫
K
| f ∗ g(x)|2dνα(x) =

∫
K
|FW( f )(ξ)|2|FW(g)(ξ)|2dνα(ξ),

where both sides are finite or infinite.

3. The Weinstein-Gabor transform

In the following we establish a reproducing inversion formula for the Weinstein-Gabor transform Sg.
Let g ∈ L2(K, να) and y ∈ K. The modulation of g by y is the function gy defined by

gy := F−1
W

(√
τy|FW(g)|2

)
.

From Theorem 3 (i) and (1) we have

∥gy∥L2(K,να)
= ∥g∥L2(K,να)

. (3)

Let g ∈ L2(K, να). The Weinstein-Gabor transform is the mapping Sg defined for f ∈ L2(K, να) by

Sg( f )(x, y) := f ∗ gy(x) =
∫
K

f (t)τxgy(−t′, td)dνα(t), x, y ∈ K. (4)

From Remark 1 and (3) we have

∥Sg( f )∥L∞(K×K,να⊗να) ≤ ∥ f ∥L2(K,να)
∥g∥L2(K,να)

.

The Weinstein-Gabor transform Sg possesses the following property.

Theorem 7. Let f , g ∈ L2(K, να). Then

Sg( f )(x, y) =
∫
K

Ψα
−ξ(x)FW( f )(ξ)

√
τy|FW(g)|2(ξ)dνα(ξ), x, y ∈ K.

Proof. From Theorem 3 (ii) and Theorem 6 (ii) we have

Sg( f )(x, y) =
∫
K

Ψα
−ξ(x)FW( f )(ξ)FW(gy)(ξ)dνα(ξ).
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We obtain the result from the fact that

FW(gy)(ξ) =
√

τy|FW(g)|2(ξ). (5)

The theorem is proved.

Theorem 8 (See [15]). Let g ∈ L2(K, να).
(i) (Plancherel formula). For all f ∈ L2(K, να), we have

∥Sg( f )∥2
L2(K×K,να⊗να)

= ∥g∥2
L2(K,να)

∥ f ∥2
L2(K,να)

.

(ii) (Parseval formula). For all f , h ∈ L2(K, να), we have

⟨Sg( f ), Sg(h)⟩L2(K×K,να⊗να)
= ∥g∥2

L2(K,να)
⟨ f , h⟩L2(K,να)

.

Proof. From (4) and Theorem 6 (iv), we obtain∫
K

∫
K
|Sg( f )(x, y)|2dνα(x)dνα(y) =

∫
K

∫
K
| f ∗ gy(x)|2dνα(x)dνα(y)

=
∫
K

∫
K
|FW( f )(ξ)|2|FW(gy)(ξ)|2dνα(ξ)dνα(y).

Using Theorem 3 (i), (1), (5) and Fubini-Tonelli theorem, we deduce∫
K

∫
K
|Sg( f )(x, y)|2dνα(x)dνα(y) =

∫
K

∫
K
|FW( f )(ξ)|2τy|FW(g)|2(ξ)dνα(ξ)dνα(y)

= ∥g∥2
L2(K,να)

∥ f ∥2
L2(K,να)

.

The (i) is proved and as in the same way we prove (ii).

Theorem 9 (Inversion formula). Let g ∈ L2(K, να) be a non-zero function. For all f ∈ L1 ∩ L2(K, να) such that
FW( f ) ∈ L1(K, να), we have

f (z) =
1

∥g∥2
L2(K,να)

∫
K

Sg( f )(., y) ∗ gy(z)dνα(y), z ∈ K.

Proof. By Theorem 6 (i), we have Sg( f )(., y) ∈ L2(K, να). Then, by Theorem 6 (ii), we obtain

Sg( f )(., y) ∗ gy(z) =
∫
K

Ψα
−ξ(z)FW(Sg( f )(., y))(ξ)FW(gy)(ξ)dνα(ξ).

But by Theorem 6 (i) and (5), we have

FW(Sg( f )(., y))(ξ) = FW( f )(ξ)FW(gy)(ξ) = FW( f )(ξ)
√

τy|FW(g)|2(ξ).

Thus,
Sg( f )(., y) ∗ gy(z) =

∫
K

Ψα
−ξ(z)FW( f )(ξ)τy|FW(g)|2(ξ)dνα(ξ).

Therefore, by Fubini’s theorem, Theorem 3 (ii) and (1), we deduce that∫
K

Sg( f )(., y) ∗ gy(z)dνα(y) = ∥g∥2
L2(K,α)

∫
K

Ψ−ξ(z)FW( f )(ξ)dνα(ξ)

= ∥g∥2
L2(K,να)

f (z).

This completes the proof of the theorem.
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4. Calderón’s reproducing formula for Sg

In the following we establish a Calderón’s reproducing inversion formula for the Weinstein-Gabor
transform Sg.

Let ∆ be the pavement of K defined by ∆ := ∏d
j=1[aj, bj], where

−∞ < aj < bj < ∞, j = 1, . . . , d − 1, 0 < ad < bd < ∞.

We use the notation ∆ → K if and only if

aj → −∞, bj → ∞, j = 1, . . . , d − 1, ad → 0, bd → ∞.

Theorem 10 (Calderón’s reproducing formula). Let g ∈ L2(K, να) be a non-zero function, such that FW(g) ∈
L∞(K, να). Then, for f ∈ L2(K, να), the function f∆ given by

f∆(z) :=
1

∥g∥2
L2(K,να)

∫
∆

Sg( f )(., y) ∗ gy(z)dνα(y), z ∈ K,

belongs to L2(K, να) and satisfies
lim

∆→K
∥ f∆ − f ∥L2(K,να)

= 0. (6)

Proof. By Theorem 6 (iii), we have Sg( f )(., y) ∈ L2(K, να), then by Theorem 6 (ii), we obtain

Sg( f )(., y) ∗ gy(z) =
∫
K

Ψα
−ξ(z)FW(Sg( f )(., y))(ξ)FW(gy)(ξ)dνα(ξ).

But by Theorem 6 (iii) and (5), we deduce that

FW(Sg( f )(., y))(ξ) = FW( f )(ξ)FW(gy)(ξ) = FW( f )(ξ)
√

τy|FW(g)|2(ξ).

Thus,
Sg( f )(., y) ∗ gy(z) =

∫
K

Ψα
−ξ(z)FW( f )(ξ)τy|FW(g)|2(ξ)dνα(ξ),

and
f∆(z) =

1
∥g∥2

L2(K,να)

∫
∆

∫
K

Ψα
−ξ(z)FW( f )(ξ)τy|FW(g)|2(ξ)dνα(ξ)dνα(y).

Then, by Fubini’s theorem we get

f∆(z) =
∫
K

Ψα
−ξ(z)FW( f )(ξ)K∆(ξ)dνα(ξ), (7)

where
K∆(ξ) =

1
∥g∥2

L2(K,να)

∫
∆

τy|FW(g)|2(ξ)dνα(y).

From (1), it is easily to see that
∥K∆∥L∞(K,να) ≤ 1.

On the other hand, by Hölder’s inequality, we deduce that

|K∆(ξ)|2 ≤ να(∆)
∥g∥4

L2(K,να)

∫
∆
|τy|FW(g)|2(ξ)|2dνα(y).

Hence, by (2) we find

∥K∆∥2
L2(K,να)

≤ (να(∆))2

∥g∥4
L2(K,να)

∫
K
|FW(g)(ξ)|4dνα(ξ) ≤

(να(∆))2∥FW(g)∥2
L∞(K,να)

∥g∥2
L2(K,να)

.
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Thus K∆ ∈ L∞ ∩ L2(K, να). Therefore and by (7), we have f∆ = F−1
W (K∆FW( f )) and by Theorem 3 (i),

f∆ ∈ L2(K, να) and
FW( f∆) = K∆FW( f ).

From this relation it follows that

∥ f∆ − f ∥2
L2(K,ν∆)

=
∫
K
|FW( f )(ξ)|2(1 − K∆(ξ))

2dνα(ξ).

But by (1) we have
lim

∆→K
K∆(ξ) = 1, for all ξ ∈ K,

and
|FW( f )(ξ)|2(1 − K∆(ξ))

2 ≤ |FW( f )(ξ)|2, for all ξ ∈ K.

So, the relation (6) follows from the dominated convergence theorem.
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