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Abstract: A Young subgroup of the symmetric group SN with three factors, is realized as the stabilizer Gn of
a monomial xλ ( = xλ1

1 xλ2
2 · · · xλN

N ) with λ =
(
dn1

1 , dn2
2 , dn3

3
)

(meaning dj is repeated nj times, 1 ≤ j ≤ 3), thus
is isomorphic to the direct product Sn1 × Sn2 × Sn3 . The orbit of xλ under the action of SN (by permutation
of coordinates) spans a module Vλ, the representation induced from the identity representation of Gn. The
space Vλ decomposes into a direct sum of irreducible SN-modules. The spherical function is defined for
each of these, it is the character of the module averaged over the group Gn. This paper concerns the value of
certain spherical functions evaluated at a cycle which has no more than one entry in each of the three intervals
Ij =

{
i : λi = dj

}
, 1 ≤ j ≤ 3. These values appear in the study of eigenvalues of the Heckman-Polychronakos

operators in the paper by V. Gorin and the author (arXiv:2412:01938v1). The present paper determines the
spherical function values for SN-modules V of two-row tableau type, corresponding to Young tableaux of
shape [N − k, k]. The method is based on analyzing the effect of a cycle on Gn-invariant elements of V. These
are constructed in terms of Hahn polynomials in two variables.
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1. Introduction

S pherical functions arise when an irreducible representation of a group contains the identity
representation of a subgroup. This paper concerns the symmetric group and subgroups of Young type.

Such groups are defined as stabilizer groups of particular monomials in the context of the symmetric group
acting on polynomials by permutation of variables. Specifically we study the Young subgroup of SN leaving
each of three subintervals I1 = [1, n1], I2 = [n1 + 1, n1 + n2], I3 = [n1 + n2 + 1, N] setwise invariant , where
N = n1 + n2 + n3 and SN is the symmetric group of permutations of [1, N] = {1, 2, . . . , N}. The goal is to
evaluate the spherical function for the isotype described by two-row tableaux at cycles which have at most
one entry in each of the subintervals. This problem comes from a paper by Gorin and the author [1] which
analyzed the eigenvalues of certain difference-differential operator.

The basic technique is to specify a submodule of polynomials realizing the isotype [N − k, k] with 2k ≤ N,
describe the polynomials invariant under the Young subgroup, act on each of these by the cycle of interest,
and then project onto the space of invariants. The spherical function is then computed from this data. In the
present situation the invariant polynomials are expressed with the aid of certain Hahn polynomials in two
variables.

We begin with a brief sketch of the background from [1]. The commutative family of Heckman-

Polychronakos operators is the set Pk :=
N
∑

i=1
(xiDi)

k (k ≥ 1) in terms of Dunkl operators Di f (x) :=

∂
∂xi

f (x) + κ
N
∑

j=1,j ̸=i

f (x)− f (x(i,j))
xi−xj

; x (i, j) denotes x with xi and xj interchanged, and κ is a fixed parameter,

often satisfying κ > − 1
N (see Heckman [2], Polychronakos [3]). For α ∈ ZN

+ , let xα :=
N
∏
i=1

xαi
i . Suppose

λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0 then set Vλ = spanF
{

xβ : β = wλ, w ∈ SN
}

, that is, β ranges over the permutations
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of λ, and F is an extension field of R containing at least κ. The space Vλ is invariant under the action of
SN . The eigenvalue analysis of Pk is derived from the restriction of PkVλ to Vλ (there is a triangularity based
on the dominance order of partitions). Let λ =

(
dn1

1 , dn2
2 , dn3

3
)

(that is, dj is repeated nj times, 1 ≤ j ≤ 3),
with d1 > d2 > d3 ≥ 0. Let Gn denote the stabilizer group of xλ, so that Gn ∼= Sn1 × Sn2 × Sn3 . The
representation of SN realized on Vλ is the induced representation indSN

Gn
. The space Vλ can be decomposed

into a direct sum of SN-invariant subspaces of various isotypes, which may appear as several copies. The
number of copies (the multiplicity) of a particular isotype τ is called a Kostka number (see Macdonald [4]).
That is, Vλ = ∑

τ
⊕Vλ;τ . Because Pk commutes with the group action the restriction of PkVλ;τ to Vλ is contained

in Vλ;τ . If the multiplicity of the isotype τ in Vλ is greater than one then the eigenvalues of Pk realized on
Vλ;τ are generally not rational in the parameters, but the sum of all the eigenvalues (for any fixed k) can be
explicitly found, in terms of the character of τ. In general this may not have a simple explicit form . A closed
form was found for hook isotypes, labeled by partitions of the form

[
N − b, 1b

]
(by the Dunkl [5], for the more

general Gn ∼= Sn1 × Sn2··· × · · · × Snp ). The formula is based on considering cycles corresponding to subsets
A = {a1, . . . , aℓ} of {1, 2, 3}, which are of length ℓ with exactly one entry from each interval Iaj . Any such cycle
can be used and the order of a1, · · · , aℓ is immaterial. The degrees d1, d2, d3 enter the formula in a shifted way:

d̃1 := d1 + κ (n2 + n3) , d̃2 := d2 + κn3, d̃3 := d3.

Let hAm := hm

(
d̃a1 , d̃a2 , . . . , d̃aℓ

)
, the complete symmetric polynomial of degree m (the generating function

is ∑
k≥0

hk
(
c1, c2, . . . , cq

)
tk = ∏

q
i=1 (1 − cit)

−1, see [4]). Denote the character of the representation τ of SN by

χτ (w) then the spherical function

Φτ (gA) :=
1

#Gn
∑

h∈Gn

χτ (gA h) ,

where gA is an ℓ-cycle labeled by A as above, and #Gn = ∏3
i=1 ni!. In [1] the spherical function Φτ is denoted

by χτ [A; n], and called an "averaged character."
Now suppose the multiplicity of τ in Vλ is µ then there are µ dim τ eigenfunctions and eigenvalues of Pk,

and the sum of all these eigenvalues is ([1, Theorem 5.4])

dim τ
min(k+1,3)

∑
ℓ=1

(−κ)ℓ−1 ∑
A⊂{1,2,3},#A=ℓ

Φτ (gA) hAk+1−ℓ ∏
i∈A

ni!.

Here is an outline of the paper. §2 reviews some general results about spherical functions and the
formula proven in [5] which is the basic tool for the computations. The derivation starts with the construction
of an irreducible module of polynomials of isotype τ (for practical reasons we choose such a module of
minimum polynomial degree). The invariant polynomials in V are described in terms of elementary symmetric
polynomials. The dimension of the subspace of invariants is found in terms of the parameters n1, n2, n3 (by
Frobenius reciprocity the dimension is the same as µ, the multiplicity of [N − k, k] in Vλ). In §3 the two-variable
Hahn polynomials are defined and a basis for the invariants is constructed. §4 determines the spherical
functions for the 2-cycles. Lastly §5 produces the spherical function for 3-cycles and also has a discussion
(§5.1) about some specific examples, especially those with multiplicity one.

2. Spherical functions and invariants

Definition 1. The action of the symmetric group SN on polynomials P (x) is given by wP (x) = P (xw) and
(xw)i = xw(i), w ∈ SN , 1 ≤ i ≤ N.

Note (x (vw))i = (xv)w(i) = xv(w(i)) = xvw(i), vwP (x) = (wP) (xv) = P (xvw). The projection onto
Gn-invariant polynomials is given by

ρP (x) :=
1

#Gn
∑

h∈Gn

P (xh) .
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Let λ =
(
dn1

1 , dn2
2 , dn3

3
)

(that is, dj is repeated nj times, 1 ≤ j ≤ 3), with d1 > d2 > d3 ≥ 0. Let Gn denote
the stabilizer group of xλ, so that Gn ∼= Sn1 × Sn2 × Sn3 . Suppose that Mτ is an SN-module of isotype τ and
that

{
ψj : 1 ≤ j ≤ µ

}
is a basis for the Gn-invariants.

Proposition 1. [5, Cor. 2] Suppose g ∈ SN and ρgξi =
µ

∑
j=1

Bji (g) ξ j (1 ≤ i, j ≤ µ) then Φτ (g) = tr (B (g)).

The key fact is that ρgξi is itself an invariant and thus has a unique expansion in the basis
{

ψj : 1 ≤ j ≤ µ
}

.
The approach used in what follows is to determine the action of ρg on each basis element for the cycles
described above.

For 1 ≤ k ≤ N
2 let E ⊂ {1, 2, . . . , N} with #E = k and let mE := ∏

i∈E
xi, and

Vk :=

{
p = ∑

#E=k
cEmE :

N

∑
j=1

∂

∂xi
p = 0

}
.

Then Vk is of isotype [N − k, k] (an irreducible SN-module of dimension (N
k )− ( N

k−1) ).
To clearly display the action of Gn we introduce a modified coordinate system. Replace

(x1, x2, . . . , xN) ˜
(

x(1)1 , . . . , x(1)n1 , x(2)1 , . . . , x(2)n2 , x(3)1 , . . . , x(3)np

)
,

that is, x(j)
i stands for xs with s =

j−1
∑

i=1
ni + i. We use x(i)∗ , x(i)> to denote a generic x(i)j with 1 ≤ j ≤ ni, respectively

2 ≤ j ≤ ni. In the sequel gℓ denotes the cycle
(

x(1)1 , x(2)1 , . . . , x(ℓ)1

)
(with 2 ≤ ℓ ≤ 3). Let ei

(
x(j)
∗
)

, ei

(
x(j)
>

)
be

defined by
nj

∏
i=1

(
1 + tx(j)

i

)
=

ni
∑

i=0
tiei

(
x(j)
∗
)

, respectively
nj

∏
i=2

(
1 + tx(j)

i

)
=

ni−1
∑

i=0
tiei

(
x(j)
>

)
(elementary symmetric

functions).

Lemma 1. ρ
(

x(j)
1 ei−1

(
x(j)
>

))
=

i
nj

ei

(
x(j)
∗
)

and ρ
(

ei

(
x(j)
>

))
=

nj − i
nj

ei

(
x(j)
∗
)

.

Proof. Let p = x(j)
s1 x(j)

s2 · · · x(j)
si (with s1 < . . . < si) then ρp = (

nj
i )

−1ei

(
x(j)
∗
)

, because ei

(
x(j)
∗
)

is the sum of (nj
i )

monomials. There are (
nj−1
i−1 ) monomials in x(j)

1 ei−1

(
x(j)
>

)
and (

nj−1
i−1 )/(

nj
i ) =

i
nj

. There are (
nj−1

i ) monomials in

ei

(
x(j)
>

)
and (

nj−1
i )/(nj

i ) =
nj − i

nj
.

Proposition 2. [6, Prop. 2.1] A polynomial f (u, v) satisfies

(u − n1) f (u + 1, v) + (v − n2) f (u, v + 1)− (n3 − k + 1 + u + v) f (u, v) = 0,

for 0 ≤ u ≤ n1, 0 ≤ v ≤ n2, k − n3 ≤ u + v ≤ k , if and only if

N

∑
i=1

∂

∂xi
∑

u,v,u+v≤k
f (u, v) eu

(
x(1)∗

)
ev

(
x(2)∗

)
ek−u−v

(
x(3)∗

)
= 0,

that is, the inner sum is an element of Vk.

The formula describes the space of Gn-invariant polynomials of isotype [N − k, k].
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3. Hahn polynomials in two variables

One convenient orthogonal basis for Vk is defined in terms of Hahn polynomials (see [6] ) (the
Pochhammer symbol is (α)j = ∏

j
i=1 (α + i − 1))

Em (α, β, γ, t) :=
m

∑
i=0

(−1)i
(

m
i

)
(β − m + 1)i (α − m + 1)m−i (−t)i (t − γ)m−i ,

then the basis element ψm is given by (in two parts for later convenience)

ψ̃
(1)
m (t) : = Ek−m (n3, n1 + n2 − 2m, k − m, k − t)

=
k−m

∑
j=0

(m − k)j

j!
(n1 + n2 − k − m + 1)j (n3 − k + m + 1)k−m−j × (t − k)j (m − t)k−m−j , (1)

ψ̃
(2)
m (u, v) := Em (n2, n1, u + v, v) =

m
∑

i=0

(−m)i
i! (n1 − m + 1)i (n2 − m + 1)m−i (−v)i (−u)m−i ,

ψ̃m (u, v) := ψ̃
(1)
m (u + v) ψ̃

(2)
m (u, v) ,

(2)

for 0 ∨ (k − n3) ≤ m ≤ n1 ∧ n2 ∧ k ∧ (n1 + n2 − k) (the number of these points is the multiplicity of 1Gn in
[N − k, k]).

Proposition 3. A basis for the Gn-invariants is given by

ψm (x) := ∑
u,v,u+v≤k

ψ̃m (u, v) eu

(
x(1)∗

)
ev

(
x(2)∗

)
ek−u−v

(
x(3)∗

)
.

This follows from the fact that ψ̃m (u, v) satisfies the difference equation in Proposition 2 (see [6, p.63,
(3.11)]).

There are useful special values:
ψ̃
(1)
m (m) = (k − m)! (n1 + n2 − k − m + 1)k−m ,

ψ̃
(2)
m (u, 0) = (n2 − m + 1)m (−u)m = (−1)m (−n2)m (−u)m ,

ψ̃m (m, 0) = (−1)k−m (m − n1 − n2)k−m (−n2)m m! (k − m)!.

(3)

Lemma 2. If u + v < m then ψ̃
(2)
m (u, v) = 0.

Proof. The term for i in ψ̃
(2)
m (u, v) is nonzero only if i ≤ v and m − i ≤ u, that is, m − u ≤ i ≤ v.

An analogous structure is known for isotypes of 3-part partitions, due to Scarabotti [7]. We are not
pursuing this situation here because of the complexity due to the added dimension and the numerous
conditions on the parameters.

4. Spherical functions at a 2-cycle

For an invariant polynomial ψ (x) = ∑
u,v,u+v≤k

f (u, v) eu

(
x(1)∗

)
ev

(
x(2)∗

)
ek−u−v

(
x(3)∗

)
we will determine

ρψ (xg2) where g2 =
(

x(1)1 , x(2)1

)
. In this section we will show that ρg2ψm = 1

n1n2
{(m − n1) (m − n2)− m}ψm

for each m. This coefficient is then used in Proposition 1. Compute term-by-term. Let

p = eu

(
x(1)∗

)
ev

(
x(2)∗

)
ek−u−v

(
x(3)∗

)
=

{
x(1)1 eu−1

(
x(1)>

)
+ eu

(
x(1)>

)}{
x(2)1 ev−1

(
x(2)>

)
+ ev

(
x(2)>

)}
ek−u−v

(
x(3)∗

)
g2 p = x(1)1 eu−1

(
x(1)>

)
x(2)1 ev−1

(
x(2)>

)
ek−u−v

(
x(3)∗

)
+ x(1)1 eu

(
x(1)>

)
ev−1

(
x(2)>

)
ek−u−v

(
x(3)∗

)
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+ eu−1

(
x(1)>

)
x(2)1 ev

(
x(2)>

)
ek−u−v

(
x(3)∗

)
+ eu

(
x(1)>

)
ev

(
x(2)>

)
ek−u−v

(
x(3)∗

)
.

Apply ρ and use Lemma 1

ρg2 p =
1

n1n2

{
((n1 − u) (n2 − v) + uv) eu

(
x(1)∗

)
ev

(
x(2)∗

)
ek−u−v

(
x(3)∗

)
+ (u + 1) (n2 − v + 1) eu+1

(
x(1)∗

)
ev−1

(
x(2)∗

)
ek−u−v

(
x(3)∗

)
+ (n1 − u + 1) (v + 1) eu−1

(
x(1)∗

)
ev+1

(
x(2)∗

)
ek−u−v

(
x(3)∗

)}
.

Thus

ρg2ψ = ∑
u,v,u+v≤k

{((n1 − u) (n2 − v) + uv) f (u, v) + u (n2 − v) f (u − 1, v + 1) + (n1 − u) v f (u + 1, v − 1)}

× eu

(
x(1)∗

)
ev

(
x(2)∗

)
ek−u−v

(
x(3)∗

)
.

Observe that values like f (−1, v + 1) or f (n1 + 1, v) do not appear. Let f (u, v) = ψ̃
(1)
m (u + v) ψ̃

(2)
m (u, v)

from (1), (2). By Lemma 2 u + v < m implies ψ̃
(2)
m (u, v) = 0.

Let C (u, v, i) denote the i-term in the sum (2) for ψ̃
(2)
m (u, v). We will express u (n2 − v)C (u − 1, v + 1) +

(n1 − u) vC (u + 1, v − 1, i) in terms of C (u, v, i − 1) , C (u, v, i + 1) and C (u, v, i). It is more readable to display
ratios like C (u + 1, v − 1, i) /C (u, v, i) (resulting from straightforward calculations)

a1 (i) := u (n2 − v)
C (u − 1, v + 1, i)

C (u, v, i)
=

(n2 − v) (v + 1) (m − i − u)
i − v − 1

,

a2 (i) := (n1 − u) v
C (u + 1, v − 1, i)

C (u, v, i)
=

(n1 − u) (i − v) (u + 1)
m − u − i − 1

,

b1 (i) := − (m + 1 − i) (n1 − m + i)
C (u, v, i − 1)

C (u, v, i)
=

i (m − i − u) (n2 + 1 − i)
i − v − 1

,

b2 (i) := − (i + 1) (n2 − i)
C (u, v, i + 1)

C (u, v, i)
=

(−m + i) (i − v) (n1 − m + 1 + i)
1 + i + u − m

.

Then a1 (i)− b1 (i) = (i − v + n2) (m − i − u) , a2 (i)− b2 (i) = (i − m + n1 − u) (v − i). Thus

u (n2 − v)C (u − 1, v + 1, i) + (n1 − u) vC (u + 1, v − 1, i)

= − (m + 1 − i) (n1 − m + i)C (u, v, i − 1)− (i + 1) (n2 − i)C (u, v, i + 1)

+ (a1 (i)− b1 (i) + a2 (i)− b2 (i))C (u, v, i) .

Apply
m
∑

i=0
to each line: the first line gives u (n2 − v) ψ̃

(2)
m (u − 1, v + 1) + (n1 − u) vψ̃

(2)
m (u + 1, v − 1), the

second and third yield

−
m

∑
i=1

(m + 1 − i) (n1 − m + i)C (u, v, i − 1)−
m−1

∑
i=0

(i + 1) (n2 − i)C (u, v, i + 1)

+
m

∑
i=0

(a1 (i)− b1 (i) + a2 (i)− b2 (i))C (u, v, i)

=
m

∑
i=0

{(i − m) (n1 − m + 1 − i)− i (n2 − i) + a1 (i)− b1 (i) + a2 (i)− b2 (i)}C (u, v, i)

=
m

∑
i=0

{m (m − n1 − n2 − 1) + n2u + n1v − 2uv}C (u, v, i) ,

a multiple of ψ̃
(2)
m (u, v). The changes of summation variable are valid since b1 (0) = 0 = b2 (m). Now add

((n1 − u) (n2 − v) + uv) ψ̃
(2)
m (u, v) to both sides and obtain ρg2ψm = 1

n1n2
{(m − n1) (m − n2)− m}ψm.
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Let mL := 0 ∨ (k − n3) and mU := n1 ∧ n2 ∧ k ∧ (n1 + n2 − k). Thus the spherical function

Φ[N−k,k] (g2) =
1

n1n2

mU

∑
m=mL

{(m − n1) (m − n2)− m} ,

if k ≤ n1 ∧ n2 ∧ n3 then mL = 0, mU = k and

Φ[N−k,k] (g2) =
k + 1
n1n2

(
n1n2 −

1
2

k (n1 + n2) +
1
3

k (k − 1)
)

.

More generally let µ = mU − mL then

Φ[N−k,k] (g2) =
µ + 1
n1n2

(
m2

L + n1n2 −
(

mL +
µ

2

)
(n1 + n2) +

(
mL +

µ

3

)
(µ − 1)

)
. (4)

The corresponding situations for the 2-cycles
(

x(2)1 , x(3)1

)
and

(
x(1)1 , x(3)1

)
are obtained by suitably

permuting the parameters n1, n2, n3 in the formula. The multiplicity of 1Gn in Vk is symmetric in {ni}, namely
min {k, n1, . . . , n1 + n2 − k, . . .}+ 1.

4.1. Case n1 + n2 = N

The same scheme can be used for n = (n1, n2) (with N = n1 + n2): the multiplicity of [N − k, k] is one for

0 ≤ k ≤ n1 ∧ n2, the unique invariant polynomial (with
N
∑

i=1

∂
∂xi

ψ (x) = 0) is

ψ (x) :=
k

∑
u=0

f (u) eu

(
x(1)∗

)
ek−u

(
x(2)∗

)
,

f (u) := (−1)u (n2 − k + 1)u (n1 − k + 1)k−u ,

and with a similar calculation to the previous one

ρg2ψ =
k

∑
u=0

{((n1 − u) (n2 − v) + uv) f (u) + u (n2 − v) f (u − 1) + v (n1 − u) f (u + 1)} eu

(
x(1)∗

)
ek−u

(
x(2)∗

)
,

with v = k − u. We find

u (n2 − v)
f (u − 1)

f (u)
+ v (n1 − u)

f (u + 1)
f (u)

= −u (n1 + 1 − u)− (k − u) (n2 − k + 1 + u) ,

and adding (n1 − u) (n2 − k − u) + u (k − u) to both sides we obtain

ρg2ψ =
(

n1n2 − (n1 + n2) k + k2 − k
) k

∑
u=0

f (u) eu

(
x(1)∗

)
ek−u

(
x(2)∗

)
=

(
n1n2 − (n1 + n2) k + k2 − k

)
ψ.

Thus the spherical function

Φ[N−k,k] (g2) =
1

n1n2

(
n1n2 − (n1 + n2) k + k2 − k

)
.

5. Spherical functions at a 3-cycle

We use the 3 -cycle g3 =
(

x(1)1 , x(2)1 , x(3)1

)
. We will determine ρψ (xg3) for an invariant polynomial

ψ (x) = ∑
u,v,u+v≤k

f (u, v)
{

x(1)1 eu−1

(
x(1)>

)
+ eu

(
x(1)>

)}{
x(2)1 ev−1

(
x(2)>

)
+ ev

(
x(2)>

)}
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×
{

x(3)1 ek−u−v−1

(
x(3)>

)
+ ek−u−v

(
x(3)>

)}
.

The computation is quite a bit more involved than the 2-cycle case. Apply g3 to the (u, v)-term; there are
8 terms in the expansion (and abbreviate k − u − v = w)

x(2)1 eu−1

(
x(1)>

)
x(3)1 ev−1

(
x(2)>

)
x(1)1 ew−1

(
x(3)>

)
+ x(2)1 eu−1

(
x(1)>

)
x(3)1 ev−1

(
x(2)>

)
ew

(
x(3)>

)
+ x(2)1 eu−1

(
x(1)>

)
ev

(
x(2)>

)
x(1)1 ew−1

(
x(3)>

)
+ x(2)1 eu−1

(
x(1)>

)
ev

(
x(2)>

)
ew

(
x(3)>

)
+ eu

(
x(1)>

)
x(3)1 ev−1

(
x(2)>

)
x(1)1 ew−1

(
x(3)>

)
+ eu

(
x(1)>

)
x(3)1 ev−1

(
x(2)>

)
ew

(
x(3)>

)
+ eu

(
x(1)>

)
ev

(
x(2)>

)
x(1)1 ew−1

(
x(3)>

)
+ eu

(
x(1)>

)
ev

(
x(2)>

)
ew

(
x(3)>

)
.

Symmetrize each term using Lemma 1, and denote

P (u, v, w) :=
1

n1n2n3
eu

(
x(1)∗

)
ev

(
x(2)∗

)
ew

(
x(3)∗

)
:

uvwP (u, v, w) + (n1 − u + 1) v (w + 1) P (u − 1, v, w + 1)

+ u (v + 1) (n3 − w + 1) P (u, v + 1, w − 1) + (n1 − u + 1) (v + 1) (n3 − w) P (u − 1, v + 1, w)

+ (u + 1) (n2 − v + 1)wP (u + 1, v − 1, w) + (n1 − u) (n2 − v + 1) (w + 1) P (u, v − 1, w + 1)

+ (u + 1) (n2 − v) (n3 − w + 1) P (u + 1, v, w − 1) + (n1 − u) (n2 − v) (n3 − w) P(u, v, w)

respectively. Changing indices as appropriate we obtain

ρψ (xg3) = ∑
u,v,u+v≤k

P (u, v, w) {uvw f (u, v) + (n1 − u) vw f (u + 1, v)

+ uv (n3 − w) f (u, v − 1) + (n1 − u) v (n3 − w) f (u + 1, v − 1)

+ u (n2 − v)w f (u − 1, v + 1) + (n1 − u) (n2 − v)w f (u, v + 1)

+u (n2 − v) (n3 − w) f (u − 1, v) + (n1 − u) (n2 − v) (n3 − w) f (u, v)} .

Mow set f (u, v) = ψ̃m (u, v) and determine the coefficient cm in ρψm (xg3) = ∑
n

cnψn (x) (equivalently the

expression in {·} denoted Sm (u, v) equals ∑
n

cnψ̃n (u, v)).

In ψ
(1)
m (m) only the j = k − m term is nonzero, and in ψ̃

(2)
m (u, 0) only the i = 0 term is nonzero.

Furthermore u < m implies ψ̃m (u, 0) = 0, (because of the factor (−u)m in ψ̃
(2)
m (u, v)). By Lemma 2 u + v < n

implies ψ̃n (u, v) = 0. Thus Sm (u, 0) = 0 for u < m − 1 (note the terms v f (∗, v − 1) = 0). The following is
used to determine the coefficients needed for Proposition 1.

Proposition 4. Suppose f =
k
∑

n=0
cnψ̃n and f (u, 0) = 0 for u < m − 1 then

cm =
1

ψ̃m (m, 0)

{
f (m.0)− m (k − m − n3)

n1 + n2 − 2m + 2
f (m − 1, 0)

}
. (5)

Proof. The coefficients cj = 0 for j < m − 1. Indeed let i := min
{

j : cj ̸= 0
}

then f (i, 0) = ciψi (i, 0) ̸= 0,

and thus i ≥ m − 1. It remains to show that ψ̃m−1 (m, 0)− m(k−m−n3)
n1+n2−2m+2 ψ̃m−1 (m − 1, 0) = 0. From ψ̃

(2)
m−1 (u, 0)

= (n2 − m + 2)m−1 (−u)m−1 we find ψ̃
(2)
m−1 (m, 0) /ψ̃

(2)
m−1 (m − 1, 0) = m. In the sum for ψ̃

(1)
m−1 (u) at u = m − 1

only the j = k − m + 1 term appears and at u = m only the j = k − m term appears. Using this fact we find

ψ̃
(1)
m−1 (m)

ψ̃
(1)
m−1 (m − 1)

=
k − m − n3

n1 + n2 − 2m + 2
,
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ψ̃m−1 (m, 0)
ψ̃m−1 (m − 1, 0)

=
m (k − m − n3)

n1 + n2 − 2m + 2
,

and this concludes the proof.

We need to evaluate ψ̃m (u − 1, 1) , ψ̃m (u, 1) , ψ̃m (u − 1, 0) , ψ̃m (u, 0) at u = m − 1, m. The first and third of
these vanish at u = m − 1, by Lemma 2. Besides the values in formulas (3) the following are needed:

ψ̃
(1)
m (m + 1) = − (k − m)! (n1 + n2 − k − m + 1)k−m−1 (n3 − k + m + 1)

ψ̃
(2)
m (m, 0) = m! (−n2)m

ψ̃
(2)
m (m − 1, 1) = m! (n1 − m + 1) (1 − n2)m−1

ψ̃
(2)
m (m, 1) = (−1)m m! (n2 − m + 1)m−1 (n2 − m (n1 − m + 1)) .

To organize the calculations let

A := ψ̃
(1)
m (m + 1) /ψ̃

(1)
m (m) = −n3 − k + m + 1

n1 + n2 − 2m

B1 := ψ̃
(2)
m (m − 1, 1) /ψ̃

(2)
m (m, 0) = −n1 − m + 1

n2

B2 := ψ̃
(2)
m (m, 1) /ψ̃

(2)
m (m, 0) =

n2 − m (n1 − m + 1)
n2

T f (u, v) :=
1

ψ̃
(1)
m (m) ψ̃

(2)
m (m, 0)

{ f (u, 0)− Cm f (u − 1, 0)}

Cm :=
m (k − m − n3)

n1 + n2 − 2m + 2
.

Three of the T - evaluations are nonzero:

T {u (n2 − v)w f (u − 1, v + 1)} = mn2 (k − m) B1,

T {(n1 − u) (n2 − v)w f (u, v + 1)} = (n1 − m) n2 (k − m) AB2 − (n1 − m + 1) n2 (k − m + 1)CB1,

T {(n1 − u) (n2 − v) (n3 − w) f (u, v)} = (n1 − m) n2 (n3 − k + m) .

The omitted cases are due to ψ̃
(2)
m (m − 1, 0) = 0 = ψ̃

(2)
m (m − 2, 0). Let

ξ (k, m) := (m + 1) (n3 − k + m + 1) (k − m)
n1n2 − m2

n1 + n2 − 2m
,

then

(n1 − m) n2 (k − m) AB2 = (n1 + 1)m (k − m) (n3 − k + m + 1)− ξ (k, m)

− (n1 − m + 1) n2 (k − m + 1)CB1 = −n1m (k − m + 1) (n3 − k − m) + ξ (k, m − 1) .

We must deal with the exceptional case 2m = n1 + n2: if k < (n1 ∧ n2) then m ≤ k and 2m < n1 + n2, so
suppose n1 ∧ n2 ≤ k and m = n1 ∧ n2, and 2m = n1 + n2 implies m = n1 = n2 so that the term AB2 does not
occur. In fact there is more detail: if k > n1 = n2 then n1 + n2 − k < n1 giving the bound m ≤ n1 + n2 − k and
n1 + n2 − 2m ≥ k − m > 0, else if k = m then ψ̃1 = 1 and A = 1.

Adding the six terms we have shown that the coefficient cm in the expansion ρg3ψm = ∑
n

cnψn is

cm =
1

n1n2n3
{ζ (k, m)− ξ (k, m) + ξ (k, m − 1)}

ζ (k, m) := m2 (3k − 2m) + m
(

n2
3 − k2

)
− (n3 − k + m) (m (n1 + n2 + n3)− n1n2) .
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Thus the spherical function Φ[N−k,k] (g3) =
1

n1n2n3

mU
∑

m=mL

ζ (k, m)− ξ (k, mU)+ ξ (k, mL − 1), by telescoping.

Recall mL := 0 ∨ (k − n3) and mU := n1 ∧ n2 ∧ k ∧ (n1 + n2 − k). By definition ξ (k,−1) = 0 = ξ (k, k − n3 − 1)
so that ξ (k, mL − 1) = 0 , also ξ (k, k) = 0. The nonzero values of ξ (k, mU) are

ξ (k, mU) =

{
(mU + 1) (mU − (k − n3) + 1)mU (k − mU) , mU = n1 ∧ n2

(mU + 1) (mU − (k − n3) + 1)
(
n1n2 − m2

U
)

, mU = n1 + n2 − k.

One of the first two factors is (mU − mL + 1) since mL = 0 ∨ k − n3..We point out that the value of a
spherical function times n1n2n3 is an integer, because the character table of SN has all integer entries, and
necessarily the denominator in ξ (k, µ) cancels out. If k ≤ n3 (mL = 0) let µ = mU and then

Φ[N−k,k] (g3) =
µ + 1

n1n2n3

{
n1n2n3 −

1
2

µ (n1n2 + n1n3 + n1n3) +
1
6

Nµ (µ − 1)

+
1
2
(k − µ) (µ (N − k + µ + 1)− 2n1n2)−

1
µ + 1

ξ (k, µ)

}
.

The simplest case is µ = k, ξ (k, k) = 0. The sum can be explicitly found in general but tends to be
complicated. Here is one way to display the sum (with µ = mU − mL, ν = mL, δ = k − mU), omitting the factor
µ + 1

n1n2n3

1
6

Nµ (µ − 1) +
1
2

N (µν + µδ + 2νδ)− 1
2
(µ + 2ν) (n1n2 + n1n3 + n1n3) + n1n2n3

+
1
2

µν (ν − 1) + (ν − δ) (n1n2 + νδ)− 1
2

µδ (δ − 1)− 1
µ + 1

ξ (k, mU) . (6)

5.1. Special situations

Multiplicity equal to one arises when mL = mU at (1) k = n1 + n3, (2) k = n2 + n3, (3) k = n1 + n2, (4)
k = N

2 . For case (1) mL = k − n3 = mU = n1, then µ = 0, ν = n1, δ = n3 and by formula (6) Φ[N−k,k] (g3) =

− 1
n2

. A similar calculation shows case (2) yields − 1
n1

. For case (3) mL = 0 = n1 + n2 − k = mU , then

µ = 0, ν = 0, δ = n1 + n2 and by the same formula Φ[N−k,k] (g3) = − 1
n3

. In these cases there are implicit

bounds such as n2 ≥ N
2 , n1 + n3 ≤ N

2 , following from 2k ≤ N. Applying these parameters for the 2-cycle case

when g2 =
(

x(2)1 , x(1)1

)
and using formula (4) for Φ[N−k,k] (g2) one obtains (1) − 1

n2
, (2) − 1

n1
, (3) 1.

For case (4) (when N is even) mL = N
2 − n3 = mU = n1 + n2 − N

2 , δ = n3. The resulting values can be
written as

Φ[N/2,N/2] (g3) =
1

n1n2n3

{
−

3

∏
i=1

(
N
2
− ni

)
− ∑

1≤i<j≤3

(
N
2
− ni

)(
N
2
− nj

)}
,

Φ[N/2,N/2] (g2) =
1

n1n2

((
N
2
− n1

)(
N
2
− n2

)
− N

2
+ n3

)
.

Another example is n1 = n2 = n3 = n (and N = 3n). If k ≤ n then ν = mL = 0, mU = k, µ = k, δ = 0 and

Φ[N−k,k] (g3) =
k + 1

n2

(
n2 − 3

2
nk +

1
2

k (k − 1)
)

.

If n ≤ k ≤ 3
2 n then ν = mL = k − n, mU = 2n − k (since n ≥ 2n − k), µ = 3n − 2k, δ = 2k − 2n and

Φ[N−k,k] (g3) =
3n − 2k + 1

n2

(
n2 − 3

2
nk +

1
2

k (k − 1)
)

.
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